Annona muricata L.-Derived Polysaccharides as a Potential Adjuvant to a Dendritic Cell-Based Vaccine in a Thymoma-Bearing Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Ethics Statement
2.2. Preparation of ALP
2.3. Cell Lines
2.4. Generation and Culture of Bone Marrow-Derived Dendritic Cells (BMDCs)
2.5. Cytotoxicity Analysis
2.6. Cytokine Measurement
2.7. Intracellular Cytokine Staining in DCs
2.8. Cell Surface Molecule Analysis
2.9. Antigen Uptake Capacity
2.10. Antigen-Presenting Assay
2.11. Western Blot Analysis and Nuclear Extract Preparation
2.12. Confocal Laser Scanning Microscopy
2.13. Treatment of DCs with Pharmacological Inhibitors of Signaling Pathways
2.14. Allogeneic Mixed Lymphocyte Reaction (MLR)
2.15. Cytotoxic T Lymphocyte Activity and Multifunctional T Cell Subset Analysis
2.16. Measurement of OVA-Specific Ab
2.17. Therapeutic Potential via E.G7 Tumor Challenge
2.18. Statistical Analysis
3. Results
3.1. ALP Promotes the Expression of Th1-Polarizing Pro-Inflammatory Cytokines and Surface Molecules of DCs
3.2. ALP Increases Antigen-Presenting Activity of DCs by Reducing Antigen Uptake
3.3. Activation of MAPK and NF-ĸB Signaling Pathways Mediates ALP-Induced DC Maturation
3.4. ALP-Activated DCs Functionally Induce Naive T Cells Toward Th1, Activate CD8+ T Cells, and Strongly Increase CTL Activity
3.5. Systemic Administration of ALP-Stimulated OVA Peptide-Pulsed DCs Promotes the Generation of OVA-Specific Multifunctional T Cells and the Retardation of Tumor Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Abeje, G.; Azage, M. Hepatitis B vaccine knowledge and vaccination status among health care workers of Bahir Dar City Administration, Northwest Ethiopia: A cross sectional study. BMC Infect. Dis. 2015, 15, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.-C.; Cheng, Y.-C.; Chen, P.-W.; Lin, T.-H.; Tzeng, T.-T.; Lu, C.-C.; Lee, M.-S.; Hu, A.Y.-C. Process development for pandemic influenza VLP vaccine production using a baculovirus expression system. J. Boil. Eng. 2019, 13, 78–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, P.M.; Butterfield, L.H. Dendritic Cell-Based Cancer Vaccines. J. Immunol. 2018, 200, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Sayour, E.J.; Mitchell, D.A. Manipulation of Innate and Adaptive Immunity through Cancer Vaccines. J. Immunol. Res. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Schlitzer, A.; Placek, K.; Joosten, L.A.; Schultze, J.L. Innate and Adaptive Immune Memory: An Evolutionary Continuum in the Host’s Response to Pathogens. Cell Host Microbe 2019, 25, 13–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Mohakud, N.K.; Suar, M.; Sahu, B.R. Vaccine development for enteric bacterial pathogens: Where do we stand? Pathog. Dis. 2018, 76, 76. [Google Scholar] [CrossRef]
- Zhang, C.; Maruggi, G.; Shan, H.; Li, J. Advances in mRNA Vaccines for Infectious Diseases. Front. Immunol. 2019, 10, 594. [Google Scholar] [CrossRef] [Green Version]
- Suschak, J.J.; Williams, J.A.; Schmaljohn, C.S. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum. Vaccines Immunother. 2017, 13, 2837–2848. [Google Scholar] [CrossRef] [Green Version]
- Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine Adjuvants: Putting Innate Immunity to Work. Immunity 2010, 33, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Stewart, E.; Triccas; Petrovsky, N.A.; Triccas, J. Adjuvant Strategies for More Effective Tuberculosis Vaccine Immunity. Microorganisms 2019, 7, 255. [Google Scholar] [CrossRef] [Green Version]
