Effect of a Short Message Service Intervention on Excessive Gestational Weight Gain in a Low-Income Population: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting and Participants
2.3. Development/Delivery of Intervention
- “Make half your plate fruits and vegetables. Choose a variety, like spinach, carrots, tomatoes, beans, and peas”.
- “Eating healthy foods is more important now than ever! You need more protein and iron from meat and beans, and calcium and folic acid from vegetables”.
- “‘Eating for two’ doesn’t mean eating twice as much. You only need about 300 calories more during the last 6 months of pregnancy”.
- “Omega-3 fats in seafood are important for you and your unborn child. Salmon, sardines, and trout are high in omega-3 fats”.
- “To walk more: park far from where you are going, take the stairs instead of the elevator, take your pet for a walk, or talk on the phone while walking”.
- “Include 2 ½ h each week of physical activity such as walking fast, dancing, gardening, or swimming”.
- “Tips to move more: dance while you cook, get up in a waiting room and walk up and down the aisles”.
2.4. Measures/Outcomes
2.5. Statistical Plan
3. Results
4. Discussion
4.1. Strengths
4.2. Limitations
4.3. Implications for Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gore, S.A.; Brown, D.M.; West, D.S. The role of postpartum weight retention in obesity among women: A review of the evidence. Ann. Behav. Med. 2003, 26, 149–159. [Google Scholar] [CrossRef]
- Voerman, E.; Santos, S.; Patro Golab, B.; Amiano, P.; Ballester, F.; Barros, H.; Bergström, A.; Charles, M.-A.; Chatzi, L.; Chevrier, C.; et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: An individual participant data meta-analysis. PLoS Med. 2019, 16, e1002744. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.Y.; Callaghan, W.M.; Bish, C.L.; D’Angelo, D. Gestational weight gain by body mass index among US women delivering live births, 2004–2005: Fueling future obesity. Am. J. Obstet. Gynecol. 2009, 200, 271.e1–271.e7. [Google Scholar] [CrossRef] [PubMed]
- Procter, S.B.; Campbell, C.G. Position of the Academy of Nutrition and Dietetics: Nutrition and Lifestyle for a Healthy Pregnancy Outcome. J. Acad. Nutr. Diet. 2014, 114, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- ACOG Committee Opinion No. 650: Physical activity and exercise during pregnancy and the postpartum period. Obstet. Gynecol. 2015, 126, e135–e142.
- Skouteris, H.; Hartley-Clark, L.; McCabe, M.; Milgrom, J.; Kent, B.; Herring, S.J.; Gale, J. Preventing excessive gestational weight gain: A systematic review of interventions. Obes. Rev. 2010, 11, 757–768. [Google Scholar] [CrossRef]
- Anderson, C.K.; Walch, T.J.; Lindberg, S.M.; Smith, A.M.; Lindheim, S.R.; Whigham, L.D. Excess gestational weight gain in low-income overweight and obese women: A qualitative study. J. Nutr. Educ. Behav. 2015, 47, 404–411.e1. [Google Scholar] [CrossRef] [Green Version]
- Ogden, C.L.; Flegal, K.M. Obesity and socioeconomic status in adults: United States, 2005–2008. NCHS Data Brief. 2010, 50, 1–8. [Google Scholar]
- Nunnery, D.; Ammerman, A.; Dharod, J. Predictors and outcomes of excess gestational weight gain among low-income pregnant women. Health Care Women Int. 2018, 39, 19–33. [Google Scholar] [CrossRef]
- Krukowski, R.A.; Tilford, J.M.; Harvey-Berino, J.; West, D.S. Comparing behavioral weight loss modalities: Incremental cost-effectiveness of an internet-based versus an in-person condition. Obesity 2011, 19, 1629–1635. [Google Scholar] [CrossRef]
- Holton, S.; East, C.; Fisher, J. Weight management during pregnancy: A qualitative study of women’s and care providers’ experiences and perspectives. BMC Pregnancy Childbirth 2017, 17, 351. [Google Scholar] [CrossRef]
- Phelan, S.; Hagobian, T.; Brannen, A.; Hatley, K.E.; Schaffner, A.; Muñoz-Christian, K.; Tate, D.F. Effect of an Internet-based program on weight loss for low-income postpartum women: A randomized clinical trial. JAMA 2017, 317, 2381–2391. [Google Scholar] [CrossRef] [Green Version]
- Pew Research Center. U.S. Has Changed in Key Ways in the Past Decade from Tech Use to Demographics. Available online: https://www.pewresearch.org/fact-tank/2019/12/20/key-ways-us-changed-in-past-decade/ (accessed on 18 February 2020).
