Evaluation of 6′-Sialyllactose Sodium Salt Supplementation to Formula on Growth and Clinical Parameters in Neonatal Piglets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Ingredient
2.2. Animal Care and Housing
2.3. Dietary Treatments
2.4. Sample Collection
2.5. Microscopic Histological Analysis
2.6. Hematological Analyses and Urinalysis
2.7. Statistical Analysis
3. Results
3.1. Growth and Body Weight Gain
3.2. Organ Weights and Intestinal Length, Colonic Content pH
3.3. Organ Microscopic Histological Analyses
3.4. Hematological Analyses and Urinalysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bode, L.; Jantscher-Krenn, E. Structure-function relationships of human milk oligosaccharides. Adv. Nutr. 2012, 3, 383S–391S. [Google Scholar] [CrossRef]
- Ninonuevo, M.R.; Park, Y.; Yin, H.; Zhang, J.; Ward, R.E.; Clowers, B.H.; German, J.B.; Freeman, S.L.; Killeen, K.; Grimm, R.; et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 2006, 54, 7471–7480. [Google Scholar] [CrossRef] [PubMed]
- Totten, S.M.; Zivkovic, A.M.; Wu, S.; Ngyuen, U.; Freeman, S.L.; Ruhaak, L.R.; Darboe, M.K.; German, J.B.; Prentice, A.M.; Lebrilla, C.B. Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. J. Proteome Res. 2012, 11, 6124–6133. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Ding, J.; Jin, G.; Yu, D.; Yu, L.; Long, Z.; Guo, Z.; Chai, W.; Liang, X. Profiling of sialylated oligosaccharides in mammalian milk using online solid phase extraction-hydrophilic interaction chromatography coupled with negative-ion electrospray mass spectrometry. Anal. Chem. 2018, 90, 3174–3182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel, T.M.; Binia, A.; de Castro, C.A.; Thakkar, S.K.; Billeaud, C.; Agosti, M.; Al-Jashi, I.; Costeira, M.J.; Marchini, G.; Martínez-Costa, C.; et al. Impact of maternal characteristics on human milk oligosaccharide composition over the first 4 months of lactation in a cohort of healthy European mothers. Sci. Rep. 2019, 9, 11767. [Google Scholar] [CrossRef]
- Nakamura, T.; Kawase, H.; Kimura, K.; Watanabe, Y.; Ohtani, M.; Arai, I.; Urashima, T. Concentrations of sialyloligosaccharides in bovine colostrum and milk during the prepartum and early lactation. J. Dairy Sci. 2003, 86, 1315–1320. [Google Scholar] [CrossRef] [Green Version]
- Tao, N.; DePeters, E.J.; Freeman, S.; German, J.B.; Grimm, R.; Lebrilla, C.B. Bovine milk glycome. J. Dairy Sci. 2008, 91, 3768–3778. [Google Scholar] [CrossRef] [Green Version]
- Robinson, R.C.; Poulsen, N.A.; Barile, D. Multiplexed bovine milk oligosaccharide analysis with aminoxy tandem mass tags. PLoS ONE 2018, 13, e0196513. [Google Scholar] [CrossRef]
- Martín-Sosa, S.; Martín, M.J.; García-Pardo, L.A.; Hueso, P. Sialyloligosaccharides in human and bovine milk and in infant formulas: variations with the progression of lactation. J. Dairy Sci. 2003, 86, 52–59. [Google Scholar] [CrossRef]
- ten Bruggencate, S.J.; Bovee-Oudenhoven, I.M.; Feitsma, A.L.; van Hoffen, E.; Schoterman, M.H. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 2014, 72, 377–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv. Nutr. Int. Rev. J. 2012, 3, 465S–472S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudd, A.T.; Fleming, S.A.; Labhart, B.; Chichlowski, M.; Berg, B.M.; Donovan, S.M.; Dilger, R.N. Dietary sialyllactose influences sialic acid concentrations in the prefrontal cortex and magnetic resonance imaging measures in corpus callosum of young pigs. Nutrients 2017, 9, E1297. [Google Scholar] [CrossRef] [Green Version]
- Han, N.S.; Kim, T.J.; Park, Y.C.; Kim, J.; Seo, J.H. Biotechnological production of human milk oligosaccharides. Biotechnol. Adv. 2012, 30, 1268–1278. [Google Scholar] [CrossRef] [PubMed]
- Gurung, R.B.; Kim, D.H.; Kim, L.; Lee, A.W.; Wang, Z.; Gao, Y. Toxicological evaluation of 6′-sialyllactose (6′-SL) sodium salt. Regul. Toxicol. Pharmacol. 2018, 95, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Monaco, M.H.; Gurung, R.B.; Donovan, S.M. Safety evaluation of 3′-siallylactose sodium salt supplementation on growth and clinical parameters in neonatal piglets. Regul. Toxicol. Pharmacol. 2019, 101, 57–64. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Guide for the Care and Use of Laboratory Animals; The National Academies Press: Washington, DC, USA, 1996. [Google Scholar]
- Ventrella, D.; Dondi, F.; Barone, F.; Serafini, F.; Elmi, A.; Giunti, M.; Romagnoli, N.; Forni, M.; Bacci, M.L. The biomedical piglet: Establishing reference intervals for haematology and clinical chemistry parameters of two age groups with and without iron supplementation. BMC Vet. Res. 2017, 13, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Merck and the Merck Veterinary Manual. Serum Biochemical References Ranges. Available online: http://www.merckvetmanual.com/appendixes/reference-guides/serum-biochemical-reference-ranges (accessed on 20 November 2019).
