Association between Low Protein Intake and Mortality in Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. Laboratory Tests
2.3. Nutritional Assessment
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jørgensen, P.; Langhammer, A.; Krokstad, S.; Forsmo, S. Mortality in persons with undetected and diagnosed hypertension, type 2 diabetes, and hypothyroidism, compared with persons without corresponding disease—A prospective cohort study; The HUNT Study, Norway. BMC Fam. Pract. