Role of Nutrition in Prevention of Neonatal Spontaneous Intestinal Perforation and Its Complications: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
2.4. Data Collection Process
3. Results
3.1. Inclusio
3.2. Risk of Bias
3.3. Grouping According to Nutrition Data
3.4. Outcomes
3.4.1. Early Enteral Nutrition (EEN)
3.4.2. Time to Full Enteral Feeds after SIP
3.4.3. Parenteral Nutrition Duration
3.4.4. Length of Stay
3.4.5. Neurodevelopmental Outcomes
3.4.6. Mortality
3.5. Other Complications
4. Discussion
5. Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gordon, P.V. Understanding intestinal vulnerability to perforation in the extremely low birth weight infant. Pediatr. Res. 2009, 65, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Shah, B.; Allred, E.N.; Grzybowski, M.; Martin, C.R.; Leviton, A. ELGAN Study co-investigators The antecedents and correlates of necrotizing enterocolitis and spontaneous intestinal perforation among infants born before the 28th week of gestation. J. Neonatal. Perinatal. Med. 2016, 9, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Singhal, N.; da Silva, O.; Rouvinez-Bouali, N.; Seshia, M.; Lee, S.K.; Shah, P.S. Canadian Neonatal Network Intestinal perforation in very preterm neonates: Risk factors and outcomes. J. Perinatol. 2015, 35, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, J.Q.; Stewart, D.L. Clinical comparison of localized intestinal perforation and necrotizing enterocolitis in neonates. Pediatrics 1994, 93, 32–36. [Google Scholar] [PubMed]
- Pumberger, W.; Mayr, M.; Kohlhauser, C.; Weninger, M. Spontaneous localized intestinal perforation in very-low-birth-weight infants: A distinct clinical entity different from necrotizing enterocolitis. J. Am. Coll. Surg. 2002, 195, 796–803. [Google Scholar] [CrossRef]
- Kubota, A.; Yamanaka, H.; Okuyama, H.; Shiraishi, J.; Kawahara, H.; Hasegawa, T.; Ueno, T.; Kitajima, H.; Kuwae, Y.; Nakayama, M. Focal intestinal perforation in extremely-low-birth-weight neonates: Etiological consideration from histological findings. Pediatr. Surg. Int. 2007, 23, 997–1000. [Google Scholar] [CrossRef]
- Okuyama, H.; Kubota, A.; Oue, T.; Kuroda, S.; Ikegami, R.; Kamiyama, M. A comparison of the clinical presentation and outcome of focal intestinal perforation and necrotizing enterocolitis in very-low-birth-weight neonates. Pediatr. Surg. Int. 2002, 18, 704–706. [Google Scholar] [CrossRef]
- Chen, A.-C.; Chung, M.-Y.; Chang, J.H.; Lin, H.-C. Pathogenesis implication for necrotizing enterocolitis prevention in preterm very-low-birth-weight infants. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 7–11. [Google Scholar] [CrossRef]
- Meyer, C.L.; Payne, N.R.; Roback, S.A. Spontaneous, isolated intestinal perforations in neonates with birth weight less than 1,000 g not associated with necrotizing enterocolitis. J. Pediatr. Surg. 1991, 26, 714–717. [Google Scholar] [CrossRef]
- Aschner, J.L.; Deluga, K.S.; Metlay, L.A.; Emmens, R.W.; Hendricks-Munoz, K.D. Spontaneous focal gastrointestinal perforation in very low birth weight infants. J. Pediatr. 1988, 113, 364–367. [Google Scholar] [CrossRef]
