Independent and Interactive Influences of Environmental UVR, Vitamin D Levels, and Folate Variant MTHFD1-rs2236225 on Homocysteine Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Blood Biochemistry; Hcy and Vitamin Levels
2.3. Dietary Intake, Smoking Status, and Body Mass Index
2.4. Genotyping of Vitamin D and Folate Genetic Variants
2.5. Estimation of Environmental UVR Levels: Accumulated Area Erythemal Dose Rate
2.6. Statistical Analyses
3. Results
3.1. Subject Characteristics
3.2. Independent and Interactive Influences of EDR and Levels of 25(OH)D and RBC Folate on Hcy Levels
3.3. Independent and Interactive Influences of Vitamin D and/or Folate Genetic Variants on Hcy Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Škovierová, H.; Vidomanová, E.; Mahmood, S.; Sopková, J.; Drgová, A.; Červeňová, T.; Halašová, E.; Lehotský, J. The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health. Int. J. Mol. Sci. 2016, 17, 1733. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Refsum, H.; Bottiglieri, T.; Fenech, M.; Hooshmand, B.; McCaddon, A.; Miller, J.W.; Rosenberg, I.H.; Obeid, R. Homocysteine and Dementia: An International Consensus Statement. J. Alzheimer’s Dis. 2018, 62, 561–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blom, H.J.; Smulders, Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J. Inherit. Metab. Dis. 2010, 34, 75–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stover, P.J.; Field, M.S. Trafficking of Intracellular Folates. Advances in Nutrition. Int. Rev. J. 2011, 2, 325–331. [Google Scholar]
- Juzeniene, A.; Thu Tam, T.T.; Iani, V.; Moan, J. 5-Methyltetrahydrofolate can be photodegraded by endogenous photosensitizers. Free. Radic. Boil. Med. 2009, 47, 1199–1204. [Google Scholar] [CrossRef]
- Fukuwatari, T.; Fujita, M.; Shibata, K. Effects of UVA irradiation on the concentration of folate in human blood. Biosci. Biotechnol. Biochem. 2009, 73, 322–327. [Google Scholar] [CrossRef] [Green Version]
- El-Saie, L.T.; Rabie, A.R.; Kamel, M.I.; Seddeik, A.K.; Elsaie, M.L. Effect of narrowband ultraviolet B phototherapy on serum folic acid levels in patients with psoriasis. Lasers Med. Sci. 2011, 26, 481–485. [Google Scholar] [CrossRef]
- Borradale, D.; Isenring, E.; Hacker, E.; Kimlin, M.G. Exposure to solar ultraviolet radiation is associated with a decreased folate status in women of childbearing age. J. Photochem. Photobiol. B Boil. 2014, 131, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Fattah, A.; El-Borhamy, M.I. Analysis of Serum Folate Levels after Narrow Band UVB Exposure. Egypt. Derm. Online J. 2006, 2, 1–7. [Google Scholar]
- Murase, J.E.; Koo, J.Y.M.; Berger, T.G. Narrowband ultraviolet B phototherapy influences serum folate levels in patients with vitiligo. J. Am. Acad. Dermatol. 2010, 62, 710–711. [Google Scholar] [CrossRef]
- Jones, P.; Lucock, M.; Scarlett, C.J.; Veysey, M.; Beckett, E. Environmental UVR Levels and Skin Pigmentation Gene Variants Associated with Folate and Homocysteine Levels in an Elderly Cohort. Int. J. Environ. Res. Public Health 2020, 17, 1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P.; Beckett, E.; Yates, Z.; Veysey, M.; Lucock, M. Converging Evolutionary, Environmental and Clinical Ideas on Folate Metabolism. Explor. Res. Hypothesis Med. 2016, 1, 34–41. [Google Scholar]