- Cooper, C.A.; Moraes, L.E.; Murray, J.D.; Owens, S.D. Hematologic and biochemical reference intervals for specific pathogen-free 6-week-old Hampshire-Yorkshire crossbred pigs. J. Anim. Sci. Biotechnol. 2014, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Rispat, G.; Slaoui, M.; Weber, D.; Salemink, P.; Berthoux, C.; Shrivastava, R. Haematological and plasma biochemical values for healthy Yucatan micropigs. Lab. Anim. 1993, 27, 368–373. [Google Scholar] [CrossRef]
- Hanlon, P.R.; Thorsrud, B.A. A 3-week pre-clinical study of 2′-fucosyllactose in farm piglets. Food Chem. Toxicol. 2014, 74, 343–348. [Google Scholar] [CrossRef]
- Smilowitz, J.T.; Lebrilla, C.B.; Mills, D.A.; German, J.B.; Freeman, S.L. Breast milk oligosaccharides: Relationships in the neonate. Annu. Rev. Nutr. 2014, 34, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Jacobi, S.K.; Yatsunenko, T.; Li, D.; Dasgupta, S.; Yu, R.K.; Berg, B.M.; Chichlowski, M.; Odle, J. Dietary isomers of sialyllactose increase ganglioside sialic acid concentrations in the corpus callosum and cerebellum and modulate the colonic microbiota of formula-fed piglets. J. Nutr. 2016, 146, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lübbers, J.; Rodríguez, E.; van Kooyk, Y. Modulation of immune tolerance via siglec-sialic acid interactions. Front. Immunol. 2018, 9, 2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveros, E.; Vázquez, E.; Barranco, A.; Ramírez, M.; Gruart, A.; Delgado-García, J.M.; Buck, R.; Rueda, R.; Martín, M.J. Sialic acid and sialylated oligosaccharide supplementation during lactation improves learning and memory in rats. Nutrients 2018, 10, E1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hester, S.N.; Chen, X.; Li, M.; Monaco, M.H.; Comstock, S.S.; Kuhlenschmidt, T.B.; Kuhlenschmidt, M.S.; Donovan, S.M. Human milk oligosaccharides inhibit rotavirus infectivity In Vitro and in acutely infected piglets. Br. J. Nutr. 2013, 110, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, Y.J.; Kim, J.W. Bacterial clearance is enhanced by α2,3- and α2,6-sialyllactose via receptor-mediated endocytosis and phagocytosis. Infect. Immun. 2018, 87, e00694. [Google Scholar] [CrossRef] [Green Version]
- Tarr, A.J.; Galley, J.D.; Fisher, S.E.; Chichlowski, M.; Berg, B.M.; Bailey, M.T. The prebiotics 3′Sialyllactose and 6′Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut-brain axis. Brain Behav. Immun. 2015, 50, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Yu, B.; Karim, M.; Hu, H.; Sun, Y.; McGreevy, P.; Petocz, P.; Held, S.; Brand-Miller, J. Dietary sialic acid supplementation improves learning and memory in piglets. Am. J. Clin. Nutr. 2007, 85, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Thorn, C.E. Schalm’s Veterinary Hematology. In Normal Hematology of the Pig, 5th ed.; Feldman, B.F., Zinkl, J.G., Jain, N.C., Eds.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2000; pp. 1089–1095. [Google Scholar]
