Better Dietary Knowledge and Socioeconomic Status (SES), Better Body Mass Index? Evidence from China—An Unconditional Quantile Regression Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Variables
2.1.1. Data
2.1.2. Variables
3. Results
3.1. Robustness Checks
3.2. Empirical Results
3.2.1. Analysis Using the Whole Study Sample
3.2.2. Subgroup Analysis by Income Levels
3.2.3. Subgroup Analysis by Education Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variable | 10th | 30th | 50th | 70th | 90th |
---|---|---|---|---|---|
dietary knowledge | −0.02 | 0.002 | −0.01 | 0.01 | 0.02 |
(−1.47) | (0.17) | (−0.87) | (0.57) | (0.98) | |
Age | 0.34 *** | 0.27 *** | 0.21 *** | 0.16 *** | 0.04 |
(12.75) | (14.55) | (11.28) | (7.49) | (1.54) | |
Age Squared | −0.0031 *** | −0.0024 *** | −0.0019 *** | −0.0015 *** | −0.0005 * |
(−12.35) | (−13.69) | (−10.67) | (−7.19) | (−2.04) | |
Marital status | 0.15 | 0.11 | 0.08 | 0.09 | 0.19 |
(1.53) | (1.49) | (0.95) | (0.89) | (1.56) | |
Rural | 0.05 | 0.06 | 0.05 | −0.11 | −0.37 ** |
(0.45) | (0.62) | (0.51) | (−0.89) | (−2.58) | |
HH size 1 | −0.02 | −0.07 * | −0.04 | −0.0022 | −0.05 |
(−0.40) | (−2.24) | (−1.38) | (−0.06) | (−1.18) | |
Male * HH income 2 | 0.28 *** | 0.27 *** | 0.23 *** | 0.12 | 0.05 |
(4.40) | (4.97) | (3.82) | (1.68) | (0.57) | |
Female *HH income 2 | −0.07 | −0.09 | −0.14 * | −0.18 ** | 0.03 |
(−1.07) | (−1.56) | (−2.49) | (−2.64) | (0.39) | |
Gender | −3.22 *** | −3.40 *** | −3.40 *** | −2.598 * | 0.02 |
(−3.40) | (−4.15) | (−3.88) | (−2.47) | (0.02) | |
Year of Education | −0.03 | −0.10 ** | −0.15 *** | −0.16 *** | −0.21 *** |
(−0.83) | (−2.76) | (−3.99) | (−3.41) | (−3.69) | |
Smoke | −0.52 *** | −0.55 *** | −0.69 *** | −0.76 *** | −0.55 ** |
(−3.83) | (−4.60) | (−5.01) | (−5.25) | (−3.22) | |
Alcohol | 0.04 | 0.10 ** | 0.11 *** | 0.13 *** | 0.11 * |
(1.26) | (3.15) | (3.41) | (3.40) | (2.26) | |
Province 1 | −0.42 * | −0.24 | −0.12 | −0.078 | −0.31 |
(−2.13) | (−1.28) | (−0.56) | (−0.28) | (−0.85) | |
Province 2 | −0.29 | −0.42 * | −0.47 * | −0.97 *** | −0.91 * |
(−1.46) | (−2.15) | (−2.10) | (−3.42) | (−2.51) | |
Province 3 | −0.52 ** | −0.52 ** | −0.78 *** | −1.21 *** | −1.03 ** |
(−2.76) | (−2.91) | (−3.81) | (−4.76) | (−3.23) | |
Province 4 | −0.70 ** | −1.05 *** | −1.01 *** | −1.49 *** | −1.28 *** |
(−3.24) | (−5.29) | (−4.55) | (−5.50) | (−3.75) | |
Province 5 | 0.08 | 0.08 | 0.29 | 0.19 | 0.16 |
(0.46) | (0.41) | (1.34) | (0.65) | (0.41) | |
Province 6 | −0.58 ** | −0.51 * | −0.51 * | −0.67 * | −0.19 |
(−2.60) | (−2.43) | (−2.14) | (−2.24) | (−0.48) | |
Province 7 | −1.10 *** | −1.28 *** | −1.46 *** | −1.98 *** | −1.68 *** |
(−4.72) | (−6.18) | (−6.42) | (−7.23) | (−4.90) | |
Province 8 | −0.78 *** | −1.06 *** | −1.21 *** | −1.61 *** | −1.64 *** |
(−3.63) | (−5.34) | (−5.47) | (−5.97) | (−4.93) | |
Province 9 | −2.16 *** | −2.06 *** | −2.34 *** | −2.83 *** | −2.31 *** |
(−8.42) | (−9.87) | (−10.67) | (−10.86) | (−7.26) | |
Province 10 | −1.46 *** | −1.49 *** | −1.56 *** | −1.95 *** | −1.63 *** |
(−5.85) | (−7.13) | (−6.94) | (−7.24) | (−4.82) | |
Province 11 | −0.920 *** | −0.758 *** | −0.79 *** | −1.16 *** | −0.89 * |
(−3.86) | (−3.61) | (−3.35) | (−3.99) | (−2.41) | |
Constant | 12.88 *** | 17.08 *** | 21.66 *** | 25.02 *** | 28.92 *** |
(12.25) | (20.58) | (25.06) | (24.41) | (23.38) |
References
- Jagadesan, M. A study of the knowledge, attitude & practices (KAP) regarding obesity among engineering college students. Int. J. Adv. Med. 2017, 4, 1681–1684. [Google Scholar]
- World Health Organization (WHO). Obesity and overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 25 February 2020).
- Popkin, B.M. Will China’s nutrition transition overwhelm its health care system and slow economic growth? Health Aff. 2008, 27, 1064–1076. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Obesity: Preventing and managing the Global Epidemic—Report of a WHO Consultation; WHO Technical Report Series; No. 894; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- Dee, A.; Kearns, K.; O’Neill, C.; Sharp, L.; Staines, A.; O’Dwyer, V.; Fitzgerald, S.; Perry, I.J. The direct and indirect costs of both overweight and obesity: A systematic review. BMC Res. Notes 2014, 7, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- National Health Commission of P.R. China. Available online: http://www.nhc.gov.cn/jkj/s5879/201506/4505528e65f3460fb88685081ff158a2.shtml (accessed on 25 February 2020).
- The Chinese Dietary Guidelines. Available online: http://dg.en.cnsoc.org/ (accessed on 17 March 2020).
- Ul Haq, I.; Mariyam, Z.; Li, M.; Huang, X.; Jiang, P.; Zeb, F.; Wu, X.; Feng, Q.; Zhou, M. A comparative study of nutritional status, knowledge attitude and practices (KAP) and dietary intake between international and Chinese students in Nanjing, China. Int. J. Environ. Res. Public Health 2018, 15, 1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwol, V.S.; Eluwole, K.K.; Avci, T.; Lasisi, T.T. Another look into the Knowledge Attitude Practice (KAP) model for food control: An investigation of the mediating role of food handlers’ attitudes. Food Control 2020, 110, 107025. [Google Scholar] [CrossRef]
- Aldrich, L. Consumer Use of Information: Implications for Food Policy; US Department of Agriculture, Economics Research Service: Washington, DC, USA, 1999.
- Worsley, A. Nutrition knowledge and food consumption: Can nutrition knowledge change food behaviour? Asia Pac. J. Clin. Nutr. 2002, 11, S579–S585. [Google Scholar] [CrossRef] [Green Version]
- Tineke, D.V.; Christophe, M.; Wim, V.; Ilse, P.; Stefaan, D.H. Determinants of nutrition knowledge in young and middle-aged Belgian women and the association with their dietary behavior. Appetite 2009, 52, 788–792. [Google Scholar]
- Reinehr, T.; Kersting, M.; Chahda, C.; Andler, W. Nutritional knowledge of obese compared to non-obese children. Nutr. Res. 2003, 23, 645–649. [Google Scholar] [CrossRef]
- Thakur, N.; D’Amico, F. Relationship of nutrition knowledge and obesity in adolescence. Fam. Med. 1999, 31, 122–127. [Google Scholar]
- Laz, T.H.; Rahman, M.; Pohlmeier, A.M.; Berenson, A.B. Level of nutrition knowledge and its association with weight loss behaviors among low-income reproductive-age women. J. Community Health 2015, 40, 542–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, G.; Davies, M. Nutrition knowledge and body mass index. Health Educ. Res. 2006, 22, 571–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galindo, C.G.; Juárez, L.M.; Shamah, T.L.; García, A.G.; Avila, A.C.; Quiroz, M.A. Nutritional knowledge and its association with overweight and obesity in Mexican women with low socioeconomic level. Archivos Latinoamericanos De Nutricion 2011, 61, 396–405. [Google Scholar]
- Jieping, H. A System Review of Mechanism of SES to Health. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2014, 16, 6. [Google Scholar]
- Basto-Abreu, A.; Barrientos-Gutiérrez, T.; Zepeda-Tello, R.; Camacho, V.; Gimeno Ruiz de Porras, D.; Hernández-Ávila, M. The Relationship of Socioeconomic Status with Body Mass Index Depends on the Socioeconomic Measure Used. Obesity 2018, 26, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Godley, J.; McLaren, L. Socioeconomic status and body mass index in Canada: Exploring measures and mechanisms. Can. Rev. Sociol./Rev. Can. De Sociol. 2010, 47, 381–403. [Google Scholar] [CrossRef]
- Zhou, L.; Zeng, Q.; Jin, S.; Cheng, G. The impact of changes in dietary knowledge on adult overweight and obesity in China. PLoS ONE 2017, 12, e0179551. [Google Scholar] [CrossRef] [Green Version]
- Al-Shookri, A.; Al-Shukaily, L.; Hassan, F.; Al-Sheraji, S.; Al-Tobi, S. Effect of mothers nutritional knowledge and attitudes on Omani children’s dietary intake. Oman Med J. 2011, 26, 253. [Google Scholar] [CrossRef]
- Dos Santos, M.M.; de Azevedo Paiva, A.; dos Santos Pedrosa, J.I. Dietary knowledge, behaviours and attitudes of students of public school in a northeastern city in Brazil. Health 2014, 6, 1315–1321. [Google Scholar] [CrossRef] [Green Version]
- Firpo, S.; Fortin, N.M.; Lemieux, T. Unconditional quantile regressions. Econometrica 2009, 77, 953–973. [Google Scholar]
- Clément, M.; Bonnefond, C. Does Social Class Affect Nutrition Knowledge and Food Preferences among Chinese Urban Adults? Available online: https://ideas.repec.org/p/tac/wpaper/2014-2015_10.html (accessed on 25 February 2020).
- World Health Organization (WHO). Obesity. Available online: https://www.who.int/news-room/facts-in-pictures/detail/6-facts-on-obesity (accessed on 23 April 2020).
- Shimokawa, S. When does dietary knowledge matter to obesity and overweight prevention. Food Policy 2013, 38, 35–46. [Google Scholar] [CrossRef]
- Davino, C.; Furno, M.; Vistocco, D. Quantile Regression: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Wooldridge, J.M.; Joyner, E. Multiple regression analysis: Estimation. Introductory Econometrics: A Modern Approach, 5th ed.; South-Western: Mason, OH, USA, 2013; p. 68. [Google Scholar]
- Xu, Y.; Zhu, S.; Zhang, T.; Wang, D.; Hu, J.; Gao, J.; Zhou, Z. Explaining Income-Related Inequalities in Dietary Knowledge: Evidence from the China Health and Nutrition Survey. Int. J. Environ. Res. Public Health 2020, 17, 532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.Q.; Li, F.; Wu, H.; Wang, Y.C.; Chen, J.S.; He, G.S.; Li, S.G.; Chen, B. Evaluation of the Validity and Reliability of the Chinese Healthy Eating Index. Nutrients 2018, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Heitmann, B.L.; Garby, L. Patterns of long-term weight changes in overweight developing Danish men and women aged between 30 and 60 years. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 1074–1078. [Google Scholar] [CrossRef] [Green Version]
