Acute Ingestion of a Novel Nitrate-Rich Dietary Supplement Significantly Increases Plasma Nitrate/Nitrite in Physically Active Men and Women
Abstract
:1. Introduction
2. Materials and Methods
- Aged 18–50 years,
- Male or female,
- A body mass index (BMI) between 18.0 and 29.9 kg/m2 (not obese),
- Non-smokers (including e-cigarettes),
- Non-vegan (due to consumption of bovine collagen),
- No diagnosed history of diabetes,
- No diagnosed history of cardiovascular disease,
- No diagnosed history of neurological disease,
- Not consumed caffeine-containing beverages within at least 48 h of testing, and
- Not pregnant, if female.
2.1. Initial Laboratory Visit: Screening Visit
2.2. Independent Variable
2.3. Test Visit Procedures
2.4. Blood Collection and Analysis
2.5. Physical Activity and Dietary Intake
2.6. Data Analysis
3. Results
3.1. Overview
3.2. Heart Rate, Blood Pressure, Nitrate and Nitrite
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clements, W.; Lee, S.; Bloomer, R.J. Nitrate ingestion: A review of the health and physical performance effects. Nutrients 2014, 6, 5224–5264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, J.; Ohtake, K.; Uchida, H. NO-rich diet for lifestyle-related diseases. Nutrients 2015, 7, 4911–4937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashworth, A.; Bescos, R. Dietary nitrate and blood pressure: Evolution of a new nutrient? Nutr. Res. Rev. 2017, 30, 208–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomer, R.J. Nitric oxide supplements for sports. Strength Cond. J. 2010, 32, 14–20. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Farney, T.M.; Trepanowski, J.F.; McCarthy, C.G.; Canale, R.E. Effect of betaine supplementation on plasma NOx in exercise-trained men. J. Int. Soc. Sports Nutr. 2011, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2010, 299, R1121–R1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapil, V.; Khambata, R.S.; Robertson, A.; Caulfield, M.J.; Ahluwalia, A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: A randomized, phase 2, double-blind, placebo-controlled study. Hypertension 2015, 65, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.D.; Marsh, A.P.; Dove, R.W.; Beavers, D.; Presley, T.; Helms, C.; Bechtold, E.; King, S.B.; Kim-Shapino, D. Plasma nitrate and nitrite are increased by a high-nitrate supplement but not by high-nitrate foods in older adults. Nutr. Res. 2012, 32, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, E.J.; Coggan, A.R. What’s in Your Beet Juice? Nitrate and Nitrite Content of Beet Juice Products Marketed to Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 345–349. [Google Scholar]
- Wruss, J.; Waldenberger, G.; Huemer, S.; Uygun, P.; Lanzerstorfer, P.; Müller, U.; Höglinger, O.; Weghuber, J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J. Food Comp. Anal. 2015, 42, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.; Eliot, K.; Heuertz, R.M.; Weiss, E. Whole beetroot consumption acutely improves running performance. J. Acad. Nutr. Diet. 2012, 112, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.S.; Haun, C.T.; Kephart, W.C.; Holland, A.M.; Mobley, C.B.; McCloskey, A.E.; Roberts, M.D. The effects of a novel red spinach extract on graded exercise testing performance. In Proceedings of the American College of Sport medicine Annual Meeting, Boston, MA, USA, 31 May–4 June 2016. [Google Scholar]
