Dietary Glycemic Index and Glycemic Load Are Not Associated with the Metabolic Syndrome in Lebanese Healthy Adults: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection
2.2.1. Sociodemographic, Anthropometric, and Biochemical Assessment
2.2.2. Dietary Intake Assessment and Calculation of GI and GL Values
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, J.S.C.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Zimmet, P.; Magliano, D.; Matsuzawa, Y.; Alberti, G.; Shaw, J. The metabolic syndrome: A global public health problem and a new definition. J. Atheroscler. Thromb. 2005, 12, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, P.; Noori, N.; Azizi, F. A prospective study of determinants of the metabolic syndrome in adults. Nutr. Metab. Cardiovasc. Dis. 2007, 18, 567–573. [Google Scholar] [CrossRef]
- Branth, S.; Ronquist, G.; Stridsberg, M.; Hambraeus, L.; Kindgren, E.; Olsson, R.; Carlander, D.; Arnetz, B.; Medicinska, F.; Klinisk, K.; et al. Development of abdominal fat and incipient metabolic syndrome in young healthy men exposed to long-term stress. Nutr. Metab. Cardiovasc. Dis. 2006, 17, 427–435. [Google Scholar] [CrossRef]
- Baudrand, R.; Campino, C.; Carvajal, C.A.; Olivieri, O.; Guidi, G.; Faccini, G.; Vöhringer, P.A.; Cerda, J.; Owen, G.; Kalergis, A.M.; et al. High sodium intake is associated with increased glucocorticoid production, insulin resistance and metabolic syndrome. Clin. Endocrinol. 2014, 80, 677–684. [Google Scholar] [CrossRef]
- Volk, B.M.; Kunces, L.J.; Freidenreich, D.J.; Kupchak, B.R.; Saenz, C.; Artistizabal, J.C.; Fernandez, M.L.; Bruno, R.S.; Maresh, C.M.; Kraemer, W.J.; et al. Effects of step-wise increases in dietary carbohydrate on circulating saturated fatty acids and palmitoleic acid in adults with metabolic syndrome. PLoS ONE 2014, 9, e113605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, K.; Kastorini, C.-M.; Panagiotakos, D.B.; Giugliano, D. Mediterranean diet and metabolic syndrome: An updated systematic review. Rev. Endocr. Metab. Disord. 2013, 14, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M. Atherogenic dyslipidemia associated with metabolic syndrome and insulin resistance. Clin. Cornerstone 2006, 8, S21–S27. [Google Scholar] [CrossRef]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef] [Green Version]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrolix, R.; Mensink, R.P. Effects of glycemic load on metabolic risk markers in subjects at increased risk of developing metabolic syndrome. Am. J. Clin. Nutr. 2010, 92, 366–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.; Manson, J.; Liu, S. Glycemic index, glycemic load, and risk of type 2 diabetes. Am. J. Clin. Nutr. 2002, 76, 274S–280S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.-Y.; Jiang, Y.-T.; Liu, Y.-S.; Chang, Q.; Zhao, Y.-H.; Wu, Q.-J. The association between glycemic index, glycemic load, and metabolic syndrome: A systematic review and dose–response meta-analysis of observational studies. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Saltzman, E.; Wilson, P.W.F.; Jacques, P.F. Carbohydrate Nutrition, Insulin Resistance, and the Prevalence of the Metabolic Syndrome in the Framingham Offspring Cohort. Diabetes Care 2004, 27, 538–546. [Google Scholar] [CrossRef] [Green Version]