- Nayga, R.M., Jr. Schooling, health knowledge and obesity. Appl. Econ. 2000, 32, 815–822. [Google Scholar] [CrossRef]
- Finkelstein, E.A.; Khavjou, O.A.; Thompson, H.; Trogdon, J.G.; Pan, L.; Sherry, B.; Dietz, W. Obesity and severe obesity forecasts through 2030. Am. J. Prev. Med. 2012, 42, 563–570. [Google Scholar] [CrossRef]
- Chou, S.Y.; Grossman, M.; Saffer, H. An economic analysis of adult obesity: Results from the Behavioral Risk Factor Surveillance System. J. Health Econ. 2004, 23, 565–587. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Caro, A.; Vallejo-Torres, L.; Lopez-Valcarcel, B. Unconditional quantile regressions to determine the social gradient of obesity in Spain 1993–2014. Int. J. Equity Health 2016, 15, 175. [Google Scholar] [CrossRef] [Green Version]
- Fröolich, M.; Melly, B. Estimation of quantile treatment effects with Stata. Stata J. 2010, 10, 423–457. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Bimbo, F.; Cleary, R.; Castellari, E. Food labels and adult BMI in Italy–An unconditional quantile regression approach. Food Policy 2018, 74, 199–211. [Google Scholar] [CrossRef]
- Golden, E.; Hatcher, J. Nutrition knowledge and obesity of adults in community residences. Ment. Retard. 1997, 35, 177–184. [Google Scholar] [CrossRef]
- Kong, G.S.; Qi, Y.Q. The Socioeconomic Determinants of Obesity in China: Gender and Urban-Rural Divergences. Sociol. Rev. China 2017, 5, 79–96. [Google Scholar]
- Asiseh, F.; Yao, J. Family income and body mass index–what have we learned from China. Health Econ. Rev. 2016, 6, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, Y.F.; Wang, H.J.; Su, C.; Du, W.W.; Zhang, J.G.; Zhang, B. Changes of BMI Distribution in Chinese Adults from 1989 to 2011. Acta Nutr. Sin. 2014, 6, 529–534. [Google Scholar]
- Popkin, B.M.; Gordon-Larsen, P. The nutrition transition: Worldwide obesity dynamics and their determinants. Int. J. Obes. 2004, 28, S2. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A.; Specter, S.E. Poverty and obesity: The role of energy density and energy costs. Am. J. Clin. Nutr. 2004, 79, 6–16. [Google Scholar] [CrossRef]
- Sobal, J.; Stunkard, A.J. Socioeconomic status and obesity: A review of the literature. Psychol. Bull. 1989, 105, 260. [Google Scholar] [CrossRef]
- McLaren, L. Socioeconomic status and obesity. Epidemiol. Rev. 2007, 29, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Cheng, J.; Liu, Y.; Tang, Y.; Sun, X.; Wang, T.; Xiao, Y.; Li, F.; Xiang, L.; Jiang, P.; et al. Associations between breakfast eating habits and health-promoting lifestyle, suboptimal health status in Southern China: A population based, cross sectional study. J. Transl. Med. 2014, 12, 348. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Qian, H.; Fu, H. To be thin but not healthy-The body-image dilemma may affect health among female university students in China. PLoS ONE 2018, 13, e0205282. [Google Scholar] [CrossRef] [PubMed]
