Dietary Potassium Attenuates the Effects of Dietary Sodium on Vascular Function in Salt-Resistant Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Experimental Protocol
2.3. Dietary Potassium and Sodium Manipulation
2.4. Twenty-four Urine and Blood Pressure
2.5. Salt Resistance Classification
2.6. Blood Markers
2.7. Vascular Measures
Assessment of Brachial Artery Flow-Mediated Dilation (FMD)
2.8. Pulse Wave Analysis
2.9. Pulse Wave Velocity
2.10. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Dietary Potassium and Sodium Manipulation
3.3. Vascular Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56-28. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R., 3rd; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Aaron, K.J.; Sanders, P.W. Role of dietary salt and potassium intake in cardiovascular health and disease: A review of the evidence. Mayo Clin. Proc. 2013, 88, 987–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.R.; Obarzanek, E.; Cutler, J.A.; Buring, J.E.; Rexrode, K.M.; Kumanyika, S.K.; Appel, L.J.; Whelton, P.K. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: The Trials of Hypertension Prevention follow-up study. Arch. Intern. Med. 2009, 169, 32–40. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; December 2015. Available online: https://health.gov/our-work/food-and-nutrition/2015-2020-dietary-guidelines/ (accessed on 24 April 2020).
- National Academies of Sciences, Engineering, and Medicine. Dietary Reference Intakes for Sodium and Potassium; National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2019. [Google Scholar]
- Luscher, T.F.; Tanner, F.C.; Tschudi, M.R.; Noll, G. Endothelial dysfunction in coronary artery disease. Annu. Rev. Med. 1993, 44, 395–418. [Google Scholar] [CrossRef]
- Thijssen, D.H.J.; Bruno, R.M.; van Mil, A.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T.; et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019, 40, 2534–2547. [Google Scholar] [CrossRef]
- Kido, M.; Ando, K.; Onozato, M.L.; Tojo, A.; Yoshikawa, M.; Ogita, T.; Fujita, T. Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension. Hypertension 2008, 51, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Matsui, H.; Shimosawa, T.; Uetake, Y.; Wang, H.; Ogura, S.; Kaneko, T.; Liu, J.; Ando, K.; Fujita, T. Protective effect of potassium against the hypertensive cardiac dysfunction: Association with reactive oxygen species reduction. Hypertension 2006, 48, 225–231. [Google Scholar] [CrossRef]
- DuPont, J.J.; Greaney, J.L.; Wenner, M.M.; Lennon-Edwards, S.L.; Sanders, P.W.; Farquhar, W.B.; Edwards, D.G. High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-resistant humans. J. Hypertens. 2013, 31, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Lennon-Edwards, S.; Ramick, M.G.; Matthews, E.L.; Brian, M.S.; Farquhar, W.B.; Edwards, D.G. Salt loading has a more deleterious effect on flow-mediated dilation in salt-resistant men than women. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 990–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanch, N.; Clifton, P.M.; Petersen, K.S.; Keogh, J.B. Effect of sodium and potassium supplementation on vascular and endothelial function: A randomized controlled trial. Am. J. Clin. Nutr. 2015, 101, 939–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulman, I.H.; Aranda, P.; Raij, L.; Veronesi, M.; Aranda, F.J.; Martin, R. Surgical menopause increases salt sensitivity of blood pressure. Hypertension 2006, 47, 1168–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenach, J.H.; Gullixson, L.R.; Kost, S.L.; Joyner, M.J.; Turner, S.T.; Nicholson, W.T. Sex differences in salt sensitivity to nitric oxide dependent vasodilation in healthy young adults. J. Appl. Physiol. 2012, 112, 1049–1053. [Google Scholar] [CrossRef] [PubMed]
- Hoy, M.K.; Goldman, J.D. Potassium Intake of the U.S. Population: What We Eat in America, NHANES 2009–2010; Food Surveys Research Group Dietary Data Brief No.10; Food Surveys Research Group: Washington, DC, USA, 2012.