- Jones, P.; Lucock, M.; Veysey, M.; Jablonski, N.; Chaplin, G.; Beckett, E. Frequency of folate-related polymorphisms varies by skin pigmentation. Am. J. Hum. Boil. 2017, 30, e23079. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.; Qayyum, R. The Relationship Between 25-Hydroxyvitamin D and Homocysteine in Asymptomatic Adults. J. Clin. Endocrinol. Metab. 2013, 99, 633–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, T.M.; Ekwaru, J.P.; Mastroeni, S.S.; Mastroeni, M.F.; Loehr, S.A.; Veugelers, P.J. The Effect of Serum 25-Hydroxyvitamin D on Elevated Homocysteine Concentrations in Participants of a Preventive Health Program. PLoS ONE 2016, 11, e0161368. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Jetty, V.; Rothschild, M.; Duhon, G.; Shah, P.; Prince, M.; Lee, K.; Goldenberg, M.; Kumar, A.; Goldenberg, N.; et al. Associations between Serum 25-hydroxyvitamin D and Lipids, Lipoprotein Cholesterols, and Homocysteine. N. Am. J. Med Sci. 2016, 8, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Xing, X.; Xu, R.; Gong, Q.; He, Y.; Li, S.; Wang, H.; Liu, C.; Ding, X.; Na, R.; et al. Folic Acid and Vitamins D and B12 Correlate With Homocysteine in Chinese Patients With Type-2 Diabetes Mellitus, Hypertension, or Cardiovascular Disease. Medicine 2016, 95, e2652. [Google Scholar] [CrossRef]
- Moretti, R.; Caruso, P.; Dal Ben, M.; Conti, C.; Gazzin, S.; Tiribelli, C. Vitamin D, Homocysteine, and Folate in Subcortical Vascular Dementia and Alzheimer Dementia. Front. Aging Neurosci. 2017, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Kriebitzsch, C.; Verlinden, L.; Eelen, G.; van Schoor, N.M.; Swart, K.; Lips, P.; Meyer, M.B.; Pike, J.W.; Boonen, S.; Carlberg, C.; et al. 1,25-dihydroxyvitamin D(3) influences cellular homocysteine levels in murine pre-osteoblastic MC3T3-E1 cells by direct regulation of cystathionine β-synthase. Journal of bone and mineral research. Off. J. Am.Soc. Bone Miner. Res. 2011, 26, 2991–3000. [Google Scholar] [CrossRef] [Green Version]
- Lucock, M.; Jones, P.; Martin, C.; Beckett, E.; Yates, Z.; Furst, J.; Veysey, M. Vitamin D: Beyond Metabolism. J. Evid. Based Complementary Altern. Med. 2015, 20, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Tiosano, D.; Audi, L.; Climer, S.; Zhang, W.; Templeton, A.R.; Fernández-Cancio, M.; Gershoni-Baruch, R.; Sánchez-Muro, J.M.; El Kholy, M.; Hochberg, Z. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes. G3 Genes Genomes Genet. 2016, 6, 1251–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, R.; Pinelli, M.; Monticelli, A.; Miele, G.; Cocozza, S. Schizophrenia and vitamin D related genes could have been subject to latitude-driven adaptation. BMC Evol. Boil. 2010, 10, 351. [Google Scholar] [CrossRef] [PubMed]
