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Abstract: The accumulation of adipose tissue increases the risk of several diseases. The fruits-intake,
containing phytochemicals, is inversely correlated with their development. This study evaluated the
effects of anthocyanin-rich tart cherries in diet-induced obese (DIO) rats. DIO rats were exposed to
a high-fat diet with the supplementation of tart cherry seeds powder (DS) and seed powder plus
juice (DJS). After 17 weeks, the DIO rats showed an increase of body weight, glycaemia, insulin,
and systolic blood pressure. In the DS and DJS groups, there was a decrease of systolic blood
pressure, glycaemia, triglycerides, and thiobarbituric reactive substances in the serum. In the DJS
rats, computed tomography revealed a decrease in the spleen-to-liver attenuation ratio. Indeed,
sections of the DIO rats presented hepatic injury characterized by steatosis, which was lower in the
supplemented groups. In the liver of the DIO compared with rats fed with a standard diet (CHOW),
a down-regulation of the GRP94 protein expression and a reduction of LC3- II/LC3-I ratio were
found, indicating endoplasmic reticulum stress and impaired autophagy flux. Interestingly, tart
cherry supplementation enhanced both unfolded protein response (UPR) and autophagy. This study
suggests that tart cherry supplementation, although it did not reduce body weight in the DIO rats,
prevented its related risk factors and liver steatosis.

Keywords: diet-induced obese rats; liver; obesity; tart cherry; anthocyanins

1. Introduction

Obesity consists in the abnormal deposition of adipose tissue, associated with metabolic and
chronic diseases, such as type-2 diabetes, heart diseases, hypertension, non-alcoholic fatty liver disease
(NAFLD), and cancer [1]. Moreover, it is characterized by inflammation that alters cell metabolism and
insulin signaling in metabolically active tissues [2].
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The prevalence of obesity has reached epidemic proportions. Increased food intake, reduced
physical activity, and altered metabolic processes affect energy balance, inducing obesity [3]. A high-fat
diet (HFD) represents the etiology of obesity in modern societies. Therefore, the availability of useful
animal models reflecting human obesity, such as diet-induced obese (DIO) rats, is crucial in the
exploration of innovative compounds for the pharmacological treatment of obesity [4].

Many compounds present in fruit and vegetables have important nutraceutical properties,
such as antioxidant and anti-inflammatory components. Indeed, natural bioactive compounds
maintain low levels of reactive oxygen intermediates and inhibit the prostaglandin synthesis. Thus,
they have been proposed as possible therapeutic tools for several diseases. For instance, anthocyanins
are phytochemical flavonoids found in red-, blue-, and purple-pigmented fruits and vegetables.
Anthocyanin is considered one of the flavonoids with a positive charge at the oxygen atom of the
C-ring, which is a flavonoid basic structure [5]. Plenty of evidence suggests that anthocyanin-rich plant
extracts modify lipid metabolism in vitro and reduce hyperlipidemia in vivo [6,7].

The current animal research suggests that tart cherry (Prunus cerasus L.) confers health benefits
because it is an excellent source of anthocyanins. These compounds, cyanidin-3-glucosyl-utinoside,
cyanidin-3-rutinoside, cyanidin-3-glucoside, and their a glycone, cyanidin, have exhibited in vitro
antioxidant and cyclooxygenase inhibitory activities [8].

This study evaluates in DIO rats and the effects of the juice and seed powder of Prunus cerasus L.,
monitoring them for 17 weeks compared to age-matched control rats, fed with a standard diet (CHOW
rats). Several techniques were performed to determine the possible protective effect of tart cherry
supplementation against liver steatosis induced by obesity.

2. Materials and Methods

2.1. Animals and Diet

Male Wistar rats (Charles River; total n = 60; 250-275 g at the beginning of the experiments) of
7 weeks of age were used. The animals were housed individually, as previously described [9,10].
All procedures involving rats were conducted in accordance with the Institutional Guidelines, and were
complied with the Italian Ministry of Health (protocol no. 1610/2013) and associated guidelines from
European Communities Council Directive. The protocol was approved by the Ethics Committee of the
University of Camerino (no. 7/2012, 6 June 2012). The CHOW rats (n = 24) were fed with standard
laboratory diet ad libitum (4RF18, Mucedola, Settimo Milanese, Italy; 2.6 kcal/g), and the DIO rats
(n = 36) were fed with a high-energy diet ad libitum (D12451, Research Diets, Inc., New Brunswick, NJ,
USA; 4.73 kcal/g).