- Appel, L.J.; Baker, D.; Bar-Or, O.; Minaker, K.L.; Morris, R.C.; Resnick, L.M.; Sawka, M.N.; Volpe, S.L.; Weinberger, M.H.; Whelton, P.K. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; Institute of Medicine, The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Frankenfield, D.; Roth-Yousey, L.; Compher, C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: A systematic review. J. Am. Diet. Assoc. 2005, 105, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, J.; Bilous, M.; Winship, S.; Finn, P.; Jones, S.C. Validation of the Oscar 2 oscillometric 24-h ambulatory blood pressure monitor according to the British Hypertension Society protocol. Blood Press. Monit. 2007, 12, 113–117. [Google Scholar] [CrossRef]
- Mena, L.J.; Maestre, G.E.; Hansen, T.W.; Thijs, L.; Liu, Y.; Boggia, J.; Li, Y.; Kikuya, M.; Bjorklund-Bodegard, K.; Ohkubo, T.; et al. How many measurements are needed to estimate blood pressure variability without loss of prognostic information? Am. J. Hypertens. 2014, 27, 46–55. [Google Scholar] [CrossRef]
- Schmidlin, O.; Sebastian, A.F.; Morris, R.C., Jr. What initiates the pressor effect of salt in salt-sensitive humans? Observations in normotensive blacks. Hypertension 2007, 49, 1032–1039. [Google Scholar] [CrossRef] [Green Version]
- Overlack, A.; Ruppert, M.; Kolloch, R.; Gobel, B.; Kraft, K.; Diehl, J.; Schmitt, W.; Stumpe, K.O. Divergent hemodynamic and hormonal responses to varying salt intake in normotensive subjects. Hypertension 1993, 22, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.M.; Schattenfroh, S.; Kribben, A.; Distler, A. Reliability of salt-sensitivity testing in normotensive subjects. Klin. Wochenschr. 1989, 67, 632–634. [Google Scholar] [CrossRef]
- Weinberger, M.H. Salt sensitivity of blood pressure in humans. Hypertension 1996, 27, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, T.W.; DiCarlo, S.E.; Pravenec, M.; Morris, R.C., Jr. An Appraisal of Methods Recently Recommended for Testing Salt Sensitivity of Blood Pressure. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Pyke, K.E.; Tschakovsky, M.E. Peak vs. total reactive hyperemia: Which determines the magnitude of flow-mediated dilation? J. Appl. Physiol. 2007, 102, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Grimm, R.H., Jr.; Neaton, J.D.; Elmer, P.J.; Svendsen, K.H.; Levin, J.; Segal, M.; Holland, L.; Witte, L.J.; Clearman, D.R.; Kofron, P.; et al. The influence of oral potassium chloride on blood pressure in hypertensive men on a low-sodium diet. N. Engl. J. Med. 1990, 322, 569–574. [Google Scholar] [CrossRef]
- Green, D.J.; Jones, H.; Thijssen, D.; Cable, N.T.; Atkinson, G. Flow-mediated dilation and cardiovascular event prediction: Does nitric oxide matter? Hypertension 2011, 57, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.Y.; Park, H.C.; Ha, S.K. Salt Sensitivity and Hypertension: A Paradigm Shift from Kidney Malfunction to Vascular Endothelial Dysfunction. Electrolytes Blood Press. 2015, 13, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.; Ando, K. Hemodynamic and endocrine changes associated with potassium supplementation in sodium-loaded hypertensives. Hypertension 1984, 6, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, S.L.; Baldo, M.P.; Machado, R.C.; Forechi, L.; Molina Mdel, C.; Mill, J.G. High potassium intake blunts the effect of elevated sodium intake on blood pressure levels. J. Am. Soc. Hypertens. 2014, 8, 232–238. [Google Scholar] [CrossRef]
