Enteral Nutrition Supplemented with Transforming Growth Factor-β, Colostrum, Probiotics, and Other Nutritional Compounds in the Treatment of Patients with Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Tranforming Growth Factor-β
TGFβ and Inflammatory Bowel Disease
3. Colostrum in Health and Disease
3.1. Clinical Studies of Colostrum in Patients with IBD
3.2. Role of Colostrum in Ameliorating Chemical Colitis
4. Probiotics in Inflammatory Bowel Disease
4.1. Probiotics and IBD Pathophysiology
4.2. Effectiveness of Probiotics in IBD: Results of the Published Meta-Analyses
5. Enteral Formulas Supplemented with TGF Used in IBD Patients in Clinical Studies
6. Other Nutritional Compounds
6.1. Short Chain Fatty Acids (SCFAs)
6.2. Flavonoids
6.3. Bioactive Peptides
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Di Caro, S.; Fragkos, K.C.; Keetarut, K.; Koo, F.H.; Sebepos-Rogers, G.; Saravanapavan, H.; Barragry, J.; Rogers, J.; Mehta, S.J.; Rahman, F. Enteral nutrition in adult Crohn’s disease: Toward a paradigm shift. Nutrients 2019, 11, 2222. [Google Scholar] [CrossRef] [Green Version]
- Swaminath, A.; Feathers, A.; Ananthakrishnan, A.N.; Falzon, L.; Li Ferry, S. Systematic review with meta-analysis: Enteral nutrition therapy for the induction of remission in paediatric Crohn’s disease. Aliment. Pharmacol. Ther. 2017, 46, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Forbes, A.; Escher, J.; Hebuterne, X.; Kłe, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN guideline: Clinical nutrition in inflammatory bowel disease. Clin. Nutr. 2017, 36, e321–e347. [Google Scholar] [CrossRef] [Green Version]
- Triantafillidis, J.K.; Vagianos, C.; Papalois, A.E. The role of enteral nutrition in patients with inflammatory bowel disease: Current aspects. Biomed. Res. Int. 2015, 2015, 197167. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.M.; Kim, S.H.; Kim, E.H. The molecular mechanism of Transforming Growth Factor-β signaling for intestinal fibrosis: A mini-review. Front. Pharmacol. 2019, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Triantafillidis, J.K.; Stamataki, A.; Gikas, A.; Sklavaina, M.; Mylonaki, M.; Georgopoulos, F.; Mastragelis, A.; Cheracakis, P. Beneficial effect of a polymeric feed, rich in TGF-α, on adult patients with active Crohn’s disease: A pilot study. Ann. Gastroenterol. 2006, 19, 66–71. [Google Scholar]
- Triantafillidis, J.K.; Stamataki, A.; Karagianni, V.; Gikas, A.; Malgarinos, G. Maintenance treatment of Crohn’s disease with a polymeric feed rich in TGF-β. Ann. Gastroenterol. 2010, 23, 113–118. [Google Scholar]
- Hartman, C.; Berkowitz, D.; Weiss, B.; Shaoul, R.; Adiv, O.E.; Shapira, R.; Fradkin, A.; Wilschanski, M.; Tamir, A. Nutritional supplementation with polymeric diet enriched with transforming growth factor-beta 2 for children with Crohn’s disease. Isr. Med. Ass J. 2008, 10, 503–507. [Google Scholar] [PubMed]
- Bodammer, P.; Maletzki, C.; Waitz, G.; Emmrich, J. Prophylactic application of bovine colostrum ameliorates murine colitis via Induction of immunoregulatory cells. J. Nutr. 2011, 141, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Filipescu, I.E.; Leonardi, L.; Menchetti, L.; Guelfi, G.; Traina, G.; Casagrande-Proietti, P.; Piro, F.; Quattrone, A.; Barbato, O.; Brecchia, G. Preventive effects of bovine colostrums supplementation in TNBS-induced colitis in mice. PLoS ONE 2018, 13, e0202929. [Google Scholar] [CrossRef]
- Abraham, B.; Quigley, E.M.M. Antibiotics and probiotics in inflammatory bowel disease: When to use them? Front. Gastroenterol. 2020, 11, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Coqueiro, A.Y.; Raizel, R.; Bonvini, A.; Tirapegui, J.; Rogero, M.M. Probiotics for inflammatory bowel diseases: A promising adjuvant treatment. Int. J. Food Sci. Nutr. 2019, 70, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Ganji-Arjenaki, M.; Rafieian-Kopaei, M. Probiotics are a good choice in remission of inflammatory bowel diseases: A metaanalysis and systematic review. J. Cell Physiol. 2018, 233, 2091–2103. [Google Scholar] [CrossRef] [PubMed]