- Kuan, V.; Martineau, A.R.; Griffiths, C.J.; Hyppönen, E.; Walton, R. DHCR7 mutations linked to higher vitamin D status allowed early human migration to northern latitudes. BMC Evol. Boil. 2013, 13, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constans, J.; Hazout, S.; Garruto, R.M.; Gajdusek, D.C.; Spees, E.K. Population distribution of the human vitamin D binding protein: Anthropological considerations. Am. J. Phys. Anthr. 1985, 68, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Lucock, M.; Chaplin, G.; Jablonski, N.G.; Veysey, M.; Scarlett, C.; Beckett, E. Distribution of variants in multiple vitamin D-related loci (DHCR7/NADSYN1, GC, CYP2R1, CYP11A1, CYP24A1, VDR, RXRα and RXRγ) vary between European, East-Asian and Sub-Saharan African-ancestry populations. Genes. Nutri. 2020, 15, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucock, M.; Beckett, E.; Martin, C.; Jones, P.; Furst, J.; Yates, Z.; Jablonski, N.G.; Chaplin, G.; Veysey, M. UV-associated decline in systemic folate: Implications for human nutrigenetics, health, and evolutionary processes. Am. J. Hum. Boil. 2016, 29, e22929. [Google Scholar] [CrossRef]
- Abbott, K.A.; Veysey, M.; Lucock, M.; Niblett, S.; King, K.; Burrows, T.; Garg, M.L. Sex-dependent association between erythrocyte n-3 PUFA and type 2 diabetes in older overweight people. Br. J. Nutr. 2016, 115, 1379–1386. [Google Scholar] [CrossRef] [Green Version]
- Beckett, E.L.; Martin, C.; Boyd, L.; Porter, T.; King, K.; Niblett, S.; Yates, Z.; Veysey, M.; Lucock, M. Reduced plasma homocysteine levels in elderly Australians following mandatory folic acid fortification—A comparison of two cross-sectional cohorts. J. Nutr. Intermed. Metab. 2017, 8, 14–20. [Google Scholar] [CrossRef]
- Godar, D.E. UV doses worldwide. Photochem. Photobiol. 2005, 81, 736–749. [Google Scholar] [CrossRef]
- Baumann, L. Skin ageing and its treatment. J. Pathol. 2007, 211, 241–251. [Google Scholar] [CrossRef]
- Lucock, M.; Yates, Z.; Martin, C.; Choi, J.-H.; Beckett, E.; Boyd, L.; LeGras, K.; Ng, X.; Skinner, V.; Wai, R.; et al. Methylation diet and methyl group genetics in risk for adenomatous polyp occurrence. BBA Clin. 2015, 3, 107–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.; Hoffman, R.M. A highly sensitive single-enzyme homocysteine assay. Nat. Protoc. 2008, 3, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Turpeinen, U.; Hohenthal, U.; Stenman, U.H. Determination of 25-hydroxyvitamin D in serum by HPLC and immunoassay. Clin. Chem. 2003, 49, 1521–1524. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, G.L.; Mackerras, D.; de Klerk, N.H.; Musk, A.W. Comparison of an Australian food-frequency questionnaire with diet records: Implications for nutrition surveillance. Public Heal. Nutr. 2003, 6, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murthy, J.; Gurramkonda, V.B.; Bhaskar, L. Genetic variant in MTRR A66G, but not MTR A2756G, is associated with risk of non-syndromic cleft lip and palate in Indian population. J. Oral Maxillofac. Surg. Med. Pathol. 2015, 27, 782–785. [Google Scholar] [CrossRef]
- Van der Put, N.M.J.; Trijbels, F.J.M.; van den Heuvel, L.P.; Blom, H.J.; Steegers-Theunissen, R.P.M.; Eskes, T.K.A.B.; Mariman, E.C.M.; den Heyer, M.; Frosst, P.; Rozen, R. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 1995, 346, 1070–1071. [Google Scholar] [CrossRef] [Green Version]