- Ishimitsu, T.; Tobian, L. High potassium diets reduce endothelial permeability in stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 1996, 23, 241–245. [Google Scholar] [CrossRef]
- Ying, W.Z.; Aaron, K.; Wang, P.X.; Sanders, P.W. Potassium inhibits dietary salt-induced transforming growth factor-beta production. Hypertension 2009, 54, 1159–1163. [Google Scholar] [CrossRef]
- Sugimoto, T.; Tobian, L.; Ganguli, M.C. High potassium diets protect against dysfunction of endothelial cells in stroke-prone spontaneously hypertensive rats. Hypertension 1988, 11, 579–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanch, N.; Clifton, P.M.; Petersen, K.S.; Willoughby, S.R.; Keogh, J.B. Effect of high potassium diet on endothelial function. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Blanch, N.; Clifton, P.M.; Keogh, J.B. Postprandial effects of potassium supplementation on vascular function and blood pressure: A randomised cross-over study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.S.; Oh, Y.T.; Kim, S.W.; Kita, T.; Kang, I.; Youn, J.H. Gut sensing of dietary K+ intake increases renal K+ excretion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R421–R429. [Google Scholar] [CrossRef] [Green Version]
- Preston, R.A.; Afshartous, D.; Rodco, R.; Alonso, A.B.; Garg, D. Evidence for a gastrointestinal-renal kaliuretic signaling axis in humans. Kidney Int. 2015, 88, 1383–1391. [Google Scholar] [CrossRef] [Green Version]
- Baric, L.; Drenjancevic, I.; Matic, A.; Stupin, M.; Kolar, L.; Mihaljevic, Z.; Lenasi, H.; Seric, V.; Stupin, A. Seven-Day Salt Loading Impairs Microvascular Endothelium-Dependent Vasodilation without Changes in Blood Pressure, Body Composition and Fluid Status in Healthy Young Humans. Kidney Blood Press. Res. 2019, 44, 835–847. [Google Scholar] [CrossRef] [Green Version]
- Graham, U.M.; McCance, D.R.; Young, I.S.; Mullan, K.R. A randomised controlled trial evaluating the effect of potassium supplementation on vascular function and the renin-angiotensin-aldosterone system. J. Hum. Hypertens. 2014, 28, 333–339. [Google Scholar] [CrossRef]
- Matthesen, S.K.; Larsen, T.; Vase, H.; Lauridsen, T.G.; Pedersen, E.B. Effect of potassium supplementation on renal tubular function, ambulatory blood pressure and pulse wave velocity in healthy humans. Scand. J. Clin. Lab. Investig. 2012, 72, 78–86. [Google Scholar] [CrossRef]
- Berry, S.E.; Mulla, U.Z.; Chowienczyk, P.J.; Sanders, T.A. Increased potassium intake from fruit and vegetables or supplements does not lower blood pressure or improve vascular function in UK men and women with early hypertension: A randomised controlled trial. Br. J. Nutr. 2010, 104, 1839–1847. [Google Scholar] [CrossRef] [Green Version]