- Juanola-Falgarona, M.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Estruch, R.; Ros, E.; Fitó, M.; Recondo, J.; Gómez-Gracia, E.; Fiol, M.; et al. Dietary Glycemic Index and Glycemic Load Are Positively Associated with Risk of Developing Metabolic Syndrome in Middle-Aged and Elderly Adults. J. Am. Geriatr. Soc. 2015, 63, 1991–2000. [Google Scholar] [CrossRef]
- Culberson, A.; Kafai, M.R.; Ganji, V. Glycemic load is associated with HDL cholesterol but not with the other components and prevalence of metabolic syndrome in the third National Health and Nutrition Examination Survey, 1988–1994. Int. Arch. Med. 2009, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Finley, C.E.M.S.; Barlow, C.E.M.S.; Halton, T.L.P.; Haskell, W.L.P. Glycemic Index, Glycemic Load, and Prevalence of the Metabolic Syndrome in the Cooper Center Longitudinal Study. J. Am. Diet. Assoc. 2010, 110, 1820–1829. [Google Scholar] [CrossRef]
- Sibai, A.-M.; Obeid, O.; Batal, M.; Adra, N.; Khoury, D.E.; Hwalla, N. Prevalence and correlates of metabolic syndrome in an adult Lebanese population. CVD Prev. Control. 2008, 3, 83–90. [Google Scholar] [CrossRef]
- Chedid, R.; Gannagé-Yared, M.-H.; Khalifé, S.; Halaby, G.; Zoghbi, F. Impact of different metabolic syndrome classifications on the metabolic syndrome prevalence in a young Middle Eastern population. Metabolism 2009, 58, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Naja, F.; Nasreddine, L.; Itani, L.; Adra, N.; Sibai, A.M.; Hwalla, N. Association between dietary patterns and the risk of metabolic syndrome among Lebanese adults. Eur. J. Nutr. 2013, 52, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasreddine, L.; Naja, F.; Chamieh, M.C.; Adra, N.; Sibai, A.-M.; Hwalla, N. Trends in overweight and obesity in Lebanon: Evidence from two national cross-sectional surveys (1997 and 2009). BMC Public Health 2012, 12, 798. [Google Scholar] [CrossRef] [Green Version]
- Nasreddine, L.; Ayoub, J.J.; Hachem, F.; Tabbara, J.; Sibai, A.M.; Hwalla, N.; Naja, F. Differences in Dietary Intakes among Lebanese Adults over a Decade: Results from Two National Surveys 1997–2008/2009. Nutrients 2019, 11, 1738. [Google Scholar] [CrossRef] [Green Version]
- Mouneimne, Y.; Nasrallah, M.; Khoueiry-Zgheib, N.; Nasreddine, L.; Nakhoul, N.; Ismail, H.; Abiad, M.; Koleilat, L.; Tamim, H. Bisphenol A urinary level, its correlates, and association with cardiometabolic risks in Lebanese urban adults. Environ. Monit. Assess. 2017, 189. [Google Scholar] [CrossRef]
- Nasreddine, L.; Tamim, H.; Itani, L.; Nasrallah, M.P.; Isma’eel, H.; Nakhoul, N.F.; Abou-Rizk, J.; Naja, F. A minimally processed dietary pattern is associated with lower odds of metabolic syndrome among Lebanese adults. Public Health Nutr. 2018, 21, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Naja, F.; Itani, L.; Nasrallah, M.P.; Chami, H.; Tamim, H.; Nasreddine, L. A healthy lifestyle pattern is associated with a metabolically healthy phenotype in overweight and obese adults: A cross-sectional study. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef]
- Central Administration of Statistics. Living Conditions Survey 2007. Available online: http://www.cas.gov.lb/index.php/housing-characteristics-en (accessed on 22 January 2020).