- Holland, A.J.A.; Shun, A.; Martin, H.C.O.; Cooke-Yarborough, C.; Holland, J. Small bowel perforation in the premature neonate: Congenital or acquired? Pediatr. Surg. Int. 2003, 19, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Spadone, D.; Clark, F.; James, E.; Laster, J.; Hoch, J.; Silver, D. Heparin-induced thrombocytopenia in the newborn. J. Vasc. Surg. 1992, 15, 306–311; discussion 311. [Google Scholar] [CrossRef] [Green Version]
- Gordon, P.; Rutledge, J.; Sawin, R.; Thomas, S.; Woodrum, D. Early postnatal dexamethasone increases the risk of focal small bowel perforation in extremely low birth weight infants. J. Perinatol. 1999, 19, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Alawadhi, A.; Chou, S.; Carpenter, B. Segmental agenesis of intestinal muscularis: A case report. J. Pediatr. Surg. 1989, 24, 1089–1090. [Google Scholar] [CrossRef]
- Houben, C.H.; Feng, X.-N.; Chan, K.W.E.; Mou, J.W.C.; Tam, Y.H.; Lee, K.H. Spontaneous Intestinal Perforation: The Long-Term Outcome. Eur. J. Pediatr. Surg. 2017, 27, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Karila, K.; Anttila, A.; Iber, T.; Pakarinen, M.; Koivusalo, A. Outcomes of surgery for necrotizing enterocolitis and spontaneous intestinal perforation in Finland during 1986-2014. J. Pediatr. Surg. 2018, 53, 1928–1932. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.J.; Port, L.J.; Gately, C.; Stringer, M.D. Outcomes of infants born at 23 and 24 weeks’ gestation with gut perforation. J. Pediatr. Surg. 2019, 54, 2092–2098. [Google Scholar] [CrossRef]
- Shin, S.H.; Kim, E.-K.; Yoo, H.; Choi, Y.H.; Kim, S.; Lee, B.K.; Jung, Y.H.; Kim, H.-Y.; Kim, H.-S.; Choi, J.-H. Surgical Necrotizing Enterocolitis versus Spontaneous Intestinal Perforation in White Matter Injury on Brain Magnetic Resonance Imaging. Neonatology 2016, 110, 148–154. [Google Scholar] [CrossRef]
- Cacho, N.T.; Parker, L.A.; Neu, J. Necrotizing enterocolitis and human milk feeding: A systematic review. Clin. Perinatol. 2017, 44, 49–67. [Google Scholar] [CrossRef]
- Wang, K.; Tao, G.; Sylvester, K.G. Recent advances in prevention and therapies for clinical or experimental necrotizing enterocolitis. Dig. Dis. Sci. 2019, 1–8. [Google Scholar] [CrossRef]
- Kelleher, J.; Salas, A.A.; Bhat, R.; Ambalavanan, N.; Saha, S.; Stoll, B.J.; Bell, E.F.; Walsh, M.C.; Laptook, A.R.; Sánchez, P.J.; et al. GDB Subcommittee, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network Prophylactic indomethacin and intestinal perforation in extremely low birth weight infants. Pediatrics 2014, 134, e1369–e1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawase, Y.; Ishii, T.; Arai, H.; Uga, N. Gastrointestinal perforation in very low-birthweight infants. Pediatr. Int. 2006, 48, 599–603. [Google Scholar] [CrossRef]
- Maas, C.; Franz, A.R.; von Krogh, S.; Arand, J.; Poets, C.F. Growth and morbidity of extremely preterm infants after early full enteral nutrition. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 103, F79–F81. [Google Scholar] [CrossRef]