- Lakatta, E.G.; Levy, D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part II: The aging heart in health: Links to heart disease. Circulation 2003, 107, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Lennon-Edwards, S.; Allman, B.R.; Schellhardt, T.A.; Ferreira, C.R.; Farquhar, W.B.; Edwards, D.G. Lower potassium intake is associated with increased wave reflection in young healthy adults. Nutr. J. 2014, 13, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.J.; Marciniak, M.; Carney, C.; Markandu, N.D.; Anand, V.; Fraser, W.D.; Dalton, R.N.; Kaski, J.C.; MacGregor, G.A. Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives. Hypertension 2010, 55, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Boegehold, M.A. The effect of high salt intake on endothelial function: Reduced vascular nitric oxide in the absence of hypertension. J. Vasc. Res. 2013, 50, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Lenda, D.M.; Sauls, B.A.; Boegehold, M.A. Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H7–H14. [Google Scholar] [CrossRef]
- Lenda, D.M.; Boegehold, M.A. Effect of a high-salt diet on oxidant enzyme activity in skeletal muscle microcirculation. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H395–H402. [Google Scholar] [CrossRef] [Green Version]
- Nurkiewicz, T.R.; Boegehold, M.A. High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1550–R1556. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, T.; Lombard, J.H. Effect of high-salt diet on vascular relaxation and oxidative stress in mesenteric resistance arteries. J. Vasc. Res. 2007, 44, 382–390. [Google Scholar] [CrossRef]
- Munzel, T.; Heitzer, T.; Harrison, D.G. The physiology and pathophysiology of the nitric oxide/superoxide system. Herz 1997, 22, 158–172. [Google Scholar] [CrossRef]
- Greaney, J.L.; DuPont, J.J.; Lennon-Edwards, S.L.; Sanders, P.W.; Edwards, D.G.; Farquhar, W.B. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: Role of oxidative stress. J. Physiol. 2012, 590, 5519–5528. [Google Scholar] [CrossRef]
- Ramick, M.G.; Brian, M.S.; Matthews, E.L.; Patik, J.C.; Seals, D.R.; Lennon, S.L.; Farquhar, W.B.; Edwards, D.G. Apocynin and Tempol ameliorate dietary sodium-induced declines in cutaneous microvascular function in salt-resistant humans. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H97–H103. [Google Scholar] [CrossRef]
- Taddei, S.; Mattei, P.; Virdis, A.; Sudano, I.; Ghiadoni, L.; Salvetti, A. Effect of potassium on vasodilation to acetylcholine in essential hypertension. Hypertension 1994, 23, 485–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zicha, J.; Dobesova, Z.; Behuliak, M.; Kunes, J.; Vaneckova, I. Preventive dietary potassium supplementation in young salt-sensitive Dahl rats attenuates development of salt hypertension by decreasing sympathetic vasoconstriction. Acta Physiol. 2011, 202, 29–38. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristic | All Subjects |
---|---|
Demographic Data | |
N (M/F) | 33 (16/17) |
Age (year) | 27 ± 1 |
Height (cm) | 172 ± 1.6 |
Mass (kg) | 72 ± 1.8 |
Body Mass Index (kg/m2) | 24 ± 0.5 |
Systolic BP (mmHg) | 113 ± 3 |
Diastolic BP (mmHg) | 72 ± 2 |
Heart rate (bpm) | 66 ± 2 |