- Mahadevan, B.; Thorsrud, B.A.; Brorby, G.P.; Ferguson, H.E. A 3-week dietary study of octenyl succinic anhydride (OSA)-modified starch in neonatal farm piglets. Food Chem. Toxicol. 2014, 72, 83–89. [Google Scholar] [CrossRef]
- Vap, L.M.; Shropshire, S.B. Urine cytology: Collection, film preparation, and evaluation. Vet. Clin. N. Am. Small Anim. Pract. 2017, 47, 135–149. [Google Scholar] [CrossRef]
Concentration of 6′-SL Sodium Salt in Formula | ||||
---|---|---|---|---|
Variable | CON (0 mg/L) | LOW (300 mg/L) | MOD (600 mg/L) | HIGH (1200 mg/L) |
Small intestine length (cm/kg) | 129 ± 6.9 | 125 ± 3.0 | 131 ± 4.9 | 127 ± 3.5 |
Small intestine weight (g/kg) | 40 ± 1.0 | 39 ± 1.8 | 42 ± 2.0 | 41 ± 2.4 |
Large intestine length (cm/kg) | 24 ± 1.0 | 24 ± 0.6 | 24 ± 0.9 | 24 ± 1.1 |
Brain (g/kg) | 6.1 ± 0.2 | 5.9 ± 0.2 | 6.0 ± 0.2 | 5.9 ± 0.2 |
Kidneys (g/kg) | 6.9 ± 0.2 | 7.2 ± 0.2 | 7.2 ± 0.2 | 7.3 ± 0.2 |
Spleen (g/kg) | 2.2 ± 0.1 | 2.3 ± 0.1 | 2.3 ± 0.1 | 2.3 ± 1.1 |
Heart (g/kg) | 5.7 ± 0.1 | 5.9 ± 0.1 | 5.7 ± 0.1 | 5.7 ± 0.1 |
Stomach (g/kg) | 5.3 ± 0.2 | 5.2 ± 0.2 | 5.6 ± 0.2 | 5.6 ± 0.2 |
Liver (g/kg) | 34 ± 1.2 | 32 ± 1.3 | 33 ± 1.0 | 33 ± 1.4 |
Lung (g/kg) | 12 ± 0.5 | 12 ± 0.5 | 12 ± 0.4 | 13 ± 0.5 |
Organ | CON (0 mg 6′-SL/L) | HIGH (1200 mg 6′-SL/L) |
---|---|---|
N = 11 | N = 12 | |
Stomach, pylorus: lymphocyte infiltration | ||
Minimal | 4 | 2 |
Mild | 7 | 8 |
Stomach, glandular: lymphocyte infiltration | ||
Minimal | 3 | 4 |
Mild | 8 | 7 |
Moderate | 0 | 1 |
Spleen: congestion/perfusion | ||
Minimal | 0 | 2 |
Mild | 3 | 4 |
Moderate | 8 | 5 |
Marked | 0 | 1 |
Liver: extramedullary hematopoiesis | ||
Minimal | 6 | 3 |
Mild | 0 | 4 |
Liver: vacuolar change (glycogen accumulation) | 1 | |
Mild | 2 | 6 |
Moderate | 5 | 5 |
Marked | 4 | |
Kidney: hemorrhage | ||
Minimal | 1 | 3 |
Mild | 4 | 6 |
Moderate | 1 | 0 |
Kidney: congestion/perfusion | ||
Minimal | 0 | 2 |
Mild | 10 | 9 |
Moderate | 1 | 1 |
Duodenum: lymphocyte infiltration | ||
Mild | 8 | 9 |
Moderate | 3 | 3 |
Jejunum: lymphocyte infiltration | 12 | |
Mild | 11 | 12 |
Jejunum: congestion/perfusion | ||
Minimal | 4 | 1 |
Mild | 7 | 9 |
Moderate | 0 | 2 |
Ileum: congestion/perfusion | ||
Minimal | 2 | 1 |
Mild | 7 | 11 |
Moderate | 1 | 0 |
Cecum: lymphocyte infiltration | ||
Minimum | 0 | 4 |
Mild | 9 | 8 |
Moderate | 2 | 0 |
Ascending colon: lymphocyte infiltration | 11 | 12 |
Mild | 11 | 12 |
Ascending colon: congestion/perfusion | ||
Minimal | 1 | 4 |
Mild | 10 | 7 |
Moderate | 0 | 1 |
Ascending colon: lymphoid nodule | ||
Mild | 2 | 0 |
Moderate | 4 | 5 |
Marked | 4 | 5 |
Descending colon: lymphocyte infiltration | ||
Mild | 8 | 7 |
Moderate | 3 | 5 |
Concentration of 6′-SL Sodium Salt in Formula | |||||
---|---|---|---|---|---|
Variable | Reference Ranges 2 | CON (0 mg/L) | LOW (300 mg/L) | MOD (600 mg/L) | HIGH (1200 mg/L) |