- Cimica, V.; Galarza, J.M. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin. Immunol. 2017, 183, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Himly, M.; Mills-Goodlet, R.; Geppert, M.; Duschl, A. Nanomaterials in the Context of Type 2 Immune Responses—Fears and Potentials. Front. Immunol. 2017, 8, 607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey-Ladino, J.; Ross, A.G.; Cripps, A.W.; McManus, D.P.; Quinn, R.J. Natural products and the search for novel vaccine adjuvants. Vaccine 2011, 29, 6464–6471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honda, T. Investigation of innovative synthesis of biologically active compounds on the basis of newly developed reactions. Chem. Pharm. Bull. 2012, 60, 687–705. [Google Scholar] [CrossRef] [Green Version]
- Cragg, G.M.; Pezzuto, J.M. Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Med. Princ. Pr. 2015, 25, 41–59. [Google Scholar] [CrossRef]
- Sander, V.A.; Corigliano, M.G.; Clemente, M. Promising Plant-Derived Adjuvants in the Development of Coccidial Vaccines. Front. Veter. Sci. 2019, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Yang, X.; Li, Q.; Yang, Y.; Zhao, G.; Wang, B.; Wu, D. Immunostimulatory activity of water-extractable polysaccharides from Cistanche deserticola as a plant adjuvant in vitro and in vivo. PLoS ONE 2018, 13, e0191356. [Google Scholar] [CrossRef] [Green Version]
- Foguem, B.K.; Foguem, C. Adverse drug reactions in some African herbal medicine: Literature review and stakeholders’ interview. Integr. Med. Res. 2014, 3, 126–132. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Hemphill, I.; Cobiac, L.; Sullivan, D.R.; Fenech, M.; Patch, C.S.; Roodenrys, S.; Keogh, J.B.; Clifton, P.M.; Williams, P.; et al. Health benefits of herbs and spices: The past, the present, the future. Med. J. Aust. 2006, 185, S1–S24. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.-T.; Tran, N.K.S.; Shim, S.-M.; Song, Y.-J.; Song, J.-H.; Shim, S.-M.; Park, T.-S. Immunomodulatory Efficacy of Standardized Annona muricata (Graviola) Leaf Extract via Activation of Mitogen-Activated Protein Kinase Pathways in RAW 264.7 Macrophages. Evidence-Based Complement. Altern. Med. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gavamukulya, Y.; Wamunyokoli, F.; El-Shemy, H.A. Annona muricata: Is the natural therapy to most disease conditions including cancer growing in our backyard? A systematic review of its research history and future prospects. Asian Pac. J. Trop. Med. 2017, 10, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Gavamukulya, Y.; Abou-Elella, F.; Wamunyokoli, F.; El-Shemy, H.A. Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pac. J. Trop. Med. 2014, 7, S355–S363. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.S.; Kim, Y.-E.; Cho, E.-J.; Byun, E.-B.; Park, W.Y.; Song, H.-Y.; Kim, K.; Park, S.-H.; Byun, E.-H. Neuroprotective effect of Annona muricata-derived polysaccharides in neuronal HT22 cell damage induced by hydrogen peroxide. Biosci. Biotechnol. Biochem. 2020, 84, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Hossain, K.; Wall, K.A. Use of Dendritic Cell Receptors as Targets for Enhancing Anti-Cancer Immune Responses. Cancers 2019, 11, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbongue, J.C.; Nieves, H.A.; Torrez, T.W.; Langridge, W.H.R. The Role of Dendritic Cell Maturation in the Induction of Insulin-Dependent Diabetes Mellitus. Front. Immunol. 2017, 8, 1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neefjes, J.; Jongsma, M.L.M.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Ade, N.; Antonios, D.; Kerdine-Romer, S.; Boisleve, F.; Rousset, F.; Pallardy, M. Nf-kappab plays a major role in the maturation of human dendritic cells induced by niso(4) but not by dncb. Toxicol. Sci. 2007, 99, 488–501. [Google Scholar] [CrossRef] [Green Version]