- IPAQ Research Committee. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)—Short and Long Forms; University of Trieste: Trieste, Italy, 2005. [Google Scholar]
- Lee, R.; Nieman, D. Nutritional Assessment, 6th ed.; McGraw-Hill: New York, NY, USA, 2013. [Google Scholar]
- Naja, F.; Nasreddine, L.; Itani, L.; Chamieh, M.C.; Adra, N.; Sibai, A.M.; Hwalla, N. Dietary patterns and their association with obesity and sociodemographic factors in a national sample of Lebanese adults. Public Health Nutr. 2011, 14, 1570–1578. [Google Scholar] [CrossRef] [Green Version]
- Posner, B.M.; Smigelski, C.; Duggal, A.; Morgan, J.L.; Cobb, J.; Cupples, L.A. Validation of two-dimensional models for estimation of portion size in nutrition research. J. Am. Diet. Assoc. 1992, 92, 738–741. [Google Scholar]
- Kamal, S.; Osman, S. Alef Baa Al Tabkh; Dar AlIlm Lil Malayeen: Beirut, Lebanon, 1995. [Google Scholar]
- Flegal, K.M.; Larkin, F.A.; Metzner, H.L.; Thompson, F.E.; Guire, K.E. Counting calories: Partitioning energy intake estimates from a food frequency questionnaire. Am. J. Epidemiol. 1988, 128, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Flegal, K.M.; Larkin, F.A. Partitioning macronutrient intake estimates from a food frequency questionnaire. Am. J. Epidemiol. 1990, 131, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Foster-Powell, K.; Holt, S.H.A.; Brand-Miller, J.C. International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolever, T.M.S.; Jenkins, D.J.A. The use of the glycemic index in predicting the blood glucose response to mixed meals. Am. J. Clin. Nutr. 1986, 43, 167–172. [Google Scholar] [CrossRef]
- Dodd, H.; Williams, S.; Brown, R.; Venn, B. Calculating meal glycemic index by using measured and published food values compared with directly measured meal glycemic index. Am. J. Clin. Nutr. 2011, 94, 992–996. [Google Scholar] [CrossRef]
- Neuhouser, M.L.; Tinker, L.F.; Thomson, C.; Caan, B.; Horn, L.V.; Snetselaar, L.; Parker, L.M.; Patterson, R.E.; Robinson-O’Brien, R.; Beresford, S.A.; et al. Development of a glycemic index database for food frequency questionnaires used in epidemiologic studies. J. Nutr. 2006, 136, 1604–1609. [Google Scholar] [CrossRef]
- Fontanelli, M.D.M.; Sales, C.H.; Carioca, A.A.F.; Marchioni, D.M.; Fisberg, R.M. The relationship between carbohydrate quality and the prevalence of metabolic syndrome: Challenges of glycemic index and glycemic load. Eur. J. Nutr. 2018, 57, 1197–1205. [Google Scholar] [CrossRef]
- Flood, A.; Subar, A.F.; Hull, S.G.; Zimmerman, T.P.; Jenkins, D.J.A.; Schatzkin, A. Methodology for Adding Glycemic Load Values to the National Cancer Institute Diet History Questionnaire Database. J. Am. Diet. Assoc. 2006, 106, 393–402. [Google Scholar] [CrossRef]
- Kim, K.; Yun, S.H.; Choi, B.Y.; Kim, M.K. Cross-sectional relationship between dietary carbohydrate, glycaemic index, glycaemic load and risk of the metabolic syndrome in a Korean population. Br. J. Nutr. 2008, 100, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Louie, J.C.; Flood, V.; Turner, N.; Everingham, C.; Gwynn, J. Methodology for adding glycemic index values to 24-hour recalls. Nutrition 2011, 27, 59–64. [Google Scholar] [CrossRef]
- Castro-Quezada, I.; Angulo-Estrada, S.; Sánchez-Villegas, A.; Ruiz-López, M.D.; Artacho, R.; Serra-Majem, L.; Shamah-Levy, T. Glycemic index, glycemic load, and metabolic syndrome in Mexican adolescents: A cross-sectional study from the NHNS-2012. BMC Nutr. 2017, 3, 44. [Google Scholar] [CrossRef]
- Schulz, M.; Liese, A.D.; Mayer-Davis, E.J.; D’Agostino, R.B.; Fang, F.; Sparks, K.C.; Wolever, T.M. Nutritional correlates of dietary glycaemic index: New aspects from a population perspective. Br. J. Nutr. 2005, 94, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aston, L.M.; Jackson, D.; Monsheimer, S.; Whybrow, S.; Handjieva-Darlenska, T.; Kreutzer, M.; Kohl, A.; Papadaki, A.; Martinez, J.A.; Kunova, V.; et al. Developing a methodology for assigning glycaemic index values to foods consumed across Europe. Obes. Rev. 2010, 11, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Van Bakel, M.M.E.; Slimani, N.; Feskens, E.J.M.; Du, H.; Beulens, J.W.J.; van der Schouw, Y.T.; Brighenti, F.; Halkjaer, J.; Cust, A.E.; Ferrari, P.; et al. Methodological Challenges in the Application of the Glycemic Index in Epidemiological Studies Using Data from the European Prospective Investigation into Cancer and Nutrition1–3. J. Nutr. 2009, 139, 568–575. [Google Scholar] [CrossRef] [PubMed]
- US Department of Agriculture/Nutrition Research Group. Continuing Survey of Food Intakes for Individuals, 1994–1996. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/mypyramid-equivalents-product-downloads/ (accessed on 15 January 2020).