- Sweazea, K.L.; Johnston, C.S.; Miller, B.; Gumpricht, E. Nitrate-rich fruit and vegetable supplement reduces blood pressure in normotensive healthy young males without significantly altering flow-mediated vasodilation: A randomized, double-blinded, controlled trial. J. Nutr. Metab. 2018, 2018, 1729653. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mateos, A.; Hezel, M.; Aydin, H.; Kelm, M.; Lundberg, J.O.; Weitzberg, E.; Spencer, J.P.; Heiss, C. Interactions between cocoa flavanols and inorganic nitrate: Additive effects on endothelial function at achievable dietary amounts. Free Radic. Biol. Med. 2015, 80, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Flueck, J.L.; Bogdanova, A.; Mettler, S.; Perret, C. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise. Appl. Physiol. Nutr. Metab. 2016, 41, 421–429. [Google Scholar] [CrossRef]
- Haun, C.T.; Kephart, W.C.; Holland, A.M.; Mobley, C.B.; McCloskey, A.E.; Shake, J.J.; Pascoe, D.D.; Roberts, M.D.; Martin, J.S. Differential vascular reactivity responses acutely following ingestion of a nitrate rich red spinach extract. Eur. J. Appl. Physiol. 2016, 116, 2267–2279. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Nyakayiru, J.; Pinckaers, P.J.; Senden, J.M.; van Loon, L.J.; Verdijk, L.B. Nitrate-rich vegetables increase plasma nitrate and nitrite concentrations and lower blood pressure in healthy adults. J. Nutr. 2016, 146, 986–993. [Google Scholar] [CrossRef] [Green Version]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef]
- Stanaway, L.; Rutherfurd-Markwick, K.; Page, R.; Ali, A. Performance and health benefits of dietary nitrate supplementation in older adults: A systematic review. Nutrients 2017, 9, 1171. [Google Scholar] [CrossRef]
- Sani, H.A.; Rahmat, A.; Ismail, M.; Rosli, R.; Endrini, S. Potential anticancer effect of red spinach (Amaranthus gangeticus) extract. Asia Pac. J. Clin. Nutr. 2004, 13, 396–400. [Google Scholar]
- Gonzalez, A.M.; Accetta, M.R.; Spitz, R.W.; Mangine, G.T.; Ghigiarelli, J.J.; Sell, K.M. Red spinach extract supplementation improves cycle time trial performance in recreationally active men and women. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Moore, A.N.; Haun, C.T.; Kephart, W.C.; Holland, A.M.; Mobley, C.B.; Pascoe, D.D.; Roberts, M.D.; Martin, J.S. Red spinach extract increases ventilatory threshold during graded exercise testing. Sports 2017, 5, 80. [Google Scholar] [CrossRef] [Green Version]
- Iwashima, T.; Kudome, Y.; Kishimoto, Y.; Saita, E.; Tanaka, M.; Taguchi, C.; Hirakawa, S.; Mitani, N.; Kondo, K.; Iida, K. Aronia berry extract inhibits TNF-α-induced vascular endothelial inflammation through the regulation of STAT3. Food Nutr. Res. 2019, 63. [Google Scholar] [CrossRef]
- Jeon, Y.D.; Kang, S.H.; Moon, K.H.; Lee, J.H.; Kim, D.G.; Kim, W.; Kim, J.S.; Ahn, B.Y.; Jin, J.S. The effect of aronia berry on type 1 diabetes in vivo and in vitro. J. Med. Food 2018, 21, 244–253. [Google Scholar] [CrossRef]
- Istas, G.; Wood, E.; Le Sayec, M.; Rawlings, C.; Yoon, J.; Dandavate, V.; Cera, D.; Rampelli, S.; Costabile, A.; Fromentin, E.; et al. Effects of aronia berry (poly)phenols on vascular function and gut microbiota: A double-blind randomized controlled trial in adult men. Am. J. Clin. Nutr. 2019, 110, 316–329. [Google Scholar] [CrossRef]
- He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules 2015, 20, 9183–9213. [Google Scholar] [CrossRef]