- Kisuya, J.; Chemtai, A.; Raballah, E.; Keter, A.; Ouma, C. The diagnostic accuracy of Th1 (IFN-γ, TNF-α, and IL-2) and Th2 (IL-4, IL-6 and IL-10) cytokines response in AFB microscopy smear negative PTB- HIV co-infected patients. Sci. Rep. 2019, 9, 2966. [Google Scholar] [CrossRef]
- Wimmers, F.; Aarntzen, E.H.J.G.; Duiveman-Deboer, T.; Figdor, C.G.; Jacobs, H.; Tel, J.; De Vries, I.J.M. Long-lasting multifunctional CD8+ T cell responses in end-stage melanoma patients can be induced by dendritic cell vaccination. OncoImmunology 2015, 5, e1067745. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Gnjatic, S.; Li, H.; Powel, S.; Gallardo, H.F.; Ritter, E.; Ku, G.; Jungbluth, A.A.; Segal, N.H.; Rasalan, T.S.; et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc. Natl. Acad. Sci. USA 2018, 105, 20410–20415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preglej, T.; Hamminger, P.; Luu, M.; Bulat, T.; Andersen, L.; Göschl, L.; Stolz, V.; Rica, R.; Sandner, L.; Waltenberger, D.; et al. Histone deacetylases 1 and 2 restrain CD4+ cytotoxic T lymphocyte differentiation. JCI Insight 2020, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, A.; Saito, T. CD4 CTL, a Cytotoxic Subset of CD4+ T Cells, Their Differentiation and Function. Front. Immunol. 2017, 8, 2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quezada, S.A.; Simpson, T.R.; Peggs, K.S.; Merghoub, T.; Vider, J.; Fan, X.; Blasberg, R.; Yagita, H.; Muranski, P.; Antony, P.A.; et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 2010, 207, 637–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Wang, F. Polysaccharides: Candidates of promising vaccine adjuvants. Drug Discov. Ther. 2015, 9, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Dredge, K.; Marriott, B.; Todryk, S.; Dalgleish, A. Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy. Cancer Immunol. Immunother. 2002, 51, 521–531. [Google Scholar] [CrossRef]
- Agger, E.M.; Cassidy, J.P.; Brady, J.; Korsholm, K.S.; Vingsbo-Lundberg, C.; Andersen, P. Adjuvant modulation of the cytokine balance in Mycobacterium tuberculosis subunit vaccines; immunity, pathology and protection. Immunology 2008, 124, 175–185. [Google Scholar] [CrossRef]
- Miller, S.M.; Cybulski, V.; Whitacre, M.; Bess, L.S.; Livesay, M.T.; Walsh, L.; Burkhart, D.; Bazin, H.G.; Evans, J.T. Novel lipidated imidazoquinoline tlr7/8 adjuvants elicit influenza-specific th1 immune responses and protect against heterologous h3n2 influenza challenge in mice. Front. Immunol. 2020, 11, 406. [Google Scholar] [CrossRef]
- Banchereau, J.; Palucka, A.K. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol. 2005, 5, 296–306. [Google Scholar] [CrossRef]
- Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 2012, 12, 265–277. [Google Scholar] [CrossRef]
- Sallusto, F.; Lanzavecchia, A. The instructive role of dendritic cells on T-cell responses. Arthritis Res. 2002, 4, S127–S132. [Google Scholar] [CrossRef]
- Pennock, N.D.; White, J.T.; Cross, E.W.; Cheney, E.E.; Tamburini, B.A.; Kedl, R. T cell responses: Naïve to memory and everything in between. Adv. Physiol. Educ. 2013, 37, 273–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wei, K.; Yang, S.; Li, B.; Zhang, Y.; Zhu, F.; Wang, D.; Chi, S.; Jiang, X.; Zhu, R. Co-adjuvant effects of plant polysaccharide and propolis on chickens inoculated with Bordetella avium inactivated vaccine. Avian Pathol. 2015, 44, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-O.; Zhang, W.; Du, J.-Y.; Wong, K.-W.; Oda, T.; Yu, Q. Fucoidan Can Function as an Adjuvant In Vivo to Enhance Dendritic Cell Maturation and Function and Promote Antigen-Specific T Cell Immune Responses. PLoS ONE 2014, 9, e99396. [Google Scholar] [CrossRef] [PubMed]