- Sanjabi, S.; Oh, S.A.; Li, M.O. Regulation of the immune response by TGF-b: From conception to autoimmunity and infection. Cold Spring Harb. Perspect. Biol. 2017, 9, a022236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, K.J.; Blobe, G.C. Role of transforming growth factor-β superfamily signaling pathways in human disease. Biochim. Biophys. Acta 2008, 1782, 197–228. [Google Scholar] [CrossRef] [Green Version]
- Vallance, B.A.; Gunawan, M.I.; Hewlett, B.; Bercik, P.; Van Kampen, C.; Galeazzi, F.; Sime, P.J.; Gauldie, J.; Collins, S.M. TGF-beta1 gene transfer to the mouse colon leads to intestinal fibrosis. Am. J. Physiol. Gastrointest Liver Physiol. 2005, 289, G116–G128. [Google Scholar] [CrossRef] [Green Version]
- Ihara, S.; Hirata, Y.; Koike, K. TGF-β in inflammatory bowel disease: A key regulator of immune cells, epithelium, and the intestinal microbiota. J. Gastroenterol. 2017, 52, 777–787. [Google Scholar] [CrossRef] [Green Version]
- Massagué, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef]
- Letterio, J.J.; Roberts, A.B. Regulation of immune responses by TGF-beta. Ann. Rev. Immunol. 1998, 16, 137–161. [Google Scholar] [CrossRef] [Green Version]
- Massagué, J.; Xi, Q. TGF-β control of stem cell differentiation genes. FEBS Lett. 2012, 586, 1953–1958. [Google Scholar] [CrossRef] [Green Version]
- Li, M.O.; Wan, Y.Y.; Sanjabi, S.; Robertson, A.K.L.; Flavell, R.A. Transforming growth factor-β regulation of immune responses. Ann. Rev. Immunol. 2006, 24, 99–146. [Google Scholar] [CrossRef]
- Kubiczkova, L.; Sedlarikova, L.; Hajek, R.; Sevcikova, S. TGF-β—An excellent servant but a bad master. J. Transl. Med. 2012, 10, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smythies, L.E.; Sellers, M.; Clements, R.H.; Mosteller-Barnum, M.; Meng, G.; Benjamin, W.H.; Orenstein, J.M.; Smith, D. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Investig. 2005, 115, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Järvinen, K.M.; Westfall, J.E.; Seppo, M.S.; James, A.K.; Tsuang, A.J.; Feustel, P.; Sampson, H.A.; Berin, C. Role of maternal elimination diets and human milk IgA in the development of cow’s milk allergy in the infants. Clin. Exp. Allergy 2014, 44, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Babyatsky, M.W.; Rossiter, G.; Podolsky, D.K. Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology 1996, 110, 975–984. [Google Scholar] [CrossRef]
- Katuri, V.; Tang, Y.; Li, C.; Jogunoori, W.; Deng, C.X.; Rashid, A.; Sidawy, A.N.; Evans, S.; Reddy, E.P.; Mishra, B.; et al. Critical interactions between TGF-beta signaling/ELF, and E-cadherin/beta-catenin mediated tumor suppression. Oncogene 2006, 25, 1871–1886. [Google Scholar] [CrossRef] [Green Version]
- di Mola, F.F.; Friess, H.; Scheuren, A.; Di Sebastiano, P.; Graber, H.; Egger, B.; Zimmermann, A.; Korc, M.; Büchler, M.W. Transforming growth factor-betas and their signaling receptors are coexpressed in Crohn’s disease. Ann. Surg. 1999, 229, 67–75. [Google Scholar] [CrossRef]
- Rieder, F.; Fiocchi, C. Intestinal fibrosis in IBD–a dynamic, multifactorial process. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 228–235. [Google Scholar] [CrossRef]
- Massague, J.; Seoane, J.; Wotton, D. Smad transcription factors. Genes Dev. 2005, 19, 2783–2810. [Google Scholar] [CrossRef] [Green Version]
- Sedda, S.; Marafini, I.; Dinallo, V.; Di Fusco, D.; Monteleone, G. The TGF-β/Smad System in IBD Pathogenesis. Inflamm. Bowel Dis. 2015, 21, 2921–2925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boirivant, M.; Pallone, F.; Di Giacinto, C.; Fina, D.; Monteleone, I.; Marinaro, M.; Caruso, R.; Colantoni, A.; Palmieri, G.; Sanchez, M.; et al. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta1-mediated suppression of colitis. Gastroenterology 2006, 131, 1786–1798. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, G.; Fantini, M.C.; Onali, S.; Zorzi, F.; Sancesario, G.; Bernardini, S.; Calabrese, E.; Viti, F.; Monteleone, I.; Biancone, L.; et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Mol. Ther. 2012, 20, 870–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteleone, G.; Neurath, M.F.; Ardizzone, S.; Di Sabatino, A.; Fantini, M.C.; Castiglione, F.; Scribano, M.L.; Armuzzi, A.; Caprioli, F.; Sturniolo, G.C.; et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N. Engl. J. Med. 2015, 372, 1104–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulloa, L.; Doody, J.; Massague, J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 1999, 397, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Kotlarz, D.; Marquardt, B.; Barøy, T.; Lee, W.S.; Konnikova, L.; Hollizeck, S.; Magg, T.; Lehle, A.S.; Walz, C.; Borggraefe, I.; et al. Human TGF-β1 deficiency causes severe inflammatory bowel disease and encephalopathy. Nat. Genet. 2018, 50, 344–348. [Google Scholar] [CrossRef]