- Sohn, K. The effects of smoking on obesity: Evidence from Indonesian panel data. Tob. Induc. Dis. 2015, 13, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silventoinen, K.; Rokholm, B.; Kaprio, J.; Sørensen, T.I. The genetic and environmental influences on childhood obesity: A systematic review of twin and adoption studies. Int. J. Obes. 2010, 34, 29–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Do You Strongly Agree, Somewhat Agree, Somewhat Disagree or Strongly Disagree with this Statement, “Neutral” or “Unknown”? | True/False |
---|---|---|
Q1 | Choosing a diet with a lot of fresh fruits and vegetables is good for one’s health | T |
Q2 | Eating a lot of sugar is good for one’s health | F |
Q3 | Eating a variety of foods is good for one’s health | T |
Q4 | Choosing a diet high in fat is good for one’s health | F |
Q6 | Choosing a diet with a lot of staple foods (rice and rice products and wheat and wheat products) is not good for one’s health | T |
Q7 | Consuming a lot of animal products daily (fish, poultry, eggs and lean meat) is good for one’s health | F |
Q8 | Reducing the amount of fatty meat and animal fat in the diet is good for one’s health | T |
Q9 | Consuming milk and dairy products is good for one’s health | T |
Q10 | Consuming beans and bean products is good for one’s health | T |
Q11 | Physical activities are good for one’s health | T |
Q12 | Sweaty sports or other intense physical activities are not good for one’s health | F |
Q13 | The heavier one’s body is, the healthier he or she is | F |
Q14 | Eating salty foods can cause hypertension | T |
Q15 | Refined grains (rice and wheat flour) contain more vitamins and materials than unrefined grains | F |
Q16 | Lard is healthier than vegetable oils | F |
Q17 | Vegetables contain more starch than staple foods (rice or wheat flour) | F |
Q18 | Eggs and milk are important sources of high-quality protein | T |
Variable | N | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
BMI | 9901 | 24.29 | 4.10 | 15 | 44 |
Dietary Knowledge (DK) | 9901 | 20.24 | 2.94 | 5 | 28 |
Age | 9901 | 50 | 14.74 | 18 | 94 |
Age Squared | 9901 | 2731 | 1498 | 324 | 8836 |
Marital Status (unmarried = 0, married = 1) | 9901 | 2.06 | 0.59 | 1 | 9 |
Rural (rural = 0,uburan = 1) | 9901 | 0.43 | 0.49 | 0 | 1 |
HH size 1 | 9901 | 3.62 | 1.64 | 1 | 15 |
HH income 2 | 9901 | 81,394 | 117,141 | 0 | 4,528,302 |
PCHH income 3 | 9901 | 25,008 | 35,733 | 0 | 1,132,075 |
Gender (female = 0, male = 1) | 9901 | 0.50 | 0.50 | 0 | 1 |
Education | 9901 | 2.70 | 1.38 | 1 | 9 |
Smoke (yes = 1, no = 0) | 9901 | 0.25 | 0.43 | 0 | 1 |
Alcohol (yes = 1, no = 0) | 9901 | 0.08 | 0.27 | 0 | 1 |
10th | 30th | 50th | 70th | 90th | OLS | |
---|---|---|---|---|---|---|
Dietary knowledge | −0.02 | 0.0025 | −0.01 | 0.01 | 0.02 | 0.01 |
(−1.45) | (0.18) | (−0.87) | (0.57) | (0.97) | (0.82) | |
Age | 0.34 *** | 0.27 *** | 0.21 *** | 0.16 *** | 0.04 | 0.20 *** |
(12.78) | (14.61) | (11.32) | (7.52) | (1.54) | (11.30) | |
Age squared | −0.0031 *** | −0.0024 *** | −0.0019 *** | −0.0015 *** | −0.0005 * | −0.0019 *** |