The CHOW and DIO rats were divided into the following three subgroups:

1. Control group (standard diet without supplementation);

2. CHOW and DIO rats supplemented with 0.1 mg/g/day of tart cherry seed powder (CS and
DS, respectively);

3. CHOW and DIO rats supplemented with 0.1 mg/g/day of tart cherry seed powder plus tart cherry
juice, containing 1 mg of anthocyanins (CJS and DJS, respectively).

Body weight and food intake were monitored every day. Systolic blood pressure was
measured weekly.

Resistant rats (n = 6) were excluded from the study [9,11,12], because they did not develop an
obese phenotype.

After 17 weeks of supplementation, a computed tomography (CT) analysis was performed.
Before the sacrifice, the systolic blood pressure was measured, and a blood sample was withdrawn
from the tail vein. After the sacrifice, the liver was removed and washed in 0.1 M phosphate buffer
saline (PBS). Portions of the liver were frozen at —80 °C for biochemical analysis. Other portions were
placed in Bouin's fluid for 6 h at room temperature and processed for paraffin embedding.
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2.2. Preparation of Seeds Powder and Juice from Tart Cherries

The chemical, biological, functional, and technological properties of the sour cherry pomace
and sour cherry seeds have already been described [13]. Previous studies have measured the total
anthocyanins, total phenolic content, and Trolox equivalent antioxidant capacity in the sour cherry
juice [14-16]. The sour cherry’s seed kernel contains vegetable oils including unsaturated fatty
acids, oleic acids, a-tocopherol, tocotrienols, and tocopherol-like components. The components
of its solid fraction include bioactive structures such as polyphenols, flavonoids, vegetable acids,
and anthocyanidins. All of them have already been well characterized [17,18].

In our study, fresh tart cherries were pitted manually and mashed using a blender at room
temperature for 5 min and then an Ultra Turrax for 1 min. The homogenate was then centrifuged at
7000x g for 10 min, and the extract was removed and stored at 4 °C until analyzed. The precipitate
was further extracted in 96% ethanol for one night. The solution was centrifuged at 10,000x g for
20 min and the supernatant (ethanol extract) was collected and evaporated using a Rotary evaporator.
The concentrated juice was added to the pulp extract and standardized, so that the rats could be given
1 mg of anthocyanins every day for 17 weeks [10]. The total monomeric anthocyanin content was
measured using the differential method [19]. The juice was orally administered, using a standard water
bottle. The dried seeds, deprived of the shell, were grounded and degreased with two ultrasound
extraction rounds using 30 ml of petroleum ether. These seeds were incorporated into the standard
diet giving to each animal 0.1 mg/g per day [17-20] for 17 weeks. For the DIO rats, 0.1 mg/g of seed
powder was added to 1 g of lard.

2.3. Computed Tomography Analysis

The CT examinations of the abdomen were conducted with anesthetized rats positioned in
dorsal recumbence, using a helical, single slice, multi detector scan (CT/e GE, Boston, MA, USA).
The CT technical parameters were as follows: soft tissue acquisition algorithm, scan helical mode, slice
thickness 1.0 mm, peak kilovoltage 120 kVp, X-ray tube current 100 mA, rotation time 1.5 s, starting
from fourth cervical vertebra and proceeding caudally to pelvis.

CT images were acquired in a Digital Imaging and Communications in Medicine (DICOM) format
and processed both with OsiriX (Pixmeo SARL, Berna, Switzerland) and Image] (http://rsb.info.nih.
gov/ij/) software, as previously described [21]. Osirix software was used for the estimation of the
subcutaneous fat layer, considering the thickness of both the subcutaneous and peritoneal fat layer at
the level of the sternal xiphoid process, and for the assessment of the liver attenuation and calculation
of the spleen-to-liver attenuation ratio, considering values >1 indicative of hepatic steatosis [22,23].

In addition, the same images were investigated with Image] software to assess the difference in
hepatic optical density.

The DICOM images obtained with CT were converted into Tagged Image File Format (TIFF)
images using Image J, and a 16-interval pseudo-color scale was applied to the grayscale. This scale
starts from black pixels (value of 0), and increasing gradations of tissue density are represented in
16 equal intervals by a pseudo-color scheme to white pixels (value of 255). Within hepatic shadows,
thirteen regions of interest (ROL 3500 pm X 2400 um), were evaluated. Hence, the distribution of
pixels, in the same ROI, was calculated and displayed as a histogram.

2.4. Biochemical Analysis

First, 1000 pL of blood were collected in tubes with L-heparin. The blood samples were then
centrifuged for 10 min at 3000 rpm. Glucose, total cholesterol, and triglycerides were evaluated by
IDEXX Catalyst Dx. Insulin, and the thiobarbituric acid reactive substances (TBARS) concentration,
expressed as the malondialdehyde (MDA) and superoxide dismutase (SOD) activity, were evaluated in
the plasma with ®Ultrasensitive Rat Insulin ELISADRG (EIA-2943), TBARS assay Kit and SOD assay
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kit (both Cayman, Chemical Company, Ann Arbor, MI, USA), respectively, according to data sheets of
the companies.