- Van der Put, N.M.J.; Gabreëls, F.; Stevens, E.M.B.; Smeitink, J.A.M.; Trijbels, F.J.M.; Eskes, T.K.A.B.; van den Heuvel, L.P.; Blom, H.J. A Second Common Mutation in the Methylenetetrahydrofolate Reductase Gene: An Additional Risk Factor for Neural-Tube Defects? Am. J. Hum. Genet. 1998, 62, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Heil, S.G.; Van der Put, N.M.J.; Waas, E.T.; den Heijer, M.; Trijbels, F.J.M.; Blom, H.J. Is Mutated Serine Hydroxymethyltransferase (SHMT) Involved in the Etiology of Neural Tube Defects? Mol. Genet. Metab. 2001, 73, 164–172. [Google Scholar] [CrossRef]
- Wang, L.; Ke, Q.; Chen, W.; Wang, J.; Tan, Y.; Zhou, Y.; Hua, Z.; Ding, W.; Niu, J.; Shen, J.; et al. Polymorphisms of MTHFD, plasma homocysteine levels, and risk of gastric cancer in a high-risk Chinese population. Clin. Cancer Res. 2007, 13, 2526–2532. [Google Scholar] [CrossRef] [Green Version]
- Dufficy, L.; Naumovski, N.; Ng, X.; Blades, B.; Yates, Z.; Travers, C.; Lewis, P.; Sturm, J.; Veysey, M.; Roach, P.D.; et al. G80A reduced folate carrier SNP influences the absorption and cellular translocation of dietary folate and its association with blood pressure in an elderly population. Life Sci. 2006, 79, 957–966. [Google Scholar] [CrossRef]
- Ulrich, C.M.; Bigler, J.; Velicer, C.M.; Greene, E.A.; Farin, F.M.; Potter, J.D. Searching expressed sequence tag databases: Discovery and confirmation of a common polymorphism in the thymidylate synthase gene. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1381–1385. [Google Scholar]
- Lafi, Z.M.; Irshaid, Y.M.; El-Khateeb, M.; Ajlouni, K.M.; Hyassat, D. Association of rs7041 and rs4588 Polymorphisms of the Vitamin D Binding Protein and the rs10741657 Polymorphism of CYP2R1 with Vitamin D Status Among Jordanian Patients. Genet. Test. Mol. Biomark. 2015, 19, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Penna-Martinez, M.; Ramos-Lopez, E.; Stern, J.; Kahles, H.; Hinsch, N.; Hansmann, M.-L.; Selkinski, I.; Grünwald, F.; Vorländer, C.; Bechstein, W.O.; et al. Impaired vitamin D activation and association with CYP24A1 haplotypes in differentiated thyroid carcinoma. Thyroid 2012, 22, 709–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halsall, J.A.; Osborne, J.E.; Epstein, M.P.; Pringle, J.H.; Hutchinson, P.E. The unfavorable effect of the A allele of the vitamin D receptor promoter polymorphism A-1012G has different mechanisms related to susceptibility and outcome of malignant melanoma. Dermato-Endocrinology 2009, 1, 54–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.-L.; Xie, D.-W.; Deng, Z.-L.; Bostick, R.M.; Miao, X.-J.; Zhang, J.-H.; Gong, Z.-H. Vitamin D receptor gene Tru9I polymorphism and risk for incidental sporadic colorectal adenomas. World J. Gastroenterol. 2005, 11, 4794–4799. [Google Scholar] [CrossRef]
- Bhanushali, A.A.; Lajpal, N.; Kulkarni, S.S.; Chavan, S.S.; Bagadi, S.S.; Das, B.R. Frequency of fokI and taqI polymorphism of vitamin D receptor gene in Indian population and its association with 25-hydroxyvitamin D levels. Indian J. Hum. Genet. 2009, 15, 108–113. [Google Scholar]
- Zmuda, J.M.; Cauley, J.A.; Danielson, M.E.; Wolf, R.L.; Ferrell, R.E. Vitamin D Receptor Gene Polymorphisms, Bone Turnover, and Rates of Bone Loss in Older African-American Women. J. Bone Miner. Res. 1997, 12, 1446–1452. [Google Scholar] [CrossRef]