- Stelwagen, K.; Carpenter, E.; Haigh, B.; Hodgkinson, A.; Wheeler, T.T. Immune components of bovine colostrum and milk. J. Anim. Sci. 2009, 87, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Kim, H.; Kim, H. Effect of dietary bovine colostrum on the responses of immune cells to stimulation with bacterial lipopolysaccharide. Arch. Pharm. Res. 2014, 37, 494–500. [Google Scholar] [CrossRef]
- Donnet-Hughes, A.; Duc, N.; Serrant, P.; Vidal, K.; Schiffrin, E.J. Bioactive molecules in milk and their role in health and disease: The role of transforming growth factor-beta. Immunol. Cell Biol. 2000, 78, 74–79. [Google Scholar] [CrossRef]
- Munblit, D.; Abrol, P.; Sheth, S.; Chow, L.Y.; Khaleva, E.; Asmanov, A.; Lauriola, S.; Padovani, E.M.; Comberiati, P.; Boner, A.L.; et al. Levels of growth factors and IgA in the colostrum of women from Burundi and italy. Nutrients 2018, 10, 1216. [Google Scholar] [CrossRef] [Green Version]
- Castellote, C.; Casillas, R.; Ramírez-Santana, C.; Pérez-Cano, F.J.; Castell, M.; Moretones, M.G.; López-Sabater, M.C.; Franch, A. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J. Nutr. 2011, 110, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Krissansen, G.W. Emerging health properties of whey proteins and their clinical implications. J. Am. Coll. Nutr. 2007, 26, 713S–723S. [Google Scholar] [CrossRef] [PubMed]
- Buccigrossi, V.; de Marco, G.; Bruzzese, E.; Ombrato, L.; Bracale, I.; Polito, G.; Guarino, A. Lactoferrin induces concentration-dependent functional modulation of intestinal proliferation and differentiation. Pediatr. Res. 2007, 61, 410–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norrby, K.; Mattsby-Baltzer, I.; Innocenti, M.; Tuneberg, S. Orally administered bovine lactoferrin systemically inhibits VEGF165-mediated angiogenesis in the rat. Int. J. Cancer 2001, 91, 236–240. [Google Scholar] [CrossRef]
- Hill, D.R.; Newburg, D.S. Clinical applications of bioactive milk components. Nutr. Rev. 2015, 73, 463–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aakko, J.; Kumar, H.; Rautava, S.; Wise, A.; Autran, C.; Bode, L.; Isolauri, E.; Salminen, S. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef. Microbes 2017, 8, 563–567. [Google Scholar] [CrossRef]
- Hanson, L.A. Comparative immunological studies of the immune globulins of human milk and of blood serum. Int. Arch. Allergy Appl. Immunol. 1961, 18, 241–267. [Google Scholar] [CrossRef]
- Walker, A. Breast milk as the gold standard for protective nutrients. J. Pediatr. 2010, 156 (Suppl. 2), S3–S7. [Google Scholar] [CrossRef]
- Cairangzhuoma, Y.M.; Muranishi, H.; Inagaki, M.; Uchida, K.; Yamashita, K.; Saito, S.; Yabe, T.; Kanamaru, Y. Skimmed, sterilized, and concentrated bovine late colostrum promotes both prevention and recovery from intestinal tissue damage in mice. J. Dairy Sci. 2013, 96, 1347–1355. [Google Scholar] [CrossRef] [Green Version]
- Lund, P.; Sangild, P.T.; Aunsholt, L.; Hartmann, B.; Holst, J.J.; Mortensen, J.; Mortensen, P.B.; Jeppesen, P.B. Randomised controlled trial of colostrum to improve intestinal function in patients with short bowel syndrome. Eur. J. Clin. Nutr. 2012, 66, 1059–1065. [Google Scholar] [CrossRef] [Green Version]
- Moøller, H.K.; Thymann, T.; Fink, L.N.; Frokiaer, H.; Kvistgaard, A.S.; Sangild, P.T. Bovine colostrum is superior to enriched formulas in stimulating intestinal function and necrotising enterocolitis resistance in preterm pigs. Br. J. Nutr. 2011, 105, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, W.; Najnigier, B.; Stelmasiak, T.; Robins-Browne, R.M. Randomized control trials using a tablet formulation of hyperimmune bovine colostrum to prevent diarrhea caused by enterotoxigenic Escherichia coli in volunteers. Scand. J. Gastroenterol. 2011, 46, 862–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Støy, A.C.F.; Heegaard, P.M.H.; Thymann, T.; Bjerre, M.; Skovgaard, K.; Boye, M.; Stoll, B.; Mette Schmidt, M.; Bent, B.; Jensen, B.B.; et al. Bovine colostrum improves intestinal function following formula-induced gut inflammation in preterm pigs. Clin. Nutr. 2014, 33, 322–329. [Google Scholar] [CrossRef]