- Stavel, M.; Wong, J.; Cieslak, Z.; Sherlock, R.; Claveau, M.; Shah, P.S. Effect of prophylactic indomethacin administration and early feeding on spontaneous intestinal perforation in extremely low-birth-weight infants. J. Perinatol. 2017, 37, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Varma, S.; Bartlett, E.L.; Nam, L.; Shores, D.R. Use of breast milk and other feeding practices following gastrointestinal surgery in infants. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Vongbhavit, K.; Underwood, M.A. Predictive Value of the Aspartate Aminotransferase to Platelet Ratio Index for Parenteral Nutrition-Associated Cholestasis in Premature Infants With Intestinal Perforation. JPEN J. Parenter Enteral Nutr. 2018, 42, 797–804. [Google Scholar] [CrossRef]
- Cass, D.L.; Brandt, M.L.; Patel, D.L.; Nuchtern, J.G.; Minifee, P.K.; Wesson, D.E. Peritoneal drainage as definitive treatment for neonates with isolated intestinal perforation. J. Pediatr. Surg. 2000, 35, 1531–1536. [Google Scholar] [CrossRef]
- Chiu, B.; Pillai, S.B.; Almond, P.S.; Beth Madonna, M.; Reynolds, M.; Luck, S.R.; Arensman, R.M. To drain or not to drain: A single institution experience with neonatal intestinal perforation. J. Perinat Med. 2006, 34, 338–341. [Google Scholar] [CrossRef]
- Eicher, C.; Seitz, G.; Bevot, A.; Moll, M.; Goelz, R.; Arand, J.; Poets, C.; Fuchs, J. Surgical management of extremely low birth weight infants with neonatal bowel perforation: A single-center experience and a review of the literature. Neonatology 2012, 101, 285–292. [Google Scholar] [CrossRef]
- Gollin, G.; Abarbanell, A.; Baerg, J.E. Peritoneal drainage as definitive management of intestinal perforation in extremely low-birth-weight infants. J. Pediatr. Surg. 2003, 38, 1814–1817. [Google Scholar] [CrossRef]
- Jakaitis, B.M.; Bhatia, A.M. Definitive peritoneal drainage in the extremely low birth weight infant with spontaneous intestinal perforation: Predictors and hospital outcomes. J. Perinatol. 2015, 35, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.A.; Migliori, A.; Kurihara, I.; Sharma, S.; Lim, Y.-P.; Padbury, J. Blood Level of Inter-Alpha Inhibitor Proteins Distinguishes Necrotizing Enterocolitis From Spontaneous Intestinal Perforation. J. Pediatr. 2017, 180, 135.e1–140.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadhawan, R.; Oh, W.; Vohr, B.R.; Saha, S.; Das, A.; Bell, E.F.; Laptook, A.; Shankaran, S.; Stoll, B.J.; Walsh, M.C.; et al. Spontaneous intestinal perforation in extremely low birth weight infants: Association with indometacin therapy and effects on neurodevelopmental outcomes at 18-22 months corrected age. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F127–F132. [Google Scholar] [CrossRef] [PubMed]
- Bassler, D.; Plavka, R.; Shinwell, E.S.; Hallman, M.; Jarreau, P.-H.; Carnielli, V.; Van den Anker, J.N.; Meisner, C.; Engel, C.; Schwab, M.; et al. NEUROSIS Trial Group Early inhaled budesonide for the prevention of bronchopulmonary dysplasia. N. Engl. J. Med. 2015, 373, 1497–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gébus, M.; Michel, J.L.; Samperiz, S.; Harper, L.; Alessandri, J.L.; Ramful, D. Management of neonatal spontaneous intestinal perforation by peritoneal needle aspiration. J. Perinatol. 2018, 38, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Karila, K.; Anttila, A.; Iber, T.; Pakarinen, M.; Koivusalo, A. Intestinal failure associated cholestasis in surgical necrotizing enterocolitis and spontaneous intestinal perforation. J. Pediatr. Surg. 2019, 54, 460–464. [Google Scholar] [CrossRef] [Green Version]
- Beath, S.V.; Kelly, D.A. Total Parenteral Nutrition-Induced Cholestasis: Prevention and Management. Clin. Liver Dis. 2016, 20, 159–176. [Google Scholar] [CrossRef]
- Wadhawan, R.; Oh, W.; Hintz, S.R.; Blakely, M.L.; Das, A.; Bell, E.F.; Saha, S.; Laptook, A.R.; Shankaran, S.; Stoll, B.J.; et al. NICHD Neonatal Research Network Neurodevelopmental outcomes of extremely low birth weight infants with spontaneous intestinal perforation or surgical necrotizing enterocolitis. J. Perinatol. 2014, 34, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Manea, A.; Boia, M.; Iacob, D.; Dima, M.; Iacob, R.E. Benefits of early enteral nutrition in extremely low birth weight infants. Singapore Med. J. 2016, 57, 616–618. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, S.; McNelis, K.; Super, D.; Einstadter, D.; Groh-Wargo, S.; Collin, M. Standardized slow enteral feeding protocol and the incidence of necrotizing enterocolitis in extremely low birth weight infants. JPEN J. Parenter Enteral Nutr. 2015, 39, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Greer, D.; Karunaratne, Y.G.; Karpelowsky, J.; Adams, S. Early Enteral Feeding after Pediatric Abdominal Surgery: A Systematic Review of the Literature. J. Pediatr. Surg. 2019. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, S.K.; Odle, J. Nutritional factors influencing intestinal health of the neonate. Adv. Nutr. 2012, 3, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Puiman, P.J.; Jensen, M.; Stoll, B.; Renes, I.B.; de Bruijn, A.C.J.M.; Dorst, K.; Schierbeek, H.; Schmidt, M.; Boehm, G.; Burrin, D.G.; et al. Intestinal threonine utilization for protein and mucin synthesis is decreased in formula-fed preterm pigs. J. Nutr. 2011, 141, 1306–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Pan, X.; Nguyen, D.N.; Ren, S.; Moodley, A.; Sangild, P.T. Bovine colostrum before or after formula feeding improves systemic immune protection and gut function in newborn preterm pigs. Front. Immunol. 2019, 10, 3062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, T.; Tadokoro, R.; Kaneko, N.; Suzuki, M.; Tanaka, K.; Shinohara, K.; Shiga, S.; Yamashiro, Y. Effects of extremely early enteral feeding on plasma glicentin levels in very-low-birthweight infants. J. Paediatr. Child. Health 2006, 42, 636–639. [Google Scholar] [CrossRef]
- Walker, A. Breast milk as the gold standard for protective nutrients. J. Pediatr. 2010, 156, S3–S7. [Google Scholar] [CrossRef]
- Perri, M.; Lucente, M.; Cannataro, R.; De Luca, I.F.; Gallelli, L.; Moro, G.; De Sarro, G.; Caroleo, M.C.; Cione, E. Variation in Immune-Related microRNAs Profile in Human Milk Amongst Lactating Women. Microrna 2018, 7, 107–114. [Google Scholar] [CrossRef]
- Snyder, R.; Herdt, A.; Mejias-Cepeda, N.; Ladino, J.; Crowley, K.; Levy, P. Early provision of oropharyngeal colostrum leads to sustained breast milk feedings in preterm infants. Pediatr. Neonatol. 2017, 58, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Ekingen, G.; Ceran, C.; Guvenc, B.H.; Tuzlaci, A.; Kahraman, H. Early enteral feeding in newborn surgical patients. Nutrition 2005, 21, 142–146. [Google Scholar] [CrossRef]
- Jiang, W.; Lv, X.; Xu, X.; Geng, Q.; Zhang, J.; Tang, W. Early enteral nutrition for upper digestive tract malformation in neonate. Asia Pac. J. Clin. Nutr. 2015, 24, 38–43. [Google Scholar] [CrossRef]
- Walter-Nicolet, E.; Rousseau, V.; Kieffer, F.; Fusaro, F.; Bourdaud, N.; Oucherif, S.; Benachi, A.; Sarnacki, S.; Mitanchez, D. Neonatal outcome of gastroschisis is mainly influenced by nutritional management. J. Pediatr. Gastroenterol. Nutr. 2009, 48, 612–617. [Google Scholar] [CrossRef]
- Shores, D.R.; Alaish, S.M.; Aucott, S.W.; Bullard, J.E.; Haney, C.; Tymann, H.; Nonyane, B.A.S.; Schwarz, K.B. Postoperative Enteral Nutrition Guidelines Reduce the Risk of Intestinal Failure-Associated Liver Disease in Surgical Infants. J. Pediatr. 2018, 195, 140.e1–147.e1. [Google Scholar] [CrossRef]
- Tadano, S.; Terashima, H.; Fukuzawa, J.; Matsuo, R.; Ikeda, O.; Ohkohchi, N. Early postoperative oral intake accelerates upper gastrointestinal anastomotic healing in the rat model. J. Surg. Res. 2011, 169, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Kiyama, T.; Onda, M.; Tokunaga, A.; Yoshiyuki, T.; Barbul, A. Effect of early postoperative feeding on the healing of colonic anastomoses in the presence of intra-abdominal sepsis in rats. Dis. Colon Rectum 2000, 43, S54–S58. [Google Scholar] [CrossRef] [PubMed]
- Dako, J.; Buzzard, J.; Jain, M.; Pandey, R.; Groh-Wargo, S.; Shekhawat, P. Slow enteral feeding decreases risk of transfusion associated necrotizing enterocolitis. J. Neonatal. Perinatal. Med. 2018, 11, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Ramani, M.; Ambalavanan, N. Feeding practices and necrotizing enterocolitis. Clin. Perinatol 2013, 40, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Prenatal | Postnatal |
---|---|
Maternal preeclampsia | Medications |
Chorioaminoitis |
|
Syncytial knots |
|
Multiple gestation |
|
Cytomegalovirus | Fresh frozen plasma |
In utero growth restriction | Intraventricular Hemorrhage |
Authors | Institution(s), Country | Type of Study | Patients in Study (n) | Patients with SIP (n) | Mean GA (wks) | Feeding Regimen Prior to SIP | Comments |
---|---|---|---|---|---|---|---|
Buchheit [4] | University of Louisville, United States | R | 42 | 21 | 29 | Unknown | 38% enteral feedings in the SIP, 86% in the NEC group (p < 0.005). |
Kelleher [21] | Neonatal Research Network, United States | R | 15751 | 652 | Total Parenteral Nutrition ± Enteral Feeding | ||
Holland [11] | The Royal Alexandria Hospital for Children Australia | R | 23 | 23 | 27 | Enteral Formula Feeds | 6 (26%) of the 23 patients received enteral feeds prior to development of SIP |
Kawase [22] | Toho University Perinatal Center, Japan | R | 556 | 10 | 26.3 | Unknown | |
Maas [23] | Tübingen University Children’s Hospital, Germany | R | 77 | 9 | 26.7 | Enteral feeds were initiated at 20 mL/kg/day of preterm formula on day 1. | Rates of NEC were low, whereas that of SIP was rather high at 9.4%. |