- FAO/WHO. Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert Consultation. FAO Food Nutr. Pap. 1998, 66, 1–140. [Google Scholar]
- Olendzki, B.C.; Ma, Y.; Culver, A.L.; Ockene, I.S.; Griffith, J.A.; Hafner, A.R.; Hebert, J.R. Methodology for adding glycemic index and glycemic load values to 24-hour dietary recall database. Nutrition 2006, 22, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- Mohammadifard, N.; Mansourian, M.; Sajjadi, F.; Maghroun, M.; Pourmoghaddas, A.; Yazdekhasti, N.; Sarrafzadegan, N. Association of glycaemic index and glycaemic load with metabolic syndrome in an Iranian adult population: Isfahan Healthy Heart Program. Nutr. Diet. 2017, 74, 61–66. [Google Scholar] [CrossRef]
- Kaur, S.; Yim, H.S.; Jalil, R.A.; Yusof, B.-N.M.; Mohamed, H.J.J. Socioeconomic Status and Glycemic Index Among Punjabis in Kuala Lumpur, Malaysia: Possible Association with Metabolic Syndrome. J. Immigr. Minor. Health 2018, 20, 1380–1386. [Google Scholar] [CrossRef]
- Song, S.M.S.; Lee, J.E.S.; Song, W.O.P.; Paik, H.-Y.S.; Song, Y.P. Carbohydrate Intake and Refined-Grain Consumption Are Associated with Metabolic Syndrome in the Korean Adult Population. J. Acad. Nutr. Diet. 2014, 114, 54–62. [Google Scholar] [CrossRef]
- Westman, E.C.; Feinman, R.D.; Mavropoulos, J.C.; Vernon, M.C.; Volek, J.S.; Wortman, J.A.; Yancy, W.S.; Phinney, S.D. Low-carbohydrate nutrition and metabolism. Am. J. Clin. Nutr. 2007, 86, 276–284. [Google Scholar] [CrossRef]
- Sluik, D.; Atkinson, F.S.; Brand-Miller, J.C.; Fogelholm, M.; Raben, A.; Feskens, E.J. Contributors to dietary glycaemic index and glycaemic load in the Netherlands: The role of beer. Br. J. Nutr. 2016, 115, 1218–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusnadi, D.T.L.; Barclay, A.W.; Brand-Miller, J.C.; Louie, J.C.Y. Changes in dietary glycemic index and glycemic load in Australian adults from 1995 to 2012. Am. J. Clin. Nutr. 2017, 106, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Vega-López, S.; Venn, B.J.; Slavin, J.L. Relevance of the glycemic index and glycemic load for body weight, diabetes, and cardiovascular disease. Nutrients 2018, 10, 1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livesey, G.; Taylor, R.; Hulshof, T.; Howlett, J. Glycemic response and health—A systematic review and meta-analysis: Relations between dietary glycemic properties and health outcomes. Am. J. Clin. Nutr. 2008, 87, 258S–268S. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Sasaki, S.; Takahashi, Y.; Okubo, H.; Hosoi, Y.; Horiguchi, H.; Oguma, E.; Kayama, F. Dietary glycemic index and load in relation to metabolic risk factors in Japanese female farmers with traditional dietary habits. Am. J. Clin. Nutr. 2006, 83, 1161–1169. [Google Scholar] [CrossRef] [Green Version]