- Bodammer, P.; Zirzow, E.; Klammt, S.; Maletzki, C.; Kerkhoff, C. Alteration of DSS-mediated immune cell redistribution in murine colitis by oral colostral immunoglobulin. BioMedCentral Immunol. 2013, 14, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Z.; Macdonald, C.; Wicks, A.C.; Holt, M.P.; Floyd, D.; Ghosh, S.; Wright, N.A.; Playford, R.J. Use of the ‘nutriceutical’, bovine colostrum, for the treatment of distal colitis: Results from an initial study. Aliment. Pharm. Ther. 2002, 16, 1917–1922. [Google Scholar] [CrossRef]
- Bodammer, P.; Kerkhoff, C.; Maletzki, C.; Lamprecht, G. Bovine colostrum increases pore-forming claudin-2 protein expression but paradoxically not ion permeability possibly by a change of the intestinal cytokine milieu. PLoS ONE 2013, 8, e64210. [Google Scholar] [CrossRef] [Green Version]
- Bhol, K.C.; Tracey, D.E.; Lemos, B.R.; Lyng, G.D.; Erlich, E.C.; Keane, D.M.; Quesenberry, M.S.; Holdorf, A.D.; Schlehuber, L.D.; Clark, S.A.; et al. AVX-470: A novel oral anti-TNF antibody with therapeutic potential in inflammatory bowel disease. Inflamm. Bowel Dis. 2013, 19, 2273–2281. [Google Scholar] [CrossRef]
- Roos, N.; Mahe, S.; Benamouzig, R.; Sick, H.; Rautureau, J.; Tomé, D. 15N-labeled immunoglobulins from bovine colostrum are partially resistant to digestion in human intestine. J. Nutr. 1995, 125, 1238–1244. [Google Scholar] [CrossRef]
- Greenberg, P.D.; Cello, J.P. Treatment of severe diarrhea caused by Cryptosporidium parvum with oral bovine immunoglobulin concentrate in patients with AIDS. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1996, 13, 348–354. [Google Scholar] [CrossRef]
- Vazquez-Roque, M.I.; Bouras, E.P. Linaclotide, novel therapy for the treatment of chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Adv. Ther. 2013, 30, 203–211. [Google Scholar] [CrossRef]
- Kanwar, J.R.; Kanwar, R.K.; Stathopoulos, S.; Haggarty, N.W.; MacGibbon, A.K.H.; Palmao, K.P.; Roy, K.; Rowan, A.; Krissansen, G.W. Comparative activities of milk components in reversing chronic colitis. J. Dairy Sci. 2016, 99, 2488–2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spalinger, M.R.; Atrott, K.; Baebler, K.M.; Melhem, H.; Peres, D.R.; Lalazar, G.; Rogler, G.; Scharl, M.; Frey-Wagner, I. Administration of the hyper-immune bovine colostrum extract IMM-124E ameliorates experimental murine colitis. J. Crohns Colitis 2019, 13, 785–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardani, D. Colostro Noni: Administration effects on epithelial cells turn-over, inflammatory events and integrity of intestinal mucosa junctional systems. Minerva Gastroenterol. Dietol. 2014, 60, 71–78. [Google Scholar] [PubMed]
- Duranti, S.; Mancabelli, L.; Mancino, W.; Anzalone, R.; Longhi, G.; Statello, R.; Carnevali, L.; Sgoifo, A.; Bernasconi, S.; Turroni, F.; et al. Exploring the effects of COLOSTRONONI on the mammalian gut microbiota composition. PLoS ONE 2019, 14, e0217609. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S. A comprehensive review on clinical outcome of probiotic and synbiotic therapy for inflammatory bowel diseases. Asian Pac. J. Trop. Biomed. 2018, 8, 179–186. [Google Scholar] [CrossRef]
- Guandalini, S.; Sansotta, N. Probiotics in the treatment of inflammatory bowel disease. Adv. Exp. Med. Biol. 2019, 1125, 101–107. [Google Scholar] [CrossRef]
- Knox, N.C.; Forbes, J.D.; van Domselaar, G.; Bernstein, C.N. The gut microbiome as a target for IBD treatment: Are we there yet? Curr. Treat. Opt. Gastroenterol. 2019, 17, 115–126. [Google Scholar] [CrossRef]
- Triantafillidis, J.K.; Georgopoulos, F.; Merikas, E. The role of pre- and probiotics in the treatment of Inflammatory Bowel Disease. J. Microb. Biochem. Technol. 2011, S1, 5. [Google Scholar] [CrossRef] [Green Version]