- Cayabyab, M.J.; Macovei, L.; Campos-Neto, A. Current and novel approaches to vaccine development against tuberculosis. Front. Microbiol. 2012, 2, 154. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.-L.L.; Pewe, L.L.; Fleenor, C.J.; Langlois, R.A.; Legge, K.L.; Badovinac, V.P.; Harty, J.T. Exploiting cross-priming to generate protective CD8 T-cell immunity rapidly. Proc. Natl. Acad. Sci. USA 2010, 107, 12198–12203. [Google Scholar] [CrossRef] [Green Version]
- Chua, B.Y.; Olson, M.R.; Bedoui, S.; Sekiya, T.; Wong, C.Y.; Turner, S.J.; Jackson, D. The use of a TLR2 agonist-based adjuvant for enhancing effector and memory CD8 T-cell responses. Immunol. Cell Boil. 2014, 92, 377–383. [Google Scholar] [CrossRef]
- Maletto, B.; Ropolo, A.; Moron, V.; Pistoresi-Palencia, M.C. Cpg-DNA stimulates cellular and humoral immunity and promotes th1 differentiation in aged balb/c mice. J. Leukoc. Biol. 2002, 72, 447–454. [Google Scholar]
- Tian, Y.; Li, M.; Yu, C.; Zhang, R.; Zhang, X.; Huang, R.; Lu, L.; Yuan, F.; Fan, Y.; Zhou, B.; et al. The novel complex combination of alum, CpG ODN and HH2 as adjuvant in cancer vaccine effectively suppresses tumor growth in vivo. Oncotarget 2017, 8, 45951–45964. [Google Scholar] [CrossRef] [Green Version]
- Hosoi, A.; Takeda, Y.; Furuichi, Y.; Kurachi, M.; Kimura, K.; Maekawa, R.; Takatsu, K.; Kakimi, K. Memory Th1 Cells Augment Tumor-Specific CTL following Transcutaneous Peptide Immunization. Cancer Res. 2008, 68, 3941–3949. [Google Scholar] [CrossRef] [Green Version]
- Mateu-Jimenez, M.; Curull, V.; Pijuan, L.; Sánchez-Font, A.; Rivera-Ramos, H.; Rodríguez-Fuster, A.; Aguiló, R.; Gea, J.; Barreiro, E. Systemic and Tumor Th1 and Th2 Inflammatory Profile and Macrophages in Lung Cancer: Influence of Underlying Chronic Respiratory Disease. J. Thorac. Oncol. 2017, 12, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Young, J.M.; Adetifa, I.M.O.; Ota, M.O.C.; Sutherland, J. Expanded Polyfunctional T Cell Response to Mycobacterial Antigens in TB Disease and Contraction Post-Treatment. PLoS ONE 2010, 5, e11237. [Google Scholar] [CrossRef] [PubMed]
- A Darrah, P.; Patel, D.T.; De Luca, P.M.; Lindsay, R.W.B.; Davey, D.F.; Flynn, B.J.; Hoff, S.T.; Andersen, P.; Reed, S.G.; Morris, S.L.; et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 2007, 13, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Demers, K.R.; Reuter, M.A.; Betts, M.R. CD8(+) T-cell effector function and transcriptional regulation during HIV pathogenesis. Immunol. Rev. 2013, 254, 190–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahan, R.; Sega, E.; Engelhardt, J.; Selby, M.; Korman, A.J.; Ravetch, J.V. Fcgammars modulate the anti-tumor activity of antibodies targeting the pd-1/pd-l1 axis. Cancer Cell 2015, 28, 285–295. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.S.; Han, J.M.; Song, H.-Y.; Byun, E.-H.; Lim, S.-T.; Byun, E.-B. Annona muricata L.-Derived Polysaccharides as a Potential Adjuvant to a Dendritic Cell-Based Vaccine in a Thymoma-Bearing Model. Nutrients 2020, 12, 1602. https://doi.org/10.3390/nu12061602
Kim WS, Han JM, Song H-Y, Byun E-H, Lim S-T, Byun E-B. Annona muricata L.-Derived Polysaccharides as a Potential Adjuvant to a Dendritic Cell-Based Vaccine in a Thymoma-Bearing Model. Nutrients. 2020; 12(6):1602. https://doi.org/10.3390/nu12061602
Chicago/Turabian StyleKim, Woo Sik, Jeong Moo Han, Ha-Yeon Song, Eui-Hong Byun, Seung-Taik Lim, and Eui-Baek Byun. 2020. "Annona muricata L.-Derived Polysaccharides as a Potential Adjuvant to a Dendritic Cell-Based Vaccine in a Thymoma-Bearing Model" Nutrients 12, no. 6: 1602. https://doi.org/10.3390/nu12061602
APA StyleKim, W. S., Han, J. M., Song, H. -Y., Byun, E. -H., Lim, S. -T., & Byun, E. -B. (2020). Annona muricata L.-Derived Polysaccharides as a Potential Adjuvant to a Dendritic Cell-Based Vaccine in a Thymoma-Bearing Model. Nutrients, 12(6), 1602. https://doi.org/10.3390/nu12061602