- Kim, S.; Lee, M.S.; Jung, S.; Son, H.Y.; Park, S.; Kang, B.; Kim, S.Y.; Kim, I.H.; Kim, C.T.; Kim, Y. Ginger extract ameliorates obesity and inflammation via regulating MicroRNA-21/132 expression and AMPK activation in white adipose tissue. Nutrients 2018, 10, 1567. [Google Scholar] [CrossRef] [Green Version]
- DiSilvestro, R.A.; Joseph, E.; Zhao, S.; Bomser, J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr. J. 2012, 11, 79. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.; Whelan, K. Prebiotic inulin-type fructans and galacto-oligosaccharides: Definition, specificity, function, and application in gastrointestinal disorders. J. Gastroenterol. Hepatol. 2017, 32 (Suppl. 1), 64–68. [Google Scholar] [CrossRef] [Green Version]
- Gerstgrasser, A.; Röchter, S.; Dressler, D.; Schön, C.; Reule, C.; Buchwald-Werner, S. In vitro activation of eNOS by Mangifera indica (Careless™) and determination of an effective dosage in a randomized, double-blind, human pilot study on microcirculation. Planta Med. 2016, 82, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Oliveira-Paula, G.H.; Pinheiro, L.C.; Tanus-Santos, J.E. Mechanisms impairing blood pressure responses to nitrite and nitrate. Nitric Oxide 2019, 85, 35–43. [Google Scholar] [CrossRef]
- Gilchrist, M.; Shore, A.C.; Benjamin, N. Inorganic nitrate and nitrite and control of blood pressure. Cardiovasc. Res. 2011, 89, 492–498. [Google Scholar] [CrossRef] [Green Version]
Variable | Value |
---|---|
Age (years) | 24 ± 5 |
Height (cm) | 171 ± 9 |
Weight (kg) | 71 ± 12 |
BMI (kg/m2) | 24 ± 3 |
Waist Circumference (cm) | 77 ± 7 |
Hip Circumference (cm) | 96 ± 7 |
Waist/Hip Ratio | 0.80 ± 0.06 |
Resting HR (bpm) | 68 ± 9 |
Resting SBP (mm Hg) | 115 ± 4 |
Resting DBP (mm Hg) | 72 ± 4 |
Glucose (mg/dL) | 80 ± 7 |
Anaerobic Exercise (years) | 5 ± 3 |
Anaerobic Exercise (h/week) | 3 ± 3 |
Aerobic Exercise (years) | 6 ± 6 |
Aerobic Exercise (h/week) | 3 ± 2 |
Variable | Resync Recovery Blend 1 Serving | Resync Recovery Blend 2 Servings | Resync Collagen Blend | Placebo |
---|---|---|---|---|
Kilocalories | 2270 ± 913 | 2096 ± 563 | 2019 ± 642 | 2144 ± 896 |
Protein (g) | 99 ± 48 | 93 ± 38 | 92 ± 34 | 104 ± 63 |
Carbohydrate (g) | 241 ±104 | 235 ± 82 | 231 ± 89 | 230 ± 92 |
Fiber (g) | 19 ± 10 | 22 ± 9 | 19 ± 9 | 21 ± 10 |
Sugar (g) | 69 ± 46 | 85 ± 60 | 75 ± 38 | 72 ± 28 |
Fat (g) | 96 ± 51 | 88 ± 35 | 80 ± 32 | 91 ± 55 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bloomer, R.J.; Butawan, M.; Pigg, B.; Martin, K.R. Acute Ingestion of a Novel Nitrate-Rich Dietary Supplement Significantly Increases Plasma Nitrate/Nitrite in Physically Active Men and Women. Nutrients 2020, 12, 1176. https://doi.org/10.3390/nu12041176
Bloomer RJ, Butawan M, Pigg B, Martin KR. Acute Ingestion of a Novel Nitrate-Rich Dietary Supplement Significantly Increases Plasma Nitrate/Nitrite in Physically Active Men and Women. Nutrients. 2020; 12(4):1176. https://doi.org/10.3390/nu12041176
Chicago/Turabian StyleBloomer, Richard J., Matthew Butawan, Brandon Pigg, and Keith R. Martin. 2020. "Acute Ingestion of a Novel Nitrate-Rich Dietary Supplement Significantly Increases Plasma Nitrate/Nitrite in Physically Active Men and Women" Nutrients 12, no. 4: 1176. https://doi.org/10.3390/nu12041176
APA StyleBloomer, R. J., Butawan, M., Pigg, B., & Martin, K. R. (2020). Acute Ingestion of a Novel Nitrate-Rich Dietary Supplement Significantly Increases Plasma Nitrate/Nitrite in Physically Active Men and Women. Nutrients, 12(4), 1176. https://doi.org/10.3390/nu12041176