- Astó, E.; Méndez, I.; Audivert, S.; Farran-Codina, A.; Espadaler, J. The efficacy of probiotics, prebiotic inulin-type fructans, and synbiotics in human ulcerative colitis: A systematic review and meta-analysis. Nutrients 2019, 11, 293. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Zhong, Y.; Wang, A.; Jiang, Z. Probiotics combined with aminosalicylic acid affiliates remission of ulcerative colitis: A meta-analysis of randomized controlled trial. Biosci. Rep. 2019, 39, BSR20180943. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.Y.; Qiu, Z.W.; Tang, H.M.; Zhuang, K.H.; Cai, Q.Q.; Chen, X.; Li, H.B. Efficacy and safety of bifid triple viable plus aminosalicylic acid for the treatment of ulcerative colitis: A systematic review and meta-analysis. Medicine 2019, 98, e17955. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Tong, X.; Wang, R. The clinical effects of probiotics for inflammatory bowel disease: A meta-analysis. Medicine 2018, 97, e13792. [Google Scholar] [CrossRef] [PubMed]
- Derwa, Y.; Gracie, D.J.; Hamlin, P.J.; Ford, A.C. Systematic review with meta-analysis: The efficacy of probiotics in inflammatory bowel disease. Aliment. Pharm. Ther. 2017, 46, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Ballini, A.; Santacroce, L.; Cantore, S.; Bottalico, L.; Dipalma, G.; Topi, S.; Saini, R.; De Vito, D.; Inchingolo, F. Probiotics efficacy on oxidative stress values in inflammatory bowel disease: A randomized double-blinded placebo-controlled pilot study. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 373–381. [Google Scholar] [CrossRef]
- Bjarnason, I.; Sission, G.; Hayee, B. A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn’s disease. Inflammopharmacology 2019, 27, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Alard, J.; Peucelle, V.; Boutillier, D.; Breton, J.; Kuylle, S.; Pot, B.; Holowacz, S.; Grangette, C. New probiotic strains for inflammatory bowel disease management identified by combining in vitro and in vivo approaches. Benef. Microbes 2018, 9, 317–331. [Google Scholar] [CrossRef]
- Koretz, R.L. Probiotics in gastroenterology: How pro is the evidence in adults? Am. J. Gastroenterol. 2018, 113, 1125–1136. [Google Scholar] [CrossRef]
- Fernández-Tomé, S.; Marin, A.C.; Moreno, L.O.; Baldan-Martin, M.; Mora-Gutiérrez, I.; Lanas-Gimeno, A.; Moreno-Monteagudo, J.A.; Santander, C.; Sánchez, B.; Chaparro, M.; et al. Immunomodulatory effect of gut microbiota-derived bioactive peptides on human immune system from healthy controls and patients with Inflammatory Bowel Disease. Nutrients 2019, 11, 2605. [Google Scholar] [CrossRef] [Green Version]
- Urlep, D.; Benedik, E.; Brecelj, J.; Orel, R. Partial enteral nutrition induces clinical and endoscopic remission in active pediatric Crohn’s disease: Results of a prospective cohort study. Eur. J. Pediatr. 2019. [Google Scholar] [CrossRef]
- MacDonald, T.T.; Di Sabatino, A.; Gordon, J.N. Immunopathogenesis of Crohn’s disease. JPEN J. Parenter. Enteral Nutr. 2005, 29, S118–S124. [Google Scholar] [CrossRef]
- Bannerjee, K.; Camacho-Hubner, C.; Babinska, K.; Dryhurst, K.M.; Edwards, R.; Savage, M.O.; Sanderson, I.R.; Croft, N.M. Antiinflammatory and growth-stimulating effects precede nutritional restitution during enteral feeding in Crohn disease. J. Pediatr. Gastroenterol. Nutr. 2004, 38, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Ruemmele, F.M.; Garnier-Lengline, H. Transforming Growth Factor and Intestinal Inflammation: The Role of Nutrition; Nestle Nutrition Institute Workshop Series; Nestec Ltd.: Basel, Switzerland, 2013; Volume 77, pp. 91–98. [Google Scholar]
- Beattle, R.M.; Schiffrin, E.J.; Donnet-Hughes, A.; Huggett, A.C.; Domizio, P.; MacDonald, T.T.; Walker-Smith, J.A. Polymeric nutrition as the primary therapy in children with small bowel Crohn’s disease. Aliment. Pharmacol. Ther. 1994, 8, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Woodman, A.C.; Claerk, P.; Watanapa, P.; Vesey, D.; Deprez, P.H.; Williamson, R.C.; Calam, J. Effect of luminal growth factor preservation on intestinal growth. Lancet 1993, 341, 843–847. [Google Scholar] [CrossRef]