In the liver homogenates, the oxidation levels of the proteins were evaluated using an
OxyBlot Protein Oxidation Detection Kit (Millipore, Merk, Darmstadt, Germany), according the
manufacturer instructions.

2.5. Western Blot: Unfolded Protein Response (UPR) and Autophagy Analysis

The liver samples (0.1 + 0.02 g) were lysed in lysis buffer containing protease inhibitor cocktail
(Sigma Aldrich). Lysates were separated on 8%-14% Sodium Dodecyl Sulphate (SDS) polyacrylamide
gel and transferred onto nitrocellulose membranes. The membranes were incubated overnight at 4 °C
with the following primary antibodies: anti-caspase 3 (Cell Signaling Technology, Danvers, MA, USA,
1:1000), anti-Bcl-2-associated death (BAD), (Cell Signaling Technology, Danvers, MA, USA, 1:1000),
anti-GRP94 (Cell Signaling Technology, 1:1000), anti-LC3 (Novus Biologicals, Centellian, CO, USA,
2 pug/mL), and anti- Glyceraldehyde 3-phosphate dehydrogenase GAPDH (Cell Signaling Technology,
1:1000; used as a loading control) [24].

2.6. Morphological Analysis

Hepatic tissue was removed from each rat. Consecutive sections (5 um) of the liver, embedded in
paraffin wax, were processed for morphological techniques and stained with haematoxylin and eosin
(H&E). The sections were viewed under a light microscope. The images were transferred from the
microscope by a DS-R12 NIKON camera and evaluated using a NIS-Elements Nikon image analyzer.
Blinded researchers to the group distributions performed the histological analyses of the slides using
light microscopy at 20X magnification, evaluating in different fields of 300,000 pm? 400 hepatocytes
in alternative slides. For each field to validate the histological features and to determine the hepatic
steatosis, a scoring system was applied [25]. Briefly, the steatosis scores were defined as follows:
the presence of intrahepatic fat droplets in <5% of hepatocytes for field (score 0), the presence of
intrahepatic fat droplets in 5%—-33% of hepatocytes (score 1), the presence of intrahepatic fat droplets in
33%—66% of hepatocytes (score 2), and the presence of intrahepatic fat droplets in >67% of hepatocytes
as score 3.

2.7. Statistical Analysis

All of the results were expressed as mean + standard error of the mean (SEM). Regarding the
food intake and body weight, data were analyzed using two-way analysis of variance (ANOVA) with
the animal group as the between-subject variable and time as the within-subject variable, followed
by post hoc comparison carried out by the Bonferroni test. For the others parameters, the data were
analyzed by two-way ANOVA, with the animal group as the between-subject variable, followed
by a post hoc comparison carried out by the Bonferroni test. The p-values < 0.05 were considered
statistically significant.

3. Results

3.1. Body Weight, Food Intake, and Systolic Blood Pressure

At the beginning, the body weight of the rats assigned to the high fat diet (HFD), DIO group
(298.1 + 2.7 g), did not differ significantly from that of the rats in the control CHOW group (297.7 + 2.1 g;
p > 0.05 vs. DIO rats).

After 17 weeks, the overall ANOVA showed a significant difference in body weight between
the CHOW and DIO groups (p < 0.01); the post-hoc test showed that body weight of DIO rats was
significantly higher in comparison with the CHOW rats, starting from the fourth week (p < 0.01).
Significant differences among the groups evaluated by the post hoc analyses are indicated in Figure 1A.
The overall ANOVA showed a significant difference in energy intake (kcal) between the groups
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(p < 0.01). Post-hoc differences are shown in Figure 1B. In the CS, CJS, DS, and DJS groups the
supplementation did not affect body weight or food intake (Figure 1A,B).
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Figure 1. (A) Body weight in grams (g). (B) Food intake in kilocalories (kcal), measured weekly in all
of the animal groups. ** p < 0.01 vs. CHOW. (C) Systolic blood pressure in mmHg measured at the end
of the study in all of the animal groups. CHOW—control rats with standard diet; CS—CHOW plus tart
cherry seeds; CJS—CHOW plus tart cherry seeds and juice; DIO—diet-induced obese rats; DS—DIO
plus tart cherry seeds; DJS—DIO plus tart cherry seeds and juice. Data are the mean + standard error
of the mean (SEM). * p < 0.05 vs. CHOW; # p < 0.05 vs. DIO.