- Poorman, E.; Gazmararian, J.; Parker, R.; Yang, B.; Elon, L. Use of text messaging for maternal and infant health: A systematic review of the literature. Matern. Child. Health J. 2015, 19, 969–989. [Google Scholar] [CrossRef]
- Banna, J.C.; Vera Becerra, L.E.; Kaiser, L.L.; Townsend, M.S. Using qualitative methods to improve questionnaires for Spanish speakers: Assessing face validity of a food behavior checklist. J. Am. Diet. Assoc. 2010, 110, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall Series in Social Learning Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986; ISBN 0-13-815614-X. [Google Scholar]
- Bandura, A. Health Promotion by Social Cognitive Means. Health Educ. Behav. 2004, 31, 143–164. [Google Scholar] [CrossRef]
- Institue of Medicine. Weight Gain during Pregnancy: Reexamining the Guidelines; National Academies Press: Washington, DC, USA, 2009; ISBN 978-0-309-13113-1. [Google Scholar]
- CallFire Inc. Ez Texting Web-Based SMS Messaging Platform. Available online: https://www.eztexting.com/ (accessed on 21 February 2020).
- Siopis, G.; Chey, T.; Allman-Farinelli, M. A systematic review and meta-analysis of interventions for weight management using text messaging. J. Hum. Nutr. Diet. 2015, 28 (Suppl. 2), 1–15. [Google Scholar] [CrossRef] [PubMed]
- Sim, K.A.; Partridge, S.R.; Sainsbury, A. Does weight loss in overweight or obese women improve fertility treatment outcomes? A systematic review. Obes. Rev. 2014, 15, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Best, D.; Avenell, A.; Bhattacharya, S. How effective are weight-loss interventions for improving fertility in women and men who are overweight or obese? A systematic review and meta-analysis of the evidence. Hum. Reprod. Update 2017, 23, 681–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hezelgrave, N.L.; Oteng-Ntim, E. Pregnancy after bariatric surgery: A review. J. Obes. 2011, 2011, 501939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glazer, N.L.; Hendrickson, A.F.; Schellenbaum, G.D.; Mueller, B.A. Weight change and the risk of gestational diabetes in obese women. Epidemiology 2004, 15, 733–737. [Google Scholar] [CrossRef] [PubMed]
- van Oers, A.M.; Mutsaerts, M.A.Q.; Burggraaff, J.M.; Kuchenbecker, W.K.H.; Perquin, D.A.M.; Koks, C.A.M.; van Golde, R.; Kaaijk, E.M.; Broekmans, F.J.; de Bruin, J.P.; et al. Association between periconceptional weight loss and maternal and neonatal outcomes in obese infertile women. PLoS ONE 2018, 13, e0192670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matusiak, K.; Barrett, H.L.; Callaway, L.K.; Nitert, M.D. Periconception weight loss: Common sense for mothers, but what about for babies? J. Obes. 2014, 2014, 204295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grieger, J.A.; Grzeskowiak, L.E.; Clifton, V.L. Preconception dietary patterns in human pregnancies are associated with preterm delivery. J. Nutr. 2014, 144, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Holland, E.; Moore Simas, T.A.; Doyle Curiale, D.K.; Liao, X.; Waring, M.E. Self-reported pre-pregnancy weight versus weight measured at first prenatal visit: Effects on categorization of pre-pregnancy body mass index. Matern. Child Health J. 2013, 17, 1872–1878. [Google Scholar] [CrossRef]
- Russell, A.; Gillespie, S.; Satya, S.; Gaudet, L.M. Assessing the accuracy of pregnant women in recalling pre-pregnancy weight and gestational weight gain. J. Obstet. Gynaecol. Can. 2013, 35, 802–809. [Google Scholar] [CrossRef]
- Pew Research Center. How Americans Use Text Messaging. Available online: https://www.pewresearch.org/internet/2011/09/19/how-americans-use-text-messaging/ (accessed on 27 April 2020).
- Coulston, A.M.; Rock, C.L.; Monsen, E.R.; Boushey, C.J.; Monsen, E. Nutrition in the Prevention and Treatment of Disease; Elsevier Science & Technology: San Diego, CA, USA, 2001; ISBN 978-0-08-049754-9. [Google Scholar]
- de Jersey, S.J.; Callaway, L.K.; Daniels, L.A.; Nicholson, J.M. Weight-related risk perception among healthy and overweight pregnant women: A cross-sectional study. J. Perinatol. 2015, 35, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Prochaska, J.O.; Velicer, W.F. The transtheoretical model of health behavior change. Am. J. Health Promot. 1997, 12, 38–48. [Google Scholar] [CrossRef]