Biochemical Parameters | |
Hemoglobin (g/dL) | 14 ± 0.2 |
Hematocrit (%) | 42 ± 0.6 |
Serum sodium (mmol/L) | 139 ± 0.3 |
Serum potassium (mmol/L) | 4.2 ± 0.06 |
Serum chloride (mmol/L) | 104.4 ± 0.34 |
Plasma osmolality (mOsm/kg H2O) | 290 ± 0.84 |
Serum creatinine (mg/dL) | 0.90 ± 0.03 |
Blood urea nitrogen (mg/dL) | 13 ± 0.6 |
Fasting glucose (mg/dL) | 87 ± 1.2 |
Fasting total cholesterol (mg/dL) | 163 ± 6.2 |
Fasting HDL (mg/dL) | 67 ± 2.1 |
Fasting LDL (mg/dL) | 90 ± 4.8 |
Fasting triglycerides (mg/dL) | 81 ± 7.8 |
MK/LS | MK/HS | HK/HS | |
---|---|---|---|
Mass (kg) | 70.6 ± 1.8 | 71.8 ± 1.8 * | 71.6 ± 1.9 * |
Hemoglobin (g/dL) | 13.4 ± 0.4 | 12.9 ± 0.4 | 13.05 ± 0.3 |
Hematocrit (%) | 40.7 ± 1.1 | 39.2 ± 1.1 | 40.8 ± 1.07 |
Plasma osmolality (mOsm/kg H2O) | 287 ± 1.3 | 289 ± 1 | 289 ± 1 |
Serum sodium (mmol/L) | 139.7 ± 0.6 | 140.8 ± 0.5 * | 140.1 ± 0.5 |
Serum potassium (mmol/L) | 3.95 ± 0.06 | 3.99 ± 0.06 | 4.03 ± 0.05 |
Serum chloride (mmol/L) | 101.7 ± 0.46 | 103.7 ± 0.37 * | 103.1 ± 0.45 * |
Urine osmolality (mOsm/kg H2O) | 324 ± 22.6 | 465 ± 32.4 * | 420 ± 24.3 * |
Urine flow rate (mL/min) | 1.45 ± 0.1 | 1.63 ± 0.11 | 1.72 ± 0.1 * |
Free water clearance (mL/min) | 0.002 ± 0.09 | −0.69 ± 0.12 * | −0.57 ± 0.10 †,* |
24-h Systolic BP (mm Hg) | 116 ± 1 | 116 ± 1 | 115 ± 1 |
24-h Diastolic BP (mm Hg) | 70 ± 1 | 68 ± 1 | 66 ± 2 |
24-h PP (mm Hg) | 47 ± 1 † | 49 ± 1 | 47 ± 1 † |
24-h Heart rate (bpm) | 69 ± 2 | 67 ± 2 * | 67 ± 2 * |
Laboratory Systolic BP (mm Hg) | 110 ± 2 | 112 ± 2 | 110 ± 2 |
Laboratory Diastolic BP (mm Hg) | 66 ± 2 | 66 ± 2 | 65 ± 2 |
Laboratory MAP (mmHg) | 81 ± 2 | 81 ± 2 | 80 ± 2 |
Laboratory PP (mmHg) | 44 ± 2 | 45 ± 1 | 44 ± 1 |
MK/LS | MK/HS | HK/HS | |
---|---|---|---|
Brachial artery FMD (mm Δ) | 0.23 ± 0.002 | 0.20 ± 0.002 | 0.23 ± 0.002 |
Baseline brachial artery diameter (mm) | 3.54 ± 0.01 | 3.47 ± 0.013 | 3.57 ± 0.01 |
Peak brachial artery diameter (mm) | 3.77 ± 0.001 | 3.66 ± 0.01 | 3.79 ± 0.01 |
AUC shear rate | 27236 ± 3774 | 28446 ± 3880 | 33785 ± 4187 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smiljanec, K.; Mbakwe, A.; Ramos Gonzalez, M.; Farquhar, W.B.; Lennon, S.L. Dietary Potassium Attenuates the Effects of Dietary Sodium on Vascular Function in Salt-Resistant Adults. Nutrients 2020, 12, 1206. https://doi.org/10.3390/nu12051206
Smiljanec K, Mbakwe A, Ramos Gonzalez M, Farquhar WB, Lennon SL. Dietary Potassium Attenuates the Effects of Dietary Sodium on Vascular Function in Salt-Resistant Adults. Nutrients. 2020; 12(5):1206. https://doi.org/10.3390/nu12051206
Chicago/Turabian StyleSmiljanec, Katarina, Alexis Mbakwe, Macarena Ramos Gonzalez, William B. Farquhar, and Shannon L. Lennon. 2020. "Dietary Potassium Attenuates the Effects of Dietary Sodium on Vascular Function in Salt-Resistant Adults" Nutrients 12, no. 5: 1206. https://doi.org/10.3390/nu12051206
APA StyleSmiljanec, K., Mbakwe, A., Ramos Gonzalez, M., Farquhar, W. B., & Lennon, S. L. (2020). Dietary Potassium Attenuates the Effects of Dietary Sodium on Vascular Function in Salt-Resistant Adults. Nutrients, 12(5), 1206. https://doi.org/10.3390/nu12051206