Systolic blood pressure was higher in the DIO rats after 17 weeks of HFD compared with the
age-matched CHOW rats. The DS and DJS rats showed a significant reduction of systolic blood
pressure compared with DIO rats (Figure 1C).

3.2. Blood Parameters

The obese condition induced an increase of glucose (p < 0.05, Figure 2A) and insulin (p < 0.05,
Figure 2B) levels in the DIO rats after 17 weeks of HFD. Tart cherry supplementation reduced only
hyperglycemia (Figure 2A), but not the hyperinsulinemia (Figure 2B). Obesity did not significantly
affect the total cholesterol (Figure 2C) and triglycerides (Figure 2D) levels. However, the tart cherry
intake significantly reduced the blood level of the triglycerides in the treated DIO rats compared with
the DIO control rats (p < 0.05, Figure 2D).



Nutrients 2020, 12, 1308 6 of 18
140.00 * 90.00
#
120.00 8000 1 ¢ T I
T T 70.00 -
100.00 _
3 T =2 60.00 |
} "
2 80.00 E 5000 |
g ]
g 60.00 £ 40,00
=
] °
© 1000 2 30.00 -
20.00
20.00
10.00 |
0.00 et T 0.00 —1 S
A CHOW cs as DIO DS DJS CHOW (a3 cs DIO DS DIS
* 120.00 -
1.20
100.00
100 - s I
= £ 1
E T £ 80.00
= 0.80 | . -
£ g *
3 2 60.00 T
2 0.60 - g
=
]
0.40 £ 40.00
0.20 20.00
0.00 o CHOW ¢S s DO DS DIS
B CHOwW ¢ s DO DS DI D

Figure 2. Blood parameters. Levels of (A) glucose in mg/dL, (B) insulin in ug/L, (C) cholesterol, and (D)
triglycerides in mg/dL, measured at the end of the study in all of the animal groups. CHOW—control
rats with standard diet; CS—CHOW plus tart cherry seeds; CJ[S—CHOW plus tart cherry seeds and
juice; DIO—diet-induced obese rats; DS—DIO plus tart cherry seeds; DJS—DIO plus tart cherry seeds

and juice. Data are the mean + SEM. * p < 0.05 vs. CHOW rats; # p < 0.05 vs. DIO rats.

The TBARS assay kit revealed an increase of MDA in the serum of the DIO rats (Figure 3A)
compared with the control CHOW group (p < 0.05), indicating a condition of lipid peroxidation induced
by oxidative stress [26]. The levels of MDA decreased in the serum of the DS and DJS groups (p < 0.05,
Figure 3A), suggesting a reduction of oxidative stress with the supplementation of tart cherries [27].
SOD activity was found in the CHOW and DIO rats, decreasing significantly only in the CS and CJS
rats compared with the CHOW group (p < 0.05, Figure 3B).
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Figure 3. Concentrations of (A) malondialdehyde (MDA) and (B) superoxide dismutase (SOD)
activity in the serum. MDA concentrations are expressed in uM and SOD activity are expressed in
unit/mL(U/mL), where one unit is defined as amount of enzyme needed to exhibit 50% dismutation of
the superoxide radicals. CHOW-—control rats with standard diet; CS—CHOW plus tart cherry seeds;
CJS—CHOW plus tart cherry seeds and juice; DIO—diet-induced obese rats; DS—DIO plus tart cherry
seeds; DJS—DIO plus tart cherry seeds and juice. Data are the mean + SEM. * p < 0.05 vs. CHOW rats;
#p <0.05vs. DIO rats.

3.3. CT Evaluation

In the CT, fat infarction of the liver was investigated. For the assessment, the difference in
attenuation values between the liver and the spleen, as well as the calculation of the spleen-to-liver
attenuation ratio were taken into account. At 17 weeks, in the DIO rats, liver attenuation was 10 HU
(Hounsfield units) smaller than the spleen, while in the CHOW rats, the attenuation values of the liver
(65 HU) and spleen (61 HU) were the same.

Regarding the spleen-to-liver attenuation ratio, it was 1.06 + 0.03 in CHOW rats, while in the DIO
and DS rats it was significantly higher: 1.18 + 0.04 and 1.18 + 0.08, respectively (p < 0.05 vs. CHOW
rats). This ratio decreased remarkably only in the DJS group rats (0.95 + 0.07; p < 0.05 vs. DIO rats).
An analysis of the hepatic optical density (Figure 4) revealed a similar liver density for CHOW, CS,
and CJS rats, with mean pseudo-color density values of 141.01 + 1.61, 144.07 + 4.21, and 145.28 + 5.23,
respectively. On the other hand, the DIO rats showed the lowest hepatic density (102.64 + 1.33),
while the DS and DJS rats had a similar hepatic optical density, with values of 125.52 + 5.59 and
118.09 + 2.86, respectively.