- Shaw, R.J.; Bosworth, H.B.; Silva, S.; Lipkus, I.; Davis, L.L.; Sha, R.; Johnson, C.M. Mobile health messages help sustain recent weight loss. Am. J. Med. 2013, 126, 1002–1009. [Google Scholar] [CrossRef] [Green Version]
- Pollak, K.I.; Alexander, S.C.; Bennett, G.; Lyna, P.; Coffman, C.J.; Bilheimer, A.; Farrell, D.; Bodner, M.E.; Swamy, G.K.; Østbye, T. Weight-related SMS texts promoting appropriate pregnancy weight gain: A pilot study. Patient Educ. Couns. 2014, 97, 256–260. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, R.P.; Kreuter, M.; Resnicow, K.; Fishbein, M.; Dijkstra, A. Understanding tailoring in communicating about health. Health Educ. Res. 2008, 23, 454–466. [Google Scholar] [CrossRef] [Green Version]
- Campbell, M.K.; DeVellis, B.M.; Strecher, V.J.; Ammerman, A.S.; DeVellis, R.F.; Sandler, R.S. Improving dietary behavior: The effectiveness of tailored messages in primary care settings. Am. J. Public Health 1994, 84, 783–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, K.; Dockray, S.; Linehan, C. A systematic review of tailored eHealth interventions for weight loss. Digit. Health 2019, 5. [Google Scholar] [CrossRef] [PubMed]
- Herring, S.J.; Cruice, J.F.; Bennett, G.G.; Davey, A.; Foster, G.D. Using Technology to Promote Postpartum Weight Loss in Urban, Low-Income Mothers: A Pilot Randomized Controlled Trial. J. Nutr. Educ. Behav. 2014, 46, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Normal BMI (18.5–24.9 kg/m2) | Overweight BMI (25.0–29.9 kg/m2) | Obese BMI (Greater Than 30.0 kg/m2) | |
---|---|---|---|
Suggested range (kg) | 11.5–16.0 | 7.0–11.5 | 5.0–9.0 |
Excessive (kg) | >16.0 | >11.5 | >9.0 |
Control (n = 41) | Intervention (n = 42) | ||||
---|---|---|---|---|---|
Characteristics | Mean (n) | SD (%) | Mean (n) | SD (%) | p-Value |
Age | 27.2 | 5.51 | 26.9 | 5.40 | 0.748 |
Number of children | 1.27 | 1.47 | 1.50 | 1.33 | 0.453 |
Pre-pregnancy weight (kg) | 76.2 | 15.9 | 80.6 | 17.7 | 0.238 |
Pre-pregnancy BMI | 29.8 | 5.42 | 30.4 | 6.04 | 0.618 |
Race/Ethnicity 1 | |||||
Asian | 11 | 26.8 | 7 | 16.7 | 1.00 |
American Indian | 4 | 9.76 | 3 | 7.14 | 0.392 |
Black | 6 | 14.6 | 8 | 19.1 | 0.808 |
Hispanic | 8 | 20.0 | 17 | 40.5 | 0.076 |
Native Hawaiian | 11 | 26.8 | 11 | 26.2 | 1.00 |
Pacific Islander | 9 | 22.0 | 10 | 23.8 | 1.00 |
White | 19 | 46.3 | 19 | 45.2 | 1.00 |
Education | |||||
Less than college | 17 | 41.5 | 19 | 45.2 | 0.121 |
Some college | 17 | 41.5 | 19 | 45.2 | |
College or higher | 7 | 17.1 | 4 | 9.52 |
Participants Exceeding Guidelines n (%) | Participants Not Exceeding Guidelines n (%) | p-Value | ||
---|---|---|---|---|
Group | Intervention | 23 (60.5%) | 15 (39.5%) | 0.509 |
Control | 17 (50.0%) | 17 (50.0%) | ||
BMI | Normal | 7 (77.8%) | 2 (22.2%) | 0.357 |
Overweight Obese | 14 (51.8%) 19 (52.8%) | 13 (48.2%) 17 (47.2%) |
Beta (95% CI) | p–Value | |
---|---|---|
Intercept | 32.5 (18.6, 46.5) | <0.0001 |
Age 25–34 vs. age 18–24 | −1.31 (−7.16, 4.55) | 0.662 |
Age 35+ vs. age 18–24 | 11.5 (1.7, 21.2) | 0.021 |
Age 35+ vs. age 25–34 | 12.8 (3.9, 21.6) | 0.005 |
Weight before pregnancy | −0.20 (−0.37, −0.04) | 0.016 |
Height | 0.71 (−0.22, 1.65) | 0.136 |
1–2 children vs. none | −0.31 (−6.64, 6.02) | 0.924 |
3–5 children vs. none | −7.02 (−15.03, 0.98) | 0.086 |
3–5 children vs. 1–2 children | −6.6 (−13.5, 0.05) | 0.051 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holmes, H.; Palacios, C.; Wu, Y.; Banna, J. Effect of a Short Message Service Intervention on Excessive Gestational Weight Gain in a Low-Income Population: A Randomized Controlled Trial. Nutrients 2020, 12, 1428. https://doi.org/10.3390/nu12051428
Holmes H, Palacios C, Wu Y, Banna J. Effect of a Short Message Service Intervention on Excessive Gestational Weight Gain in a Low-Income Population: A Randomized Controlled Trial. Nutrients. 2020; 12(5):1428. https://doi.org/10.3390/nu12051428
Chicago/Turabian StyleHolmes, Hannah, Cristina Palacios, YanYan Wu, and Jinan Banna. 2020. "Effect of a Short Message Service Intervention on Excessive Gestational Weight Gain in a Low-Income Population: A Randomized Controlled Trial" Nutrients 12, no. 5: 1428. https://doi.org/10.3390/nu12051428
APA StyleHolmes, H., Palacios, C., Wu, Y., & Banna, J. (2020). Effect of a Short Message Service Intervention on Excessive Gestational Weight Gain in a Low-Income Population: A Randomized Controlled Trial. Nutrients, 12(5), 1428. https://doi.org/10.3390/nu12051428