Meyer [9] | Minneapolis Children’s Medical Center, United States | C | 250 | 7 | No enteral nutrition | ||
Shah, J [3] | The Canadian Neonatal Network, Canada | R | 17426 | 178 | Unknown | ||
Stavel [24] | The Canadian Neonatal Network, Canada | R | 4268 | 129 | SIP: 25 All: 34 | DOL 0–2 | |
Varma [25] | Johns Hopkins University School of Medicine, United States | R | 111 | 18 | SIP (n = 18) Age at First Feed: 4 d. Mother’s Milk: 14 (78%) Donor’s Milk: 2 (11%) Cow’s Milk: 1 (6%) Hydrolysate: 0 Amino Acid: 0 Unknown: 1 (6%) | ||
Total: | 38504 | 1047 |
Authors | Institution(s) Country | Type of Study | Patients in Study (n) | Patients with SIP (n) | GA (wks) | TPN Duration (after SIP) | Time to EN (Days) | Time to Full EN (Days) |
---|---|---|---|---|---|---|---|---|
Vongbhavit [26] | University of California at Davis, United States | R | 60 | 30 | PNAC: 25.5 Without PNAC: 25.9 | Omegavan after 4 wks. w/DB > 2 mg/dL | PNAC: 20 Without PNAC: 10 | PNAC: 46 Without PNAC: 25 |
Cass [27] | Texas Children’s Hospital, United States | R | 21 | 10 | SIP: 25.5 NEC: 27.5 | Unknown | SIP: 26.3 NEC: 73.5 | SIP: 41.6 NEC: 98 |
Chiu [28] | Children’s Memorial Hospital, United States | R | 46 | 15 | SIP: 26.7 NEC: 28.4 | SIP: 24 NEC: 46 | SIP: 16 NEC: 21 | Unknown |
Eicher [29] | Tübingen University Children’s Hospital in Tübingen, Germany | R | 280 | 19 | 25 | SIP: 21.0 | SIP: 6 | SIP: 15 |
Gollin [30] | Loma Linda University Children’s Hospital, United States | R | 29 | 29 | 25.0 ± 1.5 | 68.8 | Unknown | 68.8 |
Jakaitis [31] | Children’s Healthcare of Atlanta at Egleston, United States | R | 89 | 89 | PD:25.1 PD + Lap: 25.8 | PD: 62.7 PD + Lap: 94.3 | PD: 20.1 PD + Lap: 26.1 | PD: 60.4 PD + Lap: 25.9 |
Karila [16] | University of Helsinki Children’s Hospital and University of Tampere Children’s Hospital, Finland | R | 225 | 83 | 27 | Unknown | Unknown | Unknown |
Kelleher [21] | Neonatal Research Network, United States | R | 15751 | 652 | I+E+: 26 I+E−: 25 I−E+: 27 I−E−: 26 | I+E+: 19 I+E−: 28.5 I−E+: 17 I−E−: 29 | Unknown | I+E+: 19 I+E−: 27 I−E+: 16 I−E−: 26 |
Shah B [32] | Women & Infants Hospital of Rhode Island, United States | CC | 53 | 13 | SIP: 25.8 NEC: 27.1 Control: 29.5 | SIP: 76 NEC: 46 Control: 27 | SIP: 10 NEC: 6 Control: 3 | Unknown |
Varma [25] | Johns Hopkins University School of Medicine, United States | R | 111 | 18 | SIP: 25 All: 34 | SIP: 33.5 All: 51.5 | SIP: 12.5 All: 12.5 | Unknown |
Wadhawan [33] | Neonatal Research Network, United States | R | 11960 | 280 | SIP: 26.3 No SIP: 26.9 | SIP: 28.1 No SIP: 49.6 | SIP: 14.7 No SIP: 7.3 | Unknown |
Total: | 28625 | 1238 |
Authors | LOS (Days) | Enteral Feeds Prior to Perforation (Days) | Time to Begin Enteral Feeds (Days) | Time to Full Enteral Feeds (Days) | Length of TPN (Days) | Mortality | Risk of Bias | |
---|---|---|---|---|---|---|---|---|
Buchheit [4] | SIP | 82 | 8 | X | X | X | 5/21 (24%) | Low |
NEC | 107 | 18 | X | X | X | 12/21 (57%) | ||
Cass [27] | SIP | X | 3/10 (30%) * | 26.3 * | 41.6 * | X | 1/10 (10%) * | Low |
NEC | X | 10/11 (91%) | 73.5 | 98 | X | 8/11 (73%) | ||
Chiu [28] | SIP | X | 5/13 (38%) * | 16 * | X | 24 * | 15% * | Low |
NEC | X | 17/20 (85%) | 21 | X | 46 | 45% | ||