Nutrients 2020, 12, 1308 8 of 18

CHOW

-

| SE——— . I "IN S
255 0 255 0 255

Count: 264 Min: 138 Count: 604 Min: 136 Count: 837 Min: 124

Maan;141.015 Macid3 Mean: 144.073  Max: 157 Mean: 145.280  Max: 156

StdDev: 1.615 Mode: 143 (66) StdDev: 4.216 Mode: 143 (83) stdDev: 5.237 Mode: 146 (76)

HE T ) _:—:]‘| EE T o

0 25 0 255 0 255

Count: 308 Min: 98 Count: 1350 Min: 110 Count: 572 Min: 110

Mean: 102.647 Max: 106 Mean: 125.521 Max: 138 Mean: 118.098 Max: 126

StdDev: 1.330 Mode: 103 (91) stdDev: 5.595 Mode: 123 (138) StdDev: 2.862 Mode: 119 (87)

Figure 4. Computed tomography (CT) images evaluation with Image J software. The grayscale Digital
Imaging and Communications in Medicine (DICOM) images obtained with CT were converted into
pseudo-color images, which starts with the lowest density of black pixels (value of 0, air) and increases
gradually, depending on the tissue density, to white pixels (value of 255, bone). The hepatic optical
density for the different groups of rats ranged from 102.647 to 145.280, as reported below each image.
The black peak in each histogram indicates the distribution of the optical density of the regions of
interest investigated. CHOW—control rats with standard diet; CS—CHOW plus tart cherry seeds;
CJS—CHOW plus tart cherry seeds and juice; DIO—diet-induced obese rats; DS—DIO plus tart cherry
seeds; DJS—DIO plus tart cherry seeds and juice.

3.4. Liver Morphology

In the CHOW rats, the liver morphology was normal and well preserved, independent of tart
cherry supplementation (Figure 5A-C). Rarely, the intake of powder seed alone or powder seed plus
sour juice induced alterations in the hepatic lobule characterized by dilated sinusoids. The regularity
of these changes appeared greater in the CJS rats (Figure 5C).
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Figure 5. Liver morphology. Representative sections of liver processed for haematoxylin and eosin
staining of (A) CHOW, (B) CS, (C) CJS, (D,G) DIO, (E,H) DS, and (FI) DJS rats. (A-F). Magnification
10x. Calibration bar: 40 um. (G-I) Magnification 20x. Calibration bar: 20 um. Arrow heads indicate
features of steatosis, differently occurring in the experimental groups examined. CHOW-—control
rats with standard diet; CS—CHOW plus tart cherry seeds; CJ[S—CHOW plus tart cherry seeds and
juice; DIO—diet-induced obese rats; DS—DIO plus tart cherry seeds; DJS—DIO plus tart cherry seeds
and juice.

In the DIO rats, the morphological pattern showed alterations in the hepatic structure with
different degrees of severity; it was scored as 2.1 + 0.2 for steatosis, compared with the CHOW liver,
which scored as 0 (Figure 5D,G). Dilated sinusoids and hepatocytes with no homogeneous staining were
found in some areas: strongly eosinophilic cells were observed, between weakly staining hepatocytes.

The typical features of steatosis are identifiable in some lobular areas both in the microvesicular
(Figure 6A) and macrovesicular elements (Figure 6B). The presence of large vacuolizations was especially
evident in the centrolobular areas (Figure 6B). From a morphological point of view, this structural
alteration appeared less evident in the DS (Figure 5E,H) and DJS rats (Figure 5E]I) scored as 0.8 + 0.1
and 0.4 + 0.2 for steatosis, respectively. Only a few elements of steatosis were present in the hepatocytes
around the central veins in the DS (Figure 5H) and DJS rats (Figure 5I).
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Figure 6. Liver morphology of DIO rats. Sections of liver processed for haematoxylin and eosin staining
to highlight the (A) microvesicular steatosis, mainly found in the periportal areas (arrow head), and (B)
macrovesicular steatosis (arrow), in a centrilobular area where several scattered balloon cells can be
often observed. Magnification 40x. Calibration bar: 10 pm. DIO—diet-induced obese rats.