- Johnson, W.G.; Stenroos, E.S.; Spychala, J.R.; Chatkupt, S.; Ming, S.X.; Buyske, S. New 19 bp deletion polymorphism in intron-1 of dihydrofolate reductase (DHFR): A risk factor for spina bifida acting in mothers during pregnancy? Am. J. Med Genet. 2004, 124, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, P.; Alagarasu, K.; Harishankar, M.; Vidyarani, M.; Narayanan, P.R. Regulatory region polymorphisms of vitamin D receptor gene in pulmonary tuberculosis patients and normal healthy subjects of south India. Int. J. Immunogenet. 2008, 35, 251–254. [Google Scholar] [CrossRef]
- Horie, N.; Aiba, H.; Oguro, K.; Hojo, H.; Takeishi, K. Functional Analysis and DNA Polymorphism of the Tandemly Repeated Sequences in the 5’-terminal Regulatory Region of the Human Gene for Thymidylate Synthase. Cell Struct. Funct. 1995, 20, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Standard, C. Erythema reference action spectrum and standard erythema dose. Cie S 1998, 7, E1998. [Google Scholar]
- Lucas, J.A.; Bolland, M.J.; Grey, A.B.; Ames, R.W.; Mason, B.H.; Horne, A.M.; Gamble, G.D.; Reid, I.R. Determinants of vitamin D status in older women living in a subtropical climate. Osteoporos. Int. 2005, 16, 1641–1648. [Google Scholar] [CrossRef] [PubMed]
- Beckett, E.L.; Jones, P.; Veysey, M.; Duesing, K.; Martin, C.; Furst, J.; Yates, Z.; Jablonski, N.G.; Chaplin, G.; Lucock, M. VDR gene methylation as a molecular adaption to light exposure: Historic, recent and genetic influences. Am. J. Hum. Boil. 2017, 29, e23010. [Google Scholar] [CrossRef] [PubMed]
- Lucock, M.; Yates, Z.; Martin, C.; Choi, J.-H.; Boyd, L.; Tang, S.; Naumovski, N.; Furst, J.; Roach, P.; Jablonski, N.; et al. Vitamin D, folate, and potential early lifecycle environmental origin of significant adult phenotypes. Evol. Med. Public Heal. 2014, 2014, 69–91. [Google Scholar] [CrossRef] [Green Version]
- Beckett, E.L.; Martin, C.; Duesing, K.; Jones, P.; Furst, J.; Yates, Z.; Veysey, M.; Lucock, M. Vitamin D Receptor Genotype Modulates the Correlation between Vitamin D and Circulating Levels of let-7a/b and Vitamin D Intake in an Elderly Cohort. J. Nutr. Nutr. 2014, 7, 264–273. [Google Scholar] [CrossRef]
- Rasmussen, L.B.; Ovesen, L.; Bulow, I.; Knudsen, N.; Laurberg, P.; Perrild, H. Folate intake, lifestyle factors, and homocysteine concentrations in younger and older women. Am. J. Clin. Nutr. 2000, 72, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Ganji, V.; Kafai, M.R. Demographic, health, lifestyle, and blood vitamin determinants of serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Clin. Nutr. 2003, 77, 826–833. [Google Scholar] [CrossRef] [Green Version]
- Jacques, P.F.; Bostom, A.G.; Wilson, P.W.; Rich, S.; Rosenberg, I.H.; Selhub, J. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am. J. Clin. Nutr. 2001, 73, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Multiple significance tests: The Bonferroni method. BMJ 1995, 310, 170. [Google Scholar] [CrossRef] [Green Version]
- Department of Health, Folate Testing. 2014. Available online: https://www.health.gov.au/internet/main/publishing.nsf/Content/F05A8741F610EDB7CA257EB30026794E/$File/Folate%20testing%20Review%20Report.docx (accessed on 1 November 2019).