- Oz, H.S.; Ray, M.; Chen, T.S.; McClain, C.J. Efficacy of a transforming growth factor beta 2 containing nutritional support formula in a murine model of inflammatory bowel disease. J. Am. Coll. Nutr. 2004, 23, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Ben-Lulu, S.; Pollak, Y.; Mogilner, J.; Bejar, J.; Coran, A.G.; Sukhotnik, I. Dietary transforming growth factor-beta2 (TGF-β2) supplementation reduces methotrexate-induced intestinal mucosal injury in a rat. PLoS ONE 2012, 7, e45221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, T.M.R.; Albuquerque, A.; Cancela Penna, F.G.; Rosa, R.M.; Toulson, M.I.; Correia, D.; Barbosa, A.J.B.; Cunha, A.S.; Ferrari, M.L.A. Effect of oral nutrition supplements and TGF-β2 on nutrition and inflammatory patterns in patients with active Crohn’s disease. Nutr. Clin. Pract. 2019. [Google Scholar] [CrossRef] [PubMed]
- Beaupel, N.; Brouquet, A.; Abdalla, S.; Carbonnel, F.; Penna, C.; Benoist, S. Preoperative oral polymeric diet enriched with transforming growth factor-beta 2 (Modulen) could decrease postoperative morbidity after surgery for complicated ileocolonic Crohn’s disease. Scand. J. Gastroenterol. 2017, 52, 5–10. [Google Scholar] [CrossRef]
- Davanço, T.; Oya, V.; Saddy Rodrigues Coy, C.; Leal, F.R.; Ayrizono Ma de, L.S.; Sgarbieri, V.C.; dos Santos Vilela, M.M.; Lomazi, E.A. Nutritional supplementation assessment with whey proteins and TGF-β in patients with Crohn’s disease. Nutr. Hosp. 2012, 27, 1286–1292. [Google Scholar] [CrossRef]
- Gomollón, F.; Dignass, A.; Annese, V.; Tilg, H.; Van Assche, G.; Lindsay, J.O.; Peyrin-Biroulet, L.; Cullen, G.J.; Daperno, M.; Kucharzik, T.; et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: Part 1: Diagnosis and Medical Management. J. Crohns Colitis 2017, 11, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Tabet, F.; Rye, K.A. High-density lipoproteins, inflammation and oxidative stress. Clin. Sci. (Lond.) 2009, 116, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Vogt, S.L.; Pena-Diaz, J.; Finlay, B.B. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe 2015, 34, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J.; Goldsworthy, S.M.; Barnes, A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D. The orphan G protein-coupled receptors. J. Biol. Chem. 2003, 278, 11312–11319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAS)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 277, Erratum in: Front. Immunol. 2019, 10, 1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.P.B.; Navegantes-Lima, K.C.; Oliveira, A.L.B.; Rodrigues, D.V.S.; Gaspar, S.L.F.; Monteiro, V.V.S.; Moura, D.P.; Monteiro, M.C. Protective mechanisms of butyrate on Inflammatory Bowel Disease. Curr. Pharm. Des. 2018, 24, 4154–4166. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Li, T.; Li, M.; Huang, S.; Qiu, Y.; Feng, R.; Zhang, S.; Chen, M.; Xiong, L.; Zeng, Z. Systematic review and meta-analysis: Short-chain fatty acid characterization in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2019, 25, 1751–1763. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Nishida, A.; Fujimoto, T.; Fujii, M.; Shioya, M.; Imaeda, H.; Inatomi, O.; Bamba, S.; Sugimoto, M.; Andoh, A. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in crohn’s disease. Digestion 2016, 93, 59–65. [Google Scholar] [CrossRef]
- Tominaga, K.; Kamimura, K.; Takahashi, K.; Yokoyama, J.; Yamagiwa, S.; Terai, S. Diversion colitis and pouchitis: A mini-review. World J. Gastroenterol. 2018, 24, 1734–1747. [Google Scholar] [CrossRef]
- Paramsothy, S.; Paramsothy, R.; Rubin, D.T.; Kamm, M.A.; Kaakoush, N.O.; Mitchell, H.M.; Castaño-Rodríguez, N. Faecal microbiota transplantation for inflammatory bowel disease: A systematic review and meta-analysis. J. Crohns Colitis 2017, 11, 1180–1199. [Google Scholar] [CrossRef]
- Salaritabar, A.; Darvishi, B.; Hadjiakhoondi, F.; Manayi, A.; Sureda, A.; Nabavi, S.F.; Fitzpatrick, L.R.; Nabavi, M.S.; Bishayee, A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J. Gastroenterol. 2017, 23, 5097–5114. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, L.; Maugeri, A.; Cirmi, S.; Lombardo, G.E.; Russo, C.; Gangemi, S.G.; Navarra, M. Citrus fruits and their flavonoids in inflammatory bowel disease: An overview. Nat. Prod. Res. 2020, 34, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Octoratou, M.; Merikas, E.; Malgarinos, G.; Stanciu, C.; Triantafillidis, J.K. A prospective study of pre-illness diet in newly diagnosed patients with Crohn’s disease. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2012, 116, 40–49. [Google Scholar] [PubMed]