- Liese, A.D.; Gilliard, T.; Schulz, M.; D’Agostino, R.B., Jr.; Wolever, T.M. Carbohydrate nutrition, glycaemic load, and plasma lipids: The Insulin Resistance Atherosclerosis Study. Eur. Heart J. 2007, 28, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Van Dam, R.; Visscher, A.; Feskens, E.; Verhoef, P.; Kromhout, D. Dietary glycemic index in relation to metabolic risk factors and incidence of coronary heart disease: The Zutphen Elderly Study. Eur. J. Clin. Nutr. 2000, 54, 726–731. [Google Scholar] [CrossRef] [Green Version]
- Vrolix, R.; Van Meijl, L.; Mensink, R. The metabolic syndrome in relation with the glycemic index and the glycemic load. Physiol. Behav. 2008, 94, 293–299. [Google Scholar] [CrossRef]
- Steinemann, N.; Grize, L.; Ziesemer, K.; Kauf, P.; Probst-Hensch, N.; Brombach, C. Relative validation of a food frequency questionnaire to estimate food intake in an adult population. Food Nutr. Res. 2017, 61, 1305193. [Google Scholar] [CrossRef] [Green Version]
- Moghames, P.; Hammami, N.; Hwalla, N.; Yazbeck, N.; Shoaib, H.; Nasreddine, L.; Naja, F. Validity and reliability of a food frequency questionnaire to estimate dietary intake among Lebanese children. Nutr. J. 2016, 15, 4. [Google Scholar] [CrossRef] [Green Version]
- Kowalkowska, J.; Slowinska, M.A.; Slowinski, D.; Dlugosz, A.; Niedzwiedzka, E.; Wadolowska, L. Comparison of a full food-frequency questionnaire with the three-day unweighted food records in young Polish adult women: Implications for dietary assessment. Nutrients 2013, 5, 2747–2776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.-C.; Lin, K.-D.; Chen, H.-J.; Wu, Y.-J.; Chang, C.-I.; Shin, S.-J.; Hung, H.-C.; Lee, C.-H.; Huang, Y.-F.; Hsu, C.-C. Validity of a Short Food Frequency Questionnaire Assessing Macronutrient and Fiber Intakes in Patients of Han Chinese Descent with Type 2 Diabetes. Int. J. Environ. Res. Public Health 2018, 15, 1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venn, B.J.; Green, T.J. Glycemic index and glycemic load: Measurement issues and their effect on diet-disease relationships. Eur. J. Clin. Nutr. 2007, 61, S122–S131. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Møller, B.K.; Raben, A.; Pedersen, D.; Tetens, I.; Holst, J.J.; Astrup, A. The use of glycaemic index tables to predict glycaemic index of composite breakfast meals. Br. J. Nutr. 2004, 91, 979–989. [Google Scholar] [CrossRef] [Green Version]
- Chew, I.; Brand, J.C.; Thorburn, A.W.; Truswell, A.S. Application of glycemic index to mixed meals. Am. J. Clin. Nutr. 1988, 47, 53–56. [Google Scholar] [CrossRef]
- Farhat, A.; Moukarzel, S.; El-Said, R.; Daher, C. Glycemic Index of Commonly Consumed Lebanese Mixed Meals and Desserts. Asian J. Clin. Nutr. 2010, 2, 48–57. [Google Scholar] [CrossRef]
- Barclay, A.W.; Flood, V.M.; Brand-Miller, J.C.; Mitchell, P. Validity of carbohydrate, glycaemic index and glycaemic load data obtained using a semi-quantitative food-frequency questionnaire. Public Health Nutr. 2008, 11, 573–580. [Google Scholar] [CrossRef]