- Maron, B.A.; Loscalzo, J. The Treatment of Hyperhomocysteinemia. Annu. Rev. Med. 2009, 60, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Nowson, C.A.; McGrath, J.J.; Ebeling, P.R.; Haikerwal, A.; Daly, R.M.; Sanders, K.M.; Seibel, M.J.; Mason, R.S. Vitamin D and health in adults in Australia and New Zealand: A position statement. Med. J. Aust. 2012, 196, 686–687. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.; Nash-Barboza, S.; Hinkis, S.; Caudill, M.A. Genetic Variants in Phosphatidylethanolamine N-methyltransferase and Methylenetetrahydrofolate Dehydrogenase Influence Biomarkers of Choline Metabolism When Folate Intake Is Restricted. J. Am. Diet. Assoc. 2009, 109, 313–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anguera, M.C.; Field, M.S.; Perry, C.; Ghandour, H.; Chiang, E.P.; Selhub, J.; Shane, B.; Stover, P.J. Regulation of folate-mediated one-carbon metabolism by 10-formyltetrahydrofolate dehydrogenase. J. Boil. Chem. 2006, 281, 18335–18342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, M.S.; Shields, K.S.; Abarinov, E.V.; Malysheva, O.V.; Allen, R.H.; Stabler, S.P.; Ash, J.A.; Strupp, B.J.; Stover, P.J.; Caudill, M.A. Reduced MTHFD1 activity in male mice perturbs folate- and choline-dependent one-carbon metabolism as well as transsulfuration. J. Nutr. 2012, 143, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacFarlane, A.J.; Perry, C.A.; Girnary, H.H.; Gao, D.; Allen, R.H.; Stabler, S.P.; Shane, B.; Stover, P.J. Mthfd1 is an essential gene in mice and alters biomarkers of impaired one-carbon metabolism. J. Boil. Chem. 2008, 284, 1533–1539. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, H.G.; Hermile, H.; Sanche, R.; Menon, S.; Lea, R.A.; Haupt, L.M.; Griffiths, L.R. Association study of MTHFD1 coding polymorphisms R134K and R653Q with migraine susceptibility. Headache 2014, 54, 1506–1514. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.E.; Rohlicek, C.V.; Andelfinger, G.U.; Michaud, J.; Bigras, J.L.; Richter, A.; Mackenzie, R.E.; Rozen, R. The MTHFD1 p.Arg653Gln variant alters enzyme function and increases risk for congenital heart defects. Hum. Mutat. 2009, 30, 212–220. [Google Scholar] [CrossRef]
- McKinley, M.C.; Strain, J.J.; McPartlin, J.; Scott, J.M.; McNulty, H. Plasma Homocysteine Is Not Subject to Seasonal Variation. Clin. Chem. 2001, 47, 1430–1436. [Google Scholar] [CrossRef]
- Clarke, R.; Woodhouse, P.; Ulvik, A.; Frost, C.; Sherliker, P.; Refsum, H.; Ueland, P.M.; Khaw, K.T. Variability and determinants of total homocysteine concentrations in plasma in an elderly population. Clin. Chem. 1998, 44, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Hayden, M.R.; Tyagi, S.C. Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: The pleiotropic effects of folate supplementation. Nutr. J. 2004, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.G.; Banerjee, R. Homocysteine and Redox Signaling. Antioxidants Redox Signal. 2005, 7, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Rezayi, M.; Ghayour-Mobarhan, M.; Tavakoly Sany, S.B.; Fani, M.; Avan, A.; Pasdar, Z.; Ferns, G.A.; Abouzari-Lotf, E.; Amiri, I.S. A comparison of analytical methods for measuring concentrations of 25-hydroxy vitamin D in biological samples. Anal. Methods 2018, 10, 5599–5612. [Google Scholar] [CrossRef]
- Cui, H.; Kong, Y.; Zhang, H. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Transduct. 2011, 2012, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Male (n = 273) | Female (n = 346) | All (n = 619) | |||||||