- Vezza, T.; Rodríguez-Nogales, A.; Algieri, F.; Utrilla, M.P.; Rodriguez-Cabezas, M.E.; Galvez, J. Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients 2016, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Dryden, G.W.; Lam, A.; Beatty, K.; Qazzaz, H.H.; McClain, C.J. A pilot study to evaluate the safety and efficacy of an oral dose of (−)-epigallocatechin-3-gallate-rich polyphenon e in patients with mild to moderate ulcerative colitis. Inflamm. Bowel Dis. 2013, 19, 1904–1912. [Google Scholar] [CrossRef]
- Valatas, V.; Vakas, M.; Kolios, G. The value of experimental models of colitis in predicting efficacy of biological therapies for inflammatory bowel diseases. Am. J. Physiol. Gastrointest Liver Physiol. 2013, 305, G763–G785. [Google Scholar] [CrossRef]
- Lewis, J.D. The role of diet in Inflammatory Bowel Disease. Gastroenterol. Hepatol. (N. Y.) 2016, 12, 51–53. [Google Scholar]
- Castro, F.; de Souza, H.S.P. Dietary composition and effects in inflammatory bowel disease. Nutrients 2019, 11, 1398. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Tomé, S.; Hernández-Ledesma, B.; Chaparro, M.; Indiano-Romacho, P.; Bernardo, D.; Gisbert, J.P. Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends Food Sci. Technol. 2019, 88, 194–206. [Google Scholar] [CrossRef]
- Vidal-Lletjós, S.; Beaumont, M.; Tomé, D.; Benamouzig, R.; Blachier, F.; Lan, A. Dietary protein and amino acid supplementation in inflammatory bowel disease course: What impact on the colonic mucosa? Nutrients 2017, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hu, C.A.A.; Kovacs-Nolan, J.; Mine, Y. Bioactive dietary peptides and amino acids in inflammatory bowel disease. Amino Acid 2015, 47, 2127–2141. [Google Scholar] [CrossRef] [PubMed]
• Antioxidants |
α-Carotene β-Carotene Lycopene Retinol α-tocopherol γ-tocoferol |
• Nonpeptide trophic factors |
Glutamine Polyamines Nucleotides |
• Hormones • Cytokines • Growth factors |
Epidermal Growth Factor (EGF) Transforming Growth Factor-a (TGFa) Transforming Growth Factor-β family (TGFβ) Platelet-derived Growth Factor Vascular Endothelial Growth Factor (VEGF) Growth Hormone and its Releasing Factor Hepatocyte Growth Factor (HGF) Neuronal Growth Factors Insulin-Like Growth Factor (IGF) Superfamily |
Reference | Chemical Colitis | Experimental Design | Results | Conclusion |
---|---|---|---|---|
Bodammer et al. 2011 [56] | DSS- colitis | Colostrum vs. BSA vs. water for 2 week | Improvement of clinical and histological severity. Redistribution of immune-regulatory, peripheral and splenic gd TCR+ and CD11b+Gr1+ cells. | Improvement of symptoms and inflammation. |
Kailash et al. 2013 [57] | DSS- and TNBS- Induced colitis | Isolation of AVX-470 and AVX-470m from colostrum of dairy cows immunized with TNF vs. infliximab | Orally administered AVX-470m reduced disease severity. AVX-470 has in vitro activity comparable to that of infliximab. | Oral administration of this antibody is effective in treating mouse models of IBD. |
Kanwar et al. 2016 [61] | DSS-colitis | Oral delivery of bovine milk-derived Fe-bLF, angiogenin osteopontin, colostrum, whey protein, Modulen IBD cis-9,trans-11 conjugated linoleic acid (CLA)-enriched milk fat | Decrease in cytokine expression. Fe-bLF, CLA-enriched milk fat, and CLA-enriched milk fat reduced epithelium damage, and down-regulated the expression of proinflammatory cytokines. Myeloperoxidase activity was lower in mice fed Modulen IBD, OPN, angiogenin, and Fe-bLF. | Each milk component attenuated experimental colitis but with different effectiveness against specific disease parameters. |
Filipescu et al. 2018 [10] | TNBS- Induced colitis | Mice received a daily suspension of bovine colostrum or saline solution for 21 days before TNBS colitis. | Reduction in BW loss and histological score compared to CN. Lower expression of TLR4 IL-1β IL-8 and IL-10 | Pre-treatment with bovine colostrum reduces the intestinal damage and signs of colitis. |