3.5. Oxidative Stress Condition in the Liver

The TBARS kit analysis revealed in the liver homogenates an increase of MDA in DIO rats
(p < 0.05), compared with the CHOW group, demonstrating a condition of oxidative stress in obesity
(Figure 7A). The levels of MDA decreased in the DS and DJS rats (p < 0.05, Figure 7A), indicating a
reduction of oxidative stress in the presence of tart cherries in the liver. Moreover, an increased density
of oxidized proteins at different molecular weight was detected in the DIO rats compared with the
CHOW rats (Figure 7B,C). Tart cherry juice and seeds decreased the level of oxidized proteins, both in
lean and obese rats (Figure 7B,C).
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Figure 7. Concentrations of (A) malondialdehyde (MDA) in the liver expressed in nmol/mg of tissue.
(B) OxyBlot in the liver homogenates and (C) the graph reports the values of optical density measured
in the arbitrary optical density unit. CHOW-—control rats with standard diet; CS—CHOW plus tart
cherry seeds; CJS—CHOW plus tart cherry seeds and juice; DIO—diet-induced obese rats; DS—DIO
plus tart cherry seeds; DJS—DIO plus tart cherry seeds and juice. Data are the mean + SEM. * p < 0.05
vs. CHOW rats; # p < 0.05 vs. DIO rats.

3.6. ER Stress and Autophagy Evaluation in Obesity Condition

Using Western blot analysis, we demonstrated a marked down-regulation of GRP94 protein
expression (evaluated with a band of approximately 100KDa) in DIO rats compared with CHOW rats
(p < 0.05, Figure 8A), suggesting that obesity induces an unfolded protein response (UPR) impairment.
In the DS and DJS groups, tart cherry supplementation restored the normal GRP94 protein levels,
improving the efficiency of the chaperone protein in the endoplasmic reticulum (ER). No changes in the
GRP94 expression levels were found in the CS or CJS rats compared with control animals (Figure 8A).
Moreover, we assessed the autophagic process by evaluating the LC3 turnover (Figure 8B). Indeed,
during autophagy, the cytosolic form of LC3 (LC3-I, molecular weight 16 KDa) was conjugated with
phosphatidylethanolamine to form a LC3-phosphatidylethanolamine conjugate (LC3-II, molecular
weight 14 KDa), which is recruited to autophagosomal membranes. Thus, the LC3-1I/LC3-I ratio was
used to investigate autophagy [28]. We showed that in DIO rats, the LC3-II/LC3-I ratio was reduced
with respect to the control (Figure 8B), indicating an impairment in the autophagic flux, completely
reverted by both tart cherry supplementations.

UPR and autophagy dysfunctions are associated with apoptotic cell death [29]. Therefore,
we investigated the apoptosis induction by caspase 3 activation assessment and BAD protein expression.
Our results showed that no cleavage of caspase 3 was present in any of the samples (Figure 8C) and no
change in the expression of the BAD protein was observed (Figure 8D), suggesting that liver injury
induced by diet is associated with hepatocyte cell damage, but not with cell death.



Nutrients 2020, 12, 1308 12 of 18

A N B S, o o o
o e LeP L3 —> g oS v
GRPA— W B e S LCa—> — = —
GAPDH —> GAPDH—*

GRP94/GAPDH fold
LC3-11/LC3-I fold

CHOW cs as Do DS DIS

BAD  — S

o GAPDH —>

S
L & &
pro-caspase 3 — (ll) GINS NS SN SamE S

$ P

15

cleaved caspase 3—»

BAD/GAPDH fold

CHOW cs as Dio DS DIs

Figure 8. Lysates of liver from all of the animal groups were immunoblotted using specific antibodies,
namely: (A) anti-GRP94 molecular weight 100 KDa; (B) anti-LC3 that recognized the isoform at
16 KDa (LC3-I) and 14 KDa (LC3-II); (C) anti-caspase 3 that revealed the pro-caspase 3 at 31 KDa and
cleaved caspase 3 at 17 KDa; and (D) anti-BAD that revealed a band at 20 KDa. Values indicate the
densitometric analysis using CHOW rats as the control. GAPDH levels were used as the loading control.
Blots are representative of three separate experiments. The LC3-II/LC3-I ratios were calculated after
densitometric analysis. CHOW-—control rats with standard diet; CS—CHOW plus tart cherry seeds;
CJS—CHOW plus tart cherry seeds and juice; DIO—diet-induced obese rats; DS—DIO plus tart cherry
seeds; DJS—DIO plus tart cherry seeds and juice. * p < 0.05 vs. CHOW rats; # p < 0.05 vs. DIO rats.

4. Discussion

Obesity is a multifactorial disease that has reached an epidemic level all over the world. Overweight,
besides increasing the risk for several diseases, promotes the inflammatory status leading to negative
consequences, such as NAFLD or hypertriglyceridemia due to insulin resistance [30-32].

Diet-induced obesity in rats provides a suitable animal model, sharing several common features
with human obesity [33]. Our findings confirmed that four weeks of exposure to HFD led to a
significant increase in body weight in DIO rats compared with control rats. The supplementation
of Prunus cerasus L. did not reduce this weight gain, demonstrating that tart cherry did not prevent
fat accumulation induced by HFD (45%) ad libitum. This result is in agreement with other studies,
in which oral anthocyanin treatment did not preserve the rats from diet induced weight gain [34-36],
and they did not affect the hypertrophy of adipocytes during the development of obesity [37].

The effects of anthocyanins supplementation on body weight were controversial.
HFD supplemented with purified anthocyanins from blueberries reduced weight gain and fat
accumulation in C57BL/6 mice [38]. In contrast, lyophilized wild blueberry powder intake induced
body fat accumulation [38]. Moreover, it has been reported that the ingestion of blueberry juice did
not significantly reduce the body weight gain and the weight of white adipose tissue in mice fed with
HFD [39].
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In the present study, the values of glycemia and insulin were higher in the DIO rats compared with
the control CHOW rats, indicating a condition of insulin resistance typical of type-2 diabetes mellitus.
However, the DIO rats did not show hyperlipidemia. Indeed, the levels of triglycerides and total
cholesterol were similar to the CHOW rats, and they did not increase after 17 weeks under HFD. Rats are
generally more resistant to developing hypercholesterolemia and the relative atherosclerosis [40—42].
In fact, to establish a condition of hyperlipidemia, it is necessary for the use of a specific high cholesterol
diet [43,44] or a longer period of HFD consumption [41,42].

Regarding supplementation, tart cherries decreased triglycerides in DIO rats, but not in CHOW.
In accordance with other studies, tart cherry did not modify the lipids level, including triglycerides,
in a healthy condition [45,46], on the contrary it did in an overweight and obesity condition in human
and animal models [47-49].

A transient increase in fatty acid levels can also be considered as the physiological stimulation
of insulin production as insulin secretion that may temporarily increase to maintain a metabolic
balance. However, a prolonged fatty acid overload impairs {3 cell function [36]. In line with our study,
the hypercaloric diet showed increasing insulin secretion, while the anthocyanin treatment failed to
counteract the HFD effect on insulin secretion [36]. Among the anthocyanins, cyanidin-3-o-f3 glycoside
has been revealed to be able to increase the cellular insulin sensitivity through the inactivation of Jun
NH(2)-terminal kinase (JNK) or not converting the serine insulin receptor substrate-1 [50]. Moreover,
DIO rats developed a condition of hypertension, compared with the CHOW rats. High blood pressure
represents one of the main risk factors for liver injury and hepatic fibrosis [51]. Although tart cherry
supplementation did not reduce the increase of body weight in DIO rats, it reduced the oxidative
stress condition, the systolic blood pressure, and glycemia values, confirming the positive effects of
tart cherry intake on the risk factors of obesity and metabolic syndrome [27,49,52].

The liver plays a central role in the metabolism, especially in the lipid one. Because of the delivered
and stored lipoprotein imbalances, stress, or injuries, there could be some form of lipid depots inside
the hepatocytes of the liver parenchyma [53,54]. An infiltration of fat higher than 5%, without a history
of alcohol abuse, has often used as the definition of NAFLD [55]. The prevalence of this pathology is
also influenced by age, gender, ethnicity, sleep apnoea, and endocrine dysfunction [56-58].

In the development of hepatic steatosis, the metabolic syndrome, especially insulin resistance,
has a major influence on obesity alone, even if hepatic steatosis is strongly associated with visceral
adiposity. This because hyperinsulinemia promotes both lipogenesis, hepatocytes fat accumulation,
and lipolysis, with hyperlipidemia [55,59,60].

Studies evaluating the effect of anthocyanins in vivo on hepatic lipid metabolism, steatosis,
oxidative stress, and steatohepatitis have been previously reviewed, also with a certain difficulty
because of the very different experimental models and the dissimilar outcomes for the assessment
of lipid metabolism, oxidative stress, and liver injury [61]. Anyway, the intake of tart cherries rich
in anthocyanins prevented the development of metabolic alterations in insulin-resistant rats [49]
or in a high-fat/high-fructose (HFHF) model of diabetic-rats [62]. Hence, it was described that the
cherry-enriched diet reduced the fatty liver, and that anthocyanin-rich extracts may exert positive
effects enhancing the activity of the hepatic peroxisome proliferator-activated receptor alpha (PPAR-«)
and PPAR-« target acyl-coenzyme A oxidase mRNA [49]. Specifically, cyanidin was found to act as an
agonistic ligand for PPAR-«, and it reduced the hepatic lipids, regulating the genes involved in lipid
metabolic pathways [63]. It was postulated that PPARx promoted the lipolysis and reduced lipogenesis,
and as a consequence, the hepatic fat content decreased [61]. Moreover, cherry consumption reduced
steatosis, as described in type 2 diabetes rats, through the inhibition of the activation of the sterol
regulatory element-binding proteins and carbohydrate-responsive element-binding proteins [62].