Eicher [29] | SIP | 128 | X | 6 | 15 | 21.0 * | 3/19 (16%) | Low |
NEC | 121 | X | 8 | 18 | 34.5 * | 2/9 (22%) | ||
Gollin [30] | SIP & NEC | 111 | 10/29 (34%) | X | 68.8 | 68.8 | 38% | Low |
Holland [11] | SIP | X | 7/23 (30%) | X | X | X | 26% | Moderate (convenience sample) |
Jakaitis [31] | PD | 120.3 | 36/67 (53.7%) | 20.1 * | 60.4* | 62.7 * | 18% | Moderate (criteria for groups unclear) |
PD + LAP | 144.5 | 10/22 (45.5%) | 26.1 * | 95.5 * | 94.3 * | 5% | ||
Karila [16] | SIP | X | X | X | X | 25 | 23% | Low |
NEC | X | X | X | X | 27 | 27% | ||
Kawase [22] | Perf. | X | X | X | X | X | 82/541 (15.2%) | Moderate (definition for groups unclear) |
Kelleher [21] | I+E+ | X | DOL 0–3 | X | 19 ^ | 19 ^ | 146/1185 (12%) | Low |
I+E− | X | X | X | 27 | 28.5. | 742/4674 (16%) | ||
I−E+ | X | DOL 0–3 | X | 16 ^ | 17 ^ | 287/3119 (9%) | ||
I−E− | X | X | X | 26 | 29 | 1037/6714 (16%) | ||
Maas [23] | ELGANs | 90 | 96/96 (100%) | X | 7 | 7 | 24% | Low |
Meyer [9] | SIP | X | X | X | X | X | 3/7 (43%) | Low |
Pumberger [5] | SIP | X | 13/13 (100%) | X | X | X | X | Low |
NEC | X | 16/16 (100%) | X | X | X | X | ||
B. Shah [32] | SIP | 110 | 100% | 10 * | X | 76 * | 1/13 (8%) | Low |
NEC | 98 | 100% | 6 * | X | 46 * | 1/14 (7%) | ||
Control | 94 | 100% | 3 | X | 27 | 2/26 (8%) | ||
J. Shah [3] | SIP | X | X | X | X | X | 44/178 (24.7%) | Low |
NEC perf. | X | X | X | X | X | 124/246 (50.4%) | ||
NEC no perf. | X | X | X | X | X | 101/538 (18.8%) | ||
No NEC/perf. | X | X | X | X | X | 902/16464 (5.5%) | ||
Vongbhavit [26] | PNAC | 123 * | X | 20 * | 46 * | 82 * | 4/17 (24%) | Low |
w/o PNAC | 77 * | X | 10 * | 25 * | 32 * | 14/43 (33%) | ||
Stavel [24] | I+E+ | 80^ | DOL 0–2 | X | 23 ^ | 18 ^ | 35/285 (12.3%) | Low |
I+E− | 99^ | X | X | 35 ^ | 28 ^ | 39/213 (18.3%) | ||
I−E− | 86^ | X | X | 29 ^ | 26 ^ | 223/1941 (11.5%) | ||
I−E+ | 74 | DOL 0–2 | X | 21 | 18 | 201/1829 (11.0%) | ||
Varma [25] | SIP | 119.5 * | 100% | 12.5 * | 17/18 (94%) | 51.5 * | X | Low |
All | 63 | 100% | 10 | 103/111 (93%) | 33.5 * | X | ||
Wadhawan [33] | SIP | X | X | 14.7 * | X | 48.1 * | 198/249 (79.5%)* 5568/9987 (55.8%)* | Low |
No SIP | X | X | 7.4 * | X | 29.6 * | (NDI & Death) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaloye, O.; Swatski, M.; Konnikova, L. Role of Nutrition in Prevention of Neonatal Spontaneous Intestinal Perforation and Its Complications: A Systematic Review. Nutrients 2020, 12, 1347. https://doi.org/10.3390/nu12051347
Olaloye O, Swatski M, Konnikova L. Role of Nutrition in Prevention of Neonatal Spontaneous Intestinal Perforation and Its Complications: A Systematic Review. Nutrients. 2020; 12(5):1347. https://doi.org/10.3390/nu12051347
Chicago/Turabian StyleOlaloye, Oluwabunmi, Matthew Swatski, and Liza Konnikova. 2020. "Role of Nutrition in Prevention of Neonatal Spontaneous Intestinal Perforation and Its Complications: A Systematic Review" Nutrients 12, no. 5: 1347. https://doi.org/10.3390/nu12051347
APA StyleOlaloye, O., Swatski, M., & Konnikova, L. (2020). Role of Nutrition in Prevention of Neonatal Spontaneous Intestinal Perforation and Its Complications: A Systematic Review. Nutrients, 12(5), 1347. https://doi.org/10.3390/nu12051347