Spalinger et al. 2019 [62] | DSS- colitis and T-cell transfer colitis: | IMM-124E a colostrum-based product containing anti-E.coli-LPS IgG. | Amelioration of DSS colitis and T cell transfer colitis. Reduction in infiltrating immune cells. Reduced numbers of effector T helper cells, increased levels of regulatory T cells. | Oral IMM-124E reduces intestinal inflammation. |
Antimicrobial effect |
|
Restoration of gut integrity |
|
Modification of the host immune response |
|
Reference | No of RCTs/ pts | Disease | Type of Study | Probiotic Used | Results | Conclusion |
---|---|---|---|---|---|---|
Astó et al. 2019 [69] | 18 studies 1419 patients | UC active | Probiotics vs. placebo vs. active treatment | Bifido- bacteria | No significant differences for placebo or mesalazine-controlled studies | Bifidobacteria: Promising for active UC |
Peng et al. 2019 [70] | 27 studies 1942 patients | UC active | Probiotics with 5-ASA vs. 5-ASA vs. Sulfasala- zine | Remission rate: higher in the group of probiotics plus mesalazine, vs. mesalazine Probiotics combined with mesalazine increased the remission rate in active UC. | Probiotics combined with 5-ASA increase the remission rate in active UC. | |
Chen et al. 2019 [71] | 60 studies 4954 patients | UC active | Bifid probiotic plus 5-ASA vs. 5-ASA alone | bifid triple viable probiotic (BTV) | BTV plus mesalazine improved the remission rate and reduced the relapse rate. Levels of cytokines were reduced and levels of IL-10, CD3+, CD4+, were increased. | Combination treatment of BTV with mesalazine improved active UC. |
Jia et al. 2018 [72] | 10 studies 1049 patients | IBD | Probiotics vs. Placebo | E coli Nissle 1917 and VSL#3 | No differences on remission, relapse, and complication rate between probiotics and placebo group. VSL#3: higher remission rate and lower relapse rate. | E coli Nissle 1917 and VSL#3: alternative therapy for IBD. |
Ganji-Arjenaki et al. 2018 [13] | 9 and 18 studies for CD and UC respect-tively | UC and CD including pediatric population | VSL#3 Lactoba-cillus Combination of Saccharo-myces boulardii, Lactobaci- llus, and VSL#3 In children, combination of Lactobacillus and VSL#3 | Analysis of 9 trials: Probiotics had not significant effect on CD. Analysis of 3 trials in children: Significant improvement. Analysis of 18 trials: UC: significant effects. VSL#3: significant effect Lactobacillus: significant effect in UC. Combination of Saccharomyces boulardii, Lactobacillus, and VSL#3 in CD: A trend for efficiency In children: combination of Lactobacillus with VSL#3 had significant effect. | Probiotics are beneficial in IBD and especially in patients with UC, if they are administered in combination. | |
Derwa et al. 2017 [73] | 22 | UC or CD | Probiotics vs. placebo vs. 5-ASA | VSL#3 | No benefit of probiotics in active UC Trials of VSL#3: clear benefit. Probiotics equivalent to 5-ASA in preventing UC relapse. No benefit of probiotics in active CD, and in preventing relapses after surgery. | Probiotics are equivalent to 5-ASA in preventing relapse of quiescent UC. Efficacy in CD uncertain. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafillidis, J.K.; Tzouvala, M.; Triantafyllidi, E. Enteral Nutrition Supplemented with Transforming Growth Factor-β, Colostrum, Probiotics, and Other Nutritional Compounds in the Treatment of Patients with Inflammatory Bowel Disease. Nutrients 2020, 12, 1048. https://doi.org/10.3390/nu12041048
Triantafillidis JK, Tzouvala M, Triantafyllidi E. Enteral Nutrition Supplemented with Transforming Growth Factor-β, Colostrum, Probiotics, and Other Nutritional Compounds in the Treatment of Patients with Inflammatory Bowel Disease. Nutrients. 2020; 12(4):1048. https://doi.org/10.3390/nu12041048
Chicago/Turabian StyleTriantafillidis, John K., Maria Tzouvala, and Eleni Triantafyllidi. 2020. "Enteral Nutrition Supplemented with Transforming Growth Factor-β, Colostrum, Probiotics, and Other Nutritional Compounds in the Treatment of Patients with Inflammatory Bowel Disease" Nutrients 12, no. 4: 1048. https://doi.org/10.3390/nu12041048
APA StyleTriantafillidis, J. K., Tzouvala, M., & Triantafyllidi, E. (2020). Enteral Nutrition Supplemented with Transforming Growth Factor-β, Colostrum, Probiotics, and Other Nutritional Compounds in the Treatment of Patients with Inflammatory Bowel Disease. Nutrients, 12(4), 1048. https://doi.org/10.3390/nu12041048