- Okamoto, K.; Ohsuka, K.; Shiraishi, T.; Hukazawa, E.; Wakasugi, S.; Furuta, K. Comparability of epidemiological information between self-and interviewer-administered questionnaires. J. Clin. Epidemiol. 2002, 55, 505–511. [Google Scholar] [CrossRef]
All Participants (n = 283) | Participants without MetS (n = 181) | Participants with MetS (n = 102) | |||||
---|---|---|---|---|---|---|---|
Variables | Mean or n | SD or % | Mean or n | SD or % | Mean or n | SD or % | P value |
Age (years) | 40.9 | 13.7 | 38.8 | 12.7 | 44.8 | 14.6 | p < 0.001 |
Gender | p = 0.001 | ||||||
Male | 92 | 32.5 | 46 | 25.4 | 46 | 45.1 | |
Female | 191 | 67.5 | 135 | 74.6 | 56 | 54.9 | |
Marital Status | p = 0.344 | ||||||
Single | 91 | 31.8 | 54 | 29.8 | 36 | 35.3 | |
Married | 195 | 68.2 | 127 | 70.2 | 66 | 64.7 | |
Income/month | p = 0.164 | ||||||
<600$ | 75 | 28.1 | 42 | 25.6 | 33 | 33 | |
600$–2000$ | 167 | 62.5 | 105 | 64 | 60 | 60 | |
>2000$ | 25 | 9.4 | 17 | 10.4 | 7 | 7 | |
Education | p = 0.006 | ||||||
Elementary to intermediate | 147 | 55.5 | 87 | 51.2 | 59 | 64.1 | |
Secondary or technical | 79 | 29.8 | 49 | 28.8 | 28 | 30.4 | |
University | 39 | 14.7 | 34 | 20 | 5 | 5.4 | |
Physical Activity | |||||||
Total minutes per day | 110.3 | 81.5 | 113.9 | 85.8 | 103 | 73.3 | p = 0.327 |
Sedentary (minutes/day) | 279.3 | 174.8 | 263.6 | 176.6 | 307.4 | 166.8 | p = 0.043 |
Smoking | p = 0.657 | ||||||
No | 63 | 22.3 | 42 | 23.2 | 21 | 20.6 | |
Yes | 220 | 77.7 | 139 | 76.8 | 81 | 79.4 | |
Alcohol Consumption | p = 0.187 | ||||||
No | 196 | 69.3 | 115 | 85.6 | 81 | 79.4 | |
Yes | 47 | 16.6 | 26 | 14.4 | 21 | 20.6 | |
Sleeping Difficulties | p = 0.259 | ||||||
No | 168 | 59.4 | 112 | 61.9 | 56 | 54.9 | |
Yes | 115 | 40.6 | 69 | 38.1 | 46 | 45.1 | |
Anthropometric Characteristics | |||||||
BMI (Kg/m2) | 28 | 5.61 | 26.4 | 5 | 31 | 5.4 | p < 0.001 |
Percent Body Fat (%) | 36 | 10.3 | 34.5 | 10.1 | 38.7 | 10.1 | p = 0.001 |
Waist circumference (cm) | 91.9 | 13.5 | 87.1 | 12 | 100.6 | 11.4 | p < 0.001 |
Biochemical and Blood Pressure Data | |||||||
Total Cholesterol (mg/dL) | 172.5 | 13.4 | 178.1 | 36.5 | 192.7 | 43.2 | p = 0.003 |
LDL-C (mg/dL) | 99.5 | 14.8 | 101.8 | 31.4 | 116.2 | 38.3 | p = 0.001 |
Triglycerides (mg/dL) | 115 | 60.8 | 96.1 | 50.9 | 164.4 | 80 | p < 0.001 |
HDL-C (MG/DL) | 50.5 | 10.6 | 57 | 16 | 42.9 | 10.9 | p < 0.001 |
Blood Pressure | |||||||
SBP (mmHg) | 101.2 | 12.4 | 111.7 | 13.2 | 125.5 | 18.4 | p < 0.001 |
DBP (mmHg) | 65 | 7 | 70.3 | 8.2 | 77.4 | 10.3 | p < 0.001 |
Measures of Glycemia | |||||||
Fasting blood glucose (mg/dL) | 98.2 | 13.3 | 94 | 7.2 | 105.7 | 17.7 | p < 0.001 |
HbA1c (%) | 5.5 | 0.5 | 5.3 | 0.4 | 5.7 | 0.6 | p < 0.001 |
Insulin (μU/mL) | 26.3 | 15.5 | 23.4 | 8.8 | 31.4 | 22.1 | p < 0.001 |
All Participants (n = 283) | Participants without MetS (n = 181) | Participants with MetS (n = 102) | Significance | |
---|---|---|---|---|
Mean ± SD | ||||
Energy (Kcal/day) | 3131.2 ± 1302.6 | 3080.2 ± 1281.6 | 3232.1 ± 1337.9 | 0.347 |