---|---|---|---|---|---|---|---|---|---|
Continuous Variables | Mean | 95% CI | Range | Mean | 95% CI | Range | Mean | 95% CI | Range |
Age | 77 | 76–78 | 65–93 | 77 | 76–78 | 65–95 | 77 | 76–78 | 65–95 |
RBC folate (nmol/L) | 1625.7 | 1311.5–1939.8 | 931.0–2539.0 | 1342.2 | 1292.0–1392.5 | 385.0–2695.0 | 1340.9 | 1304.8–1377.1 | 381.0–2695.0 |
25(OH)D (ng/mL) | 31.5 | 24.6–38.4 | 9.7–44.7 | 35.0 | 33.3–36.7 | 9.3–94.4 | 35.8 | 34.6–37.0 | 9.3–94.4 |
Hcy (μmol/L) | 11.3 | 10.5–12.2 | 0.1–47.4 | 10.1 | 9.5–10.6 | 0.1–31.2 | 10.4 | 9.9–10.9 | 0.1–47.4 |
Serum vitamin B12 (pmol/L) | 224.6 | 207.4–241.8 | 12.0–1116.0 | 251.0 | 235.6–266.2 | 68.0–1500.0 | 239.3 | 227.8–251.0 | 12.0–1500.0 |
Creatinine (μmol/L) | 10.6 | 10.0–11.2 | 1.4–51.6 | 8.4 | 7.8–8.9 | 0.5–29.5 | 9.4 | 9.0–9.8 | 0.5–51.6 |
Vitamin B6 intake (mg/d) | 9.0 | 4.9–13.1 | 0.0–220.7 | 9.2 | 6.9–11.5 | 0.0–203.0 | 8.6 | 6.9–10.3 | 0.0–220.7 |
Alcohol intake (g/day) | 10.4 | 9.0–11.7 | 0.0–40.4 | 4.4 | 3.7–5.1 | 0.0–37.7 | 7.0 | 6.3–7.7 | 0.0–40.4 |
6W-EDR | 5920.8 | 5577.9–6263.7 | 2140.5–11057.4 | 5959.9 | 5662.1–6257.6 | 2140.5–11057.4 | 6014.4 | 5718.4–6166.9 | 2149.5–11057.4 |
4M-EDR | 16795.5 | 15888.5–17702.5 | 7788.2–28258.0 | 16739.0 | 15939.6–17538.4 | 7788.2–29160.6 | 16764.7 | 16165.8–17361.9 | 7788.2–29160.6 |
Categorical Variables | n | % | n | % | n | % | |||
Tea serves/day | |||||||||
<1 | 78 | 30 | 108 | 34 | 193 | 32 | |||
1–2 | 118 | 46 | 141 | 45 | 274 | 46 | |||
>2 | 61 | 24 | 67 | 21 | 132 | 22 | |||
Coffee serves/day | |||||||||
<1 | 90 | 35 | 113 | 36 | 208 | 35 | |||
1–2 | 112 | 44 | 135 | 43 | 262 | 44 | |||
>2 | 55 | 21 | 68 | 22 | 129 | 22 | |||
Smoking status | |||||||||
Current or ex-smoker | 185 | 68 | 126 | 36 | 308 | 50 | |||
Never smoked | 88 | 32 | 220 | 64 | 311 | 50 | |||
BMI category | |||||||||
Underweight or normal | 49 | 20 | 82 | 26 | 122 | 23 | |||
Overweight | 121 | 48 | 128 | 40 | 257 | 43 | |||
Obese | 80 | 32 | 107 | 34 | 199 | 34 |
Hcy Levels | ||||||
---|---|---|---|---|---|---|
Unadjusted (n = 618) | Model 1 (n = 579) | Model 2 (n = 464) | ||||
β | p | β | p | β | p | |
6W-EDR | −0.25 | <0.001 | −0.24 | <0.001 | 0.24 | <0.001 |
25(OH)D levels | - | 0.04 | 0.3 | −0.03 | 0.5 | |
RBC folate levels | - | −0.02 | 0.7 | −0.03 | 0.6 | |
4M-EDR | −0.29 | <0.001 | −0.29 | <0.001 | −0.30 | <0.001 |
25(OH)D levels | - | −0.05 | 0.2 | −0.05 | 0.3 | |
RBC folate levels | - | −0.04 | 0.3 | −0.05 | 0.2 |
Hcy Levels | ||||
---|---|---|---|---|
Unadjusted | Adjusted | |||
β | p | β | p | |
6W-EDR | −0.24 | <0.001 | −0.24 | <0.001 |
25(OH)D levels | −0.04 | 0.3 | −0.03 | 0.5 |
6W-EDR x 25(OH)D levels | 0.10 | 0.01 | 0.15 | 0.002 |
n = 582/467 | ||||
4M-EDR | −0.27 | <0.001 | −0.27 | <0.001 |
25(OH)D levels | −0.05 | 0.2 | −0.03 | 0.4 |
4M-EDR x 25(OH)D levels | 0.04 | 0.3 | 0.09 | 0.05 |
n = 582/467 | ||||
6W-EDR | −0.24 | <0.001 | −0.24 | <0.001 |
RBC folate levels | 0.00 | 0.9 | −0.01 | 0.9 |
6W-EDR x RBC folate levels | 0.01 | 0.9 | 0.01 | 0.9 |
n = 612/491 | ||||
4M-EDR | −0.29 | <0.001 | −0.29 | <0.001 |
RBC folate levels | −0.02 | 0.6 | −0.04 | 0.4 |
4M-EDR x RBC folate levels | 0.01 | 0.9 | 0.01 | 0.9 |