In our study, the steatotic alterations related to obesity and the positive effects of tart cherry intake
were also demonstrated by CT analysis. In human beings, values of the liver 10 HU smaller than
those of the spleen are considered highly predictive of hepatic steatosis. Spleen-to-liver attenuation
ratios greater than 1.1 are proposed to be suggestive for hepatic steatosis, even if liver biopsy is still
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considered as the gold standard in the assessment of fatty infiltration [64]. In the present study, spleen
to liver attenuation was not able to suggest hepatic steatosis in DS rats, while the hepatic optical density
gave similar results in both DS and DJS rats, confirmed by the liver morphology analysis. The CT
evaluation of the attenuation difference between liver to spleen represents an important technique
to investigate the association between fatty liver and visceral fat in humans [23,55]. Similarly, inrats,
CT scans diagnose and quantify the degree of liver fat infiltration [22].

To the best of our knowledge, this was the first attempt to apply non-invasive diagnostic indexes
such as spleen-to-liver attenuation and hepatic optical density in rats, and further studies are needed
to identify the specific cut-off points for steatosis in rats.

The CT results were directly correlated with the histological evidence. Indeed, both the DS and
DJS groups showed a reduction in the steatosis, persisting only in limited portions of tissue and in the
microvesicular form. These positive effects could be due to the reduction of oxidative stress. It was
demonstrated that in the liver, cherry consumption decreased oxidative stress, through the inhibition
of the NADPH oxidase subunit p22phox expression, nuclear factor erythroid-2 related factor 2 (Nrf2)
degradation, and the formation of reactive oxygen species [62]. Studies reported that anthocyanins
(i.e., cyanidin-3-O-p-glucoside) may avoid the development of liver impairment, reducing the lipid
peroxidation [65] or the oxidative stress by the induction of anti-oxidant enzymes [66]. However,
whether an enhanced redox status was secondary or independent of the reduced hepatic lipids and an
improved metabolic status was not established [61]. Both the seeds and juice reduced inflammation and
oxidative stress in cell lines and weight in obese subjects in a randomized, crossover pilot study [67-69].

Several findings demonstrated that ER stress develops in the liver of obese animals, where it plays
an important role in hepatic lipogenesis [70]. During ER stress, the UPR pathways are activated to
remove the polypeptides that fail to reach the appropriate folding, in order to restore the ER homeostasis.
It has been recently demonstrated that UPR dysfunction prolongs the ER stress in the liver and induces
the development of hepatic steatosis [71]. In agreement with these results, we demonstrated a marked
down-regulation of the expression levels of GRP94, a chaperone belonging to the Hsp90 family, in DIO
rats, indicating an impairment of the UPR pathway. Interestingly, tart cherry supplementations restored
the GRP94 protein levels, showing the ability to improve the recovery of the ER function. Moreover,
it is well known that autophagy, a pathway responsible for the degradation of unwanted or damaged
cytoplasmic organelles, is involved in the control of hepatic lipid droplets under stress conditions such
as obesity. It is responsible for the degradation of lipid droplets. In fact, its inhibition was found to
increase the triglycerides contents in hepatocytes [72]. In line with these results, our data show that
the obesity promoted autophagy impairment. Tart cherry supplementations markedly improved the
autophagic flux, as evidenced by the LC3-II/LC3-1I ratio. As ER stress or autophagy inhibition lead
to apoptosis, we also evaluated this process. Similar to previous findings in diabetic mice with liver
injuries [71], no apoptosis was observed in the liver of the DIO animals, suggesting that obesity induced
liver damage promotes lipid accumulation in hepatocytes but not hepatocyte apoptotic cell death.

Thus, overall, our results demonstrated that the dysfunctions of UPR and autophagy lead to
the impairment of lipid droplet movement in hepatocytes, contributing to the exacerbation of the
steatohepatitis, and that tart cherry supplementations represent a good strategy to restore hepatocyte
cell homeostasis during obesity.

5. Conclusions

The present study revealed that the Prunus cerasus L. seeds and juice could decrease oxidative
stress and steatosis in the liver of DIO rats. Further studies are needed to clarify their potential utility as
bioactive compounds of the anthocyanins, flavonoid compounds, vegetable oils including unsaturated
fatty acids, and oleic acids composing juice and seeds, respectively.
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