(−12.39) | (−13.76) | (−10.72) | (−7.21) | (−2.05) | (−10.92) | |
Marital status | 0.16 | 0.12 | 0.09 | 0.10 | 0.19 | 0.22 ** |
(1.61) | (1.59) | (1.08) | (1.01) | (1.55) | (2.88) | |
Rural | 0.05 | 0.06 | 0.06 | −0.10 | −0.38 ** | −0.06 |
(0.51) | (0.69) | (0.57) | (−0.85) | (−2.59) | (−0.67) | |
HH size 1 | 0.01 | −0.05 | −0.03 | −0.01 | −0.04 | −0.04 |
(0.27) | (−1.48) | (−1.04) | (−0.28) | (−0.92) | (−1.25) | |
Male * PCHH income 2 | 0.21 *** | 0.26 *** | 0.22 *** | 0.13 | 0.0537 | 0.20 *** |
(3.41) | (4.82) | (3.69) | (1.77) | (0.59) | (3.59) | |
Female *PCHH income2 | −0.02 | −0.08 | −0.13 * | −0.19 ** | 0.05 | −0.09 |
(−0.35) | (−1.48) | (−2.25) | (−2.74) | (0.60) | (−1.69) | |
Gender | −1.77 * | −2.85 *** | −2.73 *** | −2.36 * | 0.19 | −2.54 ** |
(−2.09) | (−3.93) | (−3.55) | (−2.57) | (0.18) | (−3.13) | |
Year of education | −0.03 | −0.10 ** | −0.15 *** | −0.16 *** | −0.21 *** | −0.13 *** |
(−0.80) | (−2.74) | (−3.99) | (−3.40) | (−3.71) | (−3.63) | |
Smoke | −0.51 *** | −0.54 *** | −0.68 *** | −0.75 *** | −0.55 ** | −0.69 *** |
(−3.80) | (−4.53) | (−4.95) | (−5.18) | (−3.21) | (−6.06) | |
Alcohol | 0.05 | 0.10 ** | 0.12 *** | 0.14 *** | 0.11 * | 0.092 ** |
(1.31) | (3.24) | (3.49) | (3.46) | (2.26) | (3.01) | |
Province1 | −0.42 * | −0.240 | −0.12 | −0.08 | −0.31 | −0.18 |
(−2.12) | (−1.28) | (−0.56) | (−0.28) | (−0.85) | (−0.86) | |
Province2 | −0.29 | −0.43 * | −0.48 * | −0.97 *** | −0.91 * | −0.43 * |
(−1.48) | (−2.18) | (−2.12) | (−3.43) | (−2.51) | (−2.05) | |
Province3 | −0.51 ** | −0.52 ** | −0.78 *** | −1.21 *** | −1.03 ** | −0.90 *** |
(−2.73) | (−2.90) | (−3.81) | (−4.76) | (−3.24) | (−4.65) | |
Province4 | −0.70 ** | −1.05 *** | −1.01 *** | −1.50 *** | −1.28 *** | −1.12 *** |
(−3.22) | (−5.30) | (−4.56) | (−5.51) | (−3.76) | (−5.39) | |
Province5 | 0.076 | 0.07 | 0.29 | 0.19 | 0.16 | 0.10 |
(0.44) | (0.38) | (1.32) | (0.64) | (0.41) | (0.45) | |
Province6 | −0.59 ** | −0.51 * | −0.51* | −0.67 * | −0.19 | −0.51 * |
(−2.63) | (−2.48) | (−2.16) | (−2.26) | (−0.48) | (−2.32) | |
Province7 | −1.11 *** | −1.28 *** | −1.46 *** | −1.98 *** | −1.68 *** | −1.42 *** |
(−4.75) | (−6.22) | (−6.45) | (−7.25) | (−4.90) | (−6.67) | |
Province8 | −0.78 *** | −1.07 *** | −1.21 *** | −1.614 *** | −1.64 *** | −1.40 *** |
(−3.63) | (−5.36) | (−5.48) | (−5.98) | (−4.92) | (−6.74) | |
Province9 | −2.18 *** | −2.067 *** | −2.34 *** | −2.83 *** | −2.31 *** | −2.45 *** |
(−8.46) | (−9.91) | (−10.69) | (−10.87) | (−7.26) | (−11.63) | |
Province10 | −1.46 *** | −1.49 *** | −1.56 *** | −1.95 *** | −1.63 *** | −1.734 *** |
(−5.86) | (−7.13) | (−6.93) | (−7.23) | (−4.82) | (−8.19) | |
Province11 | −0.92 *** | −0.76 *** | −0.80 *** | −1.17 *** | −0.89 * | −0.98 *** |
(−3.87) | (−3.62) | (−3.37) | (−4.01) | (−2.40) | (−4.46) | |
Constant | 12.22 *** | 16.80 *** | 21.26 *** | 24.84 *** | 28.76 *** | 20.87 *** |
(11.92) | (21.06) | (25.70) | (25.57) | (24.49) | (25.47) |
Low-Income | Middle-Income | High-Income | |||||||
---|---|---|---|---|---|---|---|---|---|