n = 612/491 |
Hcy Levels | |||||
---|---|---|---|---|---|
6W-EDR | |||||
by 25(OH)D quartiles (ng/mL) | n | β | p | mean | 95% CI |
Q1 (<23.95) Mean: 18.60 | 107 | −0.35 | 0.001 | 10.6 | 8.6–12.6 |
Q2 (23.96–33.25) Mean: 28.24 | 120 | −0.32 | 0.001 | 10.2 | 8.2–12.1 |
Q3 (33.26–45.60) Mean: 39.51 | 108 | −0.18 | 0.09 | 9.8 | 7.9–11.7 |
Q4 (>45.60) Mean: 56.88 | 132 | 0.01 | 0.9 | 10.2 | 8.3–12.2 |
6W-EDR x 25(OH)D quartiles (as categorical)—pinteraction = 0.004 |
Hcy Levels | ||||
---|---|---|---|---|
Unadjusted | Adjusted | |||
β | p | β | p | |
6W-EDR | −0.23 | <0.001 | −0.24 | <0.001 |
DHFR-rs70991108 | −0.06 | 0.1 | −0.03 | 0.6 |
6W-EDR x DHFR-rs70991108 | 0.02 | 0.7 | −0.01 | 0.9 |
n = 611/462 | ||||
6W-EDR | −0.20 | <0.001 | −0.17 | 0.001 |
MTHFD1-rs2236225 | −0.05 | 0.2 | −0.09 | 0.05 |
6W-EDR x MTHFD1-rs2236225 | 0.06 | 0.2 | 0.11 | 0.05 |
n = 611/461 | ||||
4M-EDR | −0.28 | <0.001 | −0.30 | <0.001 |
DHFR-rs70991108 | −0.06 | 0.1 | −0.03 | 0.5 |
4M-EDR x DHFR-rs70991108 | 0.02 | 0.7 | −0.01 | 0.9 |
n = 611/462 | ||||
4M-EDR | −0.23 | <0.001 | −0.22 | <0.001 |
MTHFD1-rs2236225 | −0.05 | 0.2 | −0.09 | 0.04 |
4M-EDR x MTHFD1-rs2236225 | 0.10 | 0.03 | 0.15 | 0.006 |
n = 611/461 |
Hcy Levels | ||||
---|---|---|---|---|
Unadjusted (n = 578) | Adjusted (n = 461) | |||
β | p | β | p | |
6W-EDR | −0.20 | <0.001 | −0.19 | 0.001 |
25(OH)D levels | −0.04 | 0.3 | −0.03 | 0.6 |
6W-EDR x 25(OH)D levels | 0.10 | 0.02 | 0.14 | 0.002 |
MTHFD1-rs2236225 | −0.04 | 0.3 | −0.09 | 0.05 |
6W-EDR x MTHFD1-rs2236225 | 0.06 | 0.2 | 0.11 | 0.05 |
Model—R2 (p) | 0.07 | <0.001 | 0.09 | <0.001 |
4M-EDR | −0.22 | <0.001 | −0.21 | <0.001 |
25(OH)D levels | −0.05 | 0.2 | −0.03 | 0.4 |
4M-EDR x 25(OH)D levels | 0.03 | 0.4 | 0.09 | 0.06 |
MTHFD1-rs2236225 | −0.04 | 0.3 | −0.09 | 0.04 |
4M-EDR x MTHFD1-rs2236225 | 0.10 | 0.03 | 0.14 | 0.006 |
Model—R2 (p) | 0.08 | <0.001 | 0.11 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, P.; Lucock, M.; Martin, C.; Thota, R.; Garg, M.; Yates, Z.; Scarlett, C.J.; Veysey, M.; Beckett, E. Independent and Interactive Influences of Environmental UVR, Vitamin D Levels, and Folate Variant MTHFD1-rs2236225 on Homocysteine Levels. Nutrients 2020, 12, 1455. https://doi.org/10.3390/nu12051455
Jones P, Lucock M, Martin C, Thota R, Garg M, Yates Z, Scarlett CJ, Veysey M, Beckett E. Independent and Interactive Influences of Environmental UVR, Vitamin D Levels, and Folate Variant MTHFD1-rs2236225 on Homocysteine Levels. Nutrients. 2020; 12(5):1455. https://doi.org/10.3390/nu12051455
Chicago/Turabian StyleJones, Patrice, Mark Lucock, Charlotte Martin, Rohith Thota, Manohar Garg, Zoe Yates, Christopher J. Scarlett, Martin Veysey, and Emma Beckett. 2020. "Independent and Interactive Influences of Environmental UVR, Vitamin D Levels, and Folate Variant MTHFD1-rs2236225 on Homocysteine Levels" Nutrients 12, no. 5: 1455. https://doi.org/10.3390/nu12051455
APA StyleJones, P., Lucock, M., Martin, C., Thota, R., Garg, M., Yates, Z., Scarlett, C. J., Veysey, M., & Beckett, E. (2020). Independent and Interactive Influences of Environmental UVR, Vitamin D Levels, and Folate Variant MTHFD1-rs2236225 on Homocysteine Levels. Nutrients, 12(5), 1455. https://doi.org/10.3390/nu12051455