Protein (g/day) | 102.7 ± 3.6 | 103.3 ± 65.8 | 101.9 ± 50.4 | 0.854 |
Protein (% of energy) | 13 ± 3.6 | 13.2 ±3.9 | 12.7 ± 3.2 | 0.224 |
Fat (g/day) | 131.8 ± 64.8 | 130.1 ± 63.8 | 134.8± 67.3 | 0.560 |
Fat (% of energy) | 39.1 ± 7.9 | 39.4 ± 7.7 | 38.6 ± 8.1 | 0.385 |
Carbohydrates (g/day) | 387.55 ± 158.4 | 377.4 ± 150.4 | 407.4 ± 170.2 | 0.126 |
Carbohydrate (% of energy) | 50.3 ± 8.3 | 50 ± 8.2 | 51 ± 8.4 | 0.360 |
Total Sugar (g/day) | 105 ± 58.5 | 101.5 ± 56.3 | 111.2 ± 61.8 | 0.181 |
Total Sugar (% of energy) | 13.8 ± 6 | 13.9 ± 6.4 | 13.6 ± 5.3 | 0.689 |
Dietary Fibers (g/day) | 28.1 ± 11.8 | 28.7 ± 13.5 | 27.8 ± 10.7 | 0.563 |
Glycemic Index 1 a | 59.9 ± 8 | 59.2 ± 7.8 | 61.2 ± 8.2 | 0.053 |
Glycemic Index 2 b | 61.2 ± 7.8 | 60.6 ± 7.6 | 62.3 ± 7.9 | 0.076 |
G1ycemic Load 1 a | 209.7 ± 100.3 | 201.5 ± 95.8 | 225.8 ± 106.2 | 0.050 |
Glycemic Load 2 b | 213.9 ± 101.2 | 205.9 ± 97 | 229.6 ± 106.8 | 0.058 |
Quartile 1 (n = 71) | Quartile 2 (n = 72) | Quartile 3 (n = 72) | Quartile 4 (n = 71) | |
---|---|---|---|---|
OR (95% CI) | ||||
Daily Glycemic Index 1 | ||||
Crude model | 1 | 1.225 (0.600–2.503) | 1.251 (0.612–2.559) | 2.251 (1.120–4.525) |
Model 1 a | 1 | 1.093 (0.517–2.311) | 1.138 (0.539–2.402) | 1.483 (0.702–3.134) |
Model 2 b | 1 | 1.258 (0.547–2.891) | 1.090 (0.473–2.512) | 1.269 (0.546–2.945) |
Model 3 c | 1 | 1.195 (0.518–2.756) | 0.973 (0.414–2.289) | 1.215 (0.518–2.847) |
Daily Glycemic Load 1 | ||||
Crude model | 1 | 1.432 (0.711–2.885) | 1.027 (0.502–2.101) | 1.965 (0.981–3.936) |
Model 1 a | 1 | 1.330 (0.638–2.774) | 0.672 (0.304–1.485) | 1.572 (0.710–3.480) |
Model 2 b | 1 | 0.941 (0.407–2.173) | 0.579 (0.236–1.421) | 1.595 (0.657–3.875) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgi, C.; Taktouk, M.; Nasrallah, M.; Isma’eel, H.; Tamim, H.; Nasreddine, L. Dietary Glycemic Index and Glycemic Load Are Not Associated with the Metabolic Syndrome in Lebanese Healthy Adults: A Cross-Sectional Study. Nutrients 2020, 12, 1394. https://doi.org/10.3390/nu12051394
Borgi C, Taktouk M, Nasrallah M, Isma’eel H, Tamim H, Nasreddine L. Dietary Glycemic Index and Glycemic Load Are Not Associated with the Metabolic Syndrome in Lebanese Healthy Adults: A Cross-Sectional Study. Nutrients. 2020; 12(5):1394. https://doi.org/10.3390/nu12051394
Chicago/Turabian StyleBorgi, Cecile, Mandy Taktouk, Mona Nasrallah, Hussain Isma’eel, Hani Tamim, and Lara Nasreddine. 2020. "Dietary Glycemic Index and Glycemic Load Are Not Associated with the Metabolic Syndrome in Lebanese Healthy Adults: A Cross-Sectional Study" Nutrients 12, no. 5: 1394. https://doi.org/10.3390/nu12051394
APA StyleBorgi, C., Taktouk, M., Nasrallah, M., Isma’eel, H., Tamim, H., & Nasreddine, L. (2020). Dietary Glycemic Index and Glycemic Load Are Not Associated with the Metabolic Syndrome in Lebanese Healthy Adults: A Cross-Sectional Study. Nutrients, 12(5), 1394. https://doi.org/10.3390/nu12051394