10th | 50th | 90th | 10th | 50th | 90th | 10th | 50th | 90th | |
Dietary knowledge | −0.03 | 0.05 | 0.13 * | −0.02 | −0.05 | −0.05 | −0.02 | −0.04 | −0.05 |
(−0.82) | (1.03) | (2.06) | (−0.38) | (−1.28) | (−0.70) | (−0.62) | (−1.13) | (−0.88) | |
Age | 0.26 *** | 0.24 *** | −0.01 | 0.53 *** | 0.20 *** | 0.00001 | 0.377 *** | 0.27 *** | 0.10 |
(4.19) | (3.40) | (−0.16) | (6.02) | (4.53) | (0.00) | (6.83) | (6.33) | (1.75) | |
Age Squared | −0.0026 *** | −0.0024 *** | −0.0002 | −0.0048 *** | −0.0017 *** | −0.0003 | −0.0035 *** | −0.0023 *** | −0.0009 |
(−4.28) | (−3.64) | (−0.33) | (−5.81) | (−4.07) | (−0.41) | (−6.64) | (−5.73) | (−1.63) | |
Marital status | 0.18 | 0.12 | 0.71 * | −0.25 | 0.09 | 0.40 | 0.20 | −0.06 | 0.19 |
(1.17) | (0.47) | (2.08) | (−0.64) | (0.39) | (0.99) | (0.70) | (−0.31) | (0.59) | |
Rural | −0.29 | 0.25 | 0.18 | −0.22 | −0.21 | −0.57 | 0.08 | −0.30 | −1.00 ** |
(−1.04) | (0.63) | (0.42) | (−0.68) | (−0.86) | (−1.32) | (0.39) | (−1.35) | (−3.16) | |
HH size 1 | −0.01 | −0.14 | −0.09 | −0.15 | −0.10 | −0.18 | −0.05 | 0.02 | 0.15 |
(−0.11) | (−1.31) | (−0.86) | (−1.08) | (−1.18) | (−1.15) | (−0.65) | (0.20) | (1.23) | |
Male * PCHH income 2 | −0.19 | −0.23 | −0.32 | 0.27 | 2.73 * | −0.82 | 0.23 | −2.64 * | −1.34 |
(−1.68) | (−1.09) | (−1.23) | (0.16) | (2.13) | (−0.37) | (0.23) | (−2.23) | (−0.78) | |
Female * PCHH income 2 | −0.02 | −0.13 | 0.06 | 2.70 | −0.92 | −1.95 | −1.38 | −1.37 | −1.70 |
(−0.14) | (−0.65) | (0.26) | (1.49) | (−0.75) | (−0.80) | (−1.22) | (−1.17) | (−1.11) | |
Gender | 1.27 | 0.95 | 4.38 | 27.58 | −39.29 * | −12.87 | −17.65 | 15.35 | −3.84 |
(0.82) | (0.36) | (1.43) | (1.02) | (−2.05) | (−0.36) | (−1.02) | (0.82) | (−0.15) | |
Year of Education | 0.11 | −0.19 | 0.07 | −0.17 | −0.12 | −0.58 ** | −0.03 | −0.15 | −0.09 |
(1.02) | (−1.22) | (0.39) | (−1.22) | (−1.23) | (−3.23) | (−0.38) | (−1.91) | (−0.78) | |
Smoke | −0.32 | −1.10 * | −0.78 * | −1.08 * | −0.54 | −0.55 | −0.34 | −0.96 ** | −0.89 * |
(−1.21) | (−1.98) | (−2.06) | (−2.51) | (−1.76) | (−1.07) | (−1.26) | (−3.27) | (−2.09) | |
Alcohol | 0.06 | 0.13 | 0.03 | 0.21 * | 0.19 * | 0.15 | −0.02 | 0.22 ** | 0.21 |
(0.61) | (1.02) | (0.21) | (2.15) | (2.34) | (1.12) | (−0.33) | (2.94) | (1.91) | |
Fixed effect | yes | ||||||||
N | 1500 | 1500 | 1500 | 1897 | 1897 | 1897 | 1945 | 1945 | 1945 |
Variable | Low | High | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
10th | 30th | 50th | 70th | 90th | 10th | 30th | 50th | 70th | 90th | |
Dietary knowledge | −0.03 | −0.0028 | −0.01 | 0.002 | 0.02 | −0.02 | 0.0039 | 0.0046 | 0.02 | 0.07 |
(−1.30) | (−0.17) | (−0.56) | (0.09) | (0.79) | (−0.48) | (0.12) | (0.14) | (0.59) | (1.65) | |
age | 0.38 *** | 0.27 *** | 0.21 *** | 0.15*** | 0.04 | 0.30 *** | 0.30 *** | 0.22*** | 0.20 *** | 0.01 |
(9.96) | (11.70) | (8.68) | (6.08) | (1.32) | (6.59) | (7.63) | (6.18) | (4.67) | (0.30) | |
Age Squared | −0.0034 *** | −0.0024 *** | −0.0019 *** | −0.0014*** | −0.0005 | −0.0026 *** | −0.0026 *** | −0.0019*** | −0.0018 *** | −0.0002 |