Day 8 | |||||
PT (sec) | 9.3–13.3 | 12.8 ± 0.23 | 13.3 ± 0.15 | 12.7 ± 0.29 | 12.8 ± 0.20 |
aPTT (sec) | 12.3–17.8 | 12.8 ± 0.62 | 13.4 ± 0.33 | 13.2 ± 0.38 | 12.0 ± 0.52 |
Day 22 | |||||
PT (sec) | 9.3–13.3 | 13.1 ± 0.17 | 13.1 ± 0.24 | 13.5 ± 0.20 | 13.1 ± 0.23 |
aPTT (sec) | 12.3–17.8 | 13.6 ± 0.36 | 13.2 ± 0.38 | 13.8 ± 0.53 | 13.4 ± 0.57 |
Variable | Units | Day 8 | Day 22 |
---|---|---|---|
Minerals 2 | |||
Phosphorus | mg/dL | 10.4 ± 0.08 | 10.8 ± 0.09 * |
Magnesium | mg/dL | 3.0 ± 0.05 † | 2.6 ± 0.04 |
Electrolytes 2 | |||
Sodium | mmol/L | 142 ± 0.2 † | 141 ± 0.3 |
Potassium | mmol/L | 7.5 ± 0.1 † | 5.9 ± 0.1 |
Sodium:Potassium | 19 ± 0.3 | 24 ± 0.6 * | |
Chloride | mmol/L | 105 ± 0.3 † | 104 ± 0.3 |
Metabolites 2 | |||
Glucose | mg/dL | 125 ± 2.5 | 154 ± 1.7 * |
Triglycerides | mg/dL | 56 ± 4.9 † | 34 ± 2.7 |
Protein 2 | |||
Total Protein | g/dL | 4.2 ± 0.06 † | 3.8 ± 0.06 |
Albumin | g/dL | 1.6 ± 0.03 | 2.5 ± 0.05 * |
Globulin | g/dL | 2.6 ± 0.06 † | 1.3 ± 0.03 |
Albumin:Globulin | 0.6 ± 0.02 | 2.0 ± 0.05 * | |
Enzymes 3 | |||
ALP | U/L | 1195 ± 51.1 † | 480 ± 26.3 |
Kidney function 3 | |||
Creatinine | mg/dL | 0.8 ± 0.02 | 0.9 ± 0.02 * |
BUN (Urea) | mg/dL | 3.5 ± 0.2 | 8.1 ± 0.2 * |
Acid:Base status 3 | |||
Anion Gap | 21 ± 0.2 † | 17 ± 0.4 |
Variable | Units | Day 8 | Day 22 |
---|---|---|---|
RBC | x 106/µL | 5.37 ± 0.1 † | 5.15 ± 0.1 |
Hemoglobin | g/dL | 10.4 ± 0.1 † | 9.37 ± 0.2 |
Hematocrit | % | 33.6 ± 0.4 † | 30.3 ± 0.7 |
MCV | fl | 66.0 ± 0.5 † | 59.9 ± 0.1 |
MCH | pg | 19.3 ± 0.1 † | 18.3 ± 0.1 |
MPV | fl | 9.66 ± 0.2 † | 8.82 ± 0.2 |
Neutrophils | % | 43.0 ± 1.4 † | 30.7 ± 1.7 |
Monocytes | % | 3.37 ± 0.3 | 9.77 ± 0.7 * |
Neutrophil count | x 103/µL | 5.16 ± 0.3 † | 3.11 ± 0.2 |
Monocyte count | x 103/µL | 0.41 ± 0.04 | 1.08 ± 0.1 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monaco, M.H.; Kim, D.H.; Gurung, R.B.; Donovan, S.M. Evaluation of 6′-Sialyllactose Sodium Salt Supplementation to Formula on Growth and Clinical Parameters in Neonatal Piglets. Nutrients 2020, 12, 1030. https://doi.org/10.3390/nu12041030
Monaco MH, Kim DH, Gurung RB, Donovan SM. Evaluation of 6′-Sialyllactose Sodium Salt Supplementation to Formula on Growth and Clinical Parameters in Neonatal Piglets. Nutrients. 2020; 12(4):1030. https://doi.org/10.3390/nu12041030
Chicago/Turabian StyleMonaco, Marcia H., Dae Hee Kim, Rit B. Gurung, and Sharon M. Donovan. 2020. "Evaluation of 6′-Sialyllactose Sodium Salt Supplementation to Formula on Growth and Clinical Parameters in Neonatal Piglets" Nutrients 12, no. 4: 1030. https://doi.org/10.3390/nu12041030
APA StyleMonaco, M. H., Kim, D. H., Gurung, R. B., & Donovan, S. M. (2020). Evaluation of 6′-Sialyllactose Sodium Salt Supplementation to Formula on Growth and Clinical Parameters in Neonatal Piglets. Nutrients, 12(4), 1030. https://doi.org/10.3390/nu12041030