(−9.90) | (−11.25) | (−8.46) | (−5.88) | (−1.71) | (−6.10) | (−6.90) | (−5.39) | (−4.28) | (−0.61) | |
Marital status | 0.17 | 0.06 | 0.10 | 0.09 | 0.16 | 0.12 | 0.26 | 0.14 | 0.23 | 0.22 |
(1.30) | (0.67) | (0.97) | (0.80) | (1.11) | (0.77) | (1.50) | (0.78) | (0.98) | (1.02) | |
Rural | 0.16 | 0.08 | 0.10 | −0.02 | −0.12 | −0.06 | −0.07 | −0.23 | −0.44 | −0.84 *** |
(1.12) | (0.78) | (0.81) | (−0.11) | (−0.70) | (−0.30) | (−0.35) | (−1.24) | (−1.85) | (−3.36) | |
HH size1 | −0.0080 | −0.06 | −0.05 | 0.01 | −0.04 | −0.06 | −0.06 | 0.02 | 0.0090 | −0.02 |
(−0.16) | (−1.79) | (−1.34) | (0.26) | (−0.79) | (−0.60) | (−0.73) | (0.21) | (0.10) | (−0.24) | |
Male * PCHH income 2 | 0.30 *** | 0.25 *** | 0.19 ** | 0.10 | 0.06 | 0.22 | 0.04 | −0.04 | −0.28 | −0.43 |
(3.80) | (3.90) | (2.75) | (1.29) | (0.59) | (1.53) | (0.30) | (−0.28) | (−1.37) | (−1.77) | |
Female * PCHH income 2 | 0.02 | −0.02 | −0.07 | −0.12 | 0.08 | −0.34 * | −0.19 | −0.29 * | −0.36 * | −0.11 |
(0.24) | (−0.28) | (−1.01) | (−1.55) | (0.91) | (−2.23) | (−1.14) | (−2.02) | (−2.00) | (−0.65) | |
Gender | −2.78 * | −2.78 ** | −2.48 * | −2.01 | 0.21 | −5.29 * | −0.93 | −1.10 | 0.90 | 4.53 |
(−2.32) | (−2.99) | (−2.42) | (−1.77) | (0.16) | (−2.25) | (−0.40) | (−0.49) | (0.30) | (1.39) | |
Smoke | −0.56 ** | −0.51 *** | −0.78 *** | −0.78 *** | −0.64 *** | −0.51 * | −0.48 * | −0.39 | −0.33 | 0.23 |
(−3.05) | (−3.53) | (−4.49) | (−4.97) | (−3.49) | (−2.11) | (−1.97) | (−1.49) | (−0.95) | (0.60) | |
Alcohol | 0.06 | 0.06 | 0.11 ** | 0.13 ** | 0.11 | 0.07 | 0.19 *** | 0.10 | 0.12 | 0.05 |
(1.10) | (1.55) | (2.66) | (2.83) | (1.88) | (1.33) | (3.54) | (1.74) | (1.62) | (0.73) | |
constant | 11.19 *** | 16.65 *** | 21.09 *** | 24.66 *** | 28.45 *** | 16.54 *** | 16.09 *** | 20.73 *** | 23.84 *** | 28.25 *** |
(7.85) | (16.95) | (19.67) | (20.96) | (19.11) | (7.68) | (7.50) | (11.02) | (10.37) | (13.03) | |
Fixed effect | yes | |||||||||
N | 6706 | 2305 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Han, X.; Wen, H.; Ren, J.; Qi, L. Better Dietary Knowledge and Socioeconomic Status (SES), Better Body Mass Index? Evidence from China—An Unconditional Quantile Regression Approach. Nutrients 2020, 12, 1197. https://doi.org/10.3390/nu12041197
Yu J, Han X, Wen H, Ren J, Qi L. Better Dietary Knowledge and Socioeconomic Status (SES), Better Body Mass Index? Evidence from China—An Unconditional Quantile Regression Approach. Nutrients. 2020; 12(4):1197. https://doi.org/10.3390/nu12041197
Chicago/Turabian StyleYu, Jie, Xiao Han, Hongxing Wen, Jinzheng Ren, and Lihong Qi. 2020. "Better Dietary Knowledge and Socioeconomic Status (SES), Better Body Mass Index? Evidence from China—An Unconditional Quantile Regression Approach" Nutrients 12, no. 4: 1197. https://doi.org/10.3390/nu12041197
APA StyleYu, J., Han, X., Wen, H., Ren, J., & Qi, L. (2020). Better Dietary Knowledge and Socioeconomic Status (SES), Better Body Mass Index? Evidence from China—An Unconditional Quantile Regression Approach. Nutrients, 12(4), 1197. https://doi.org/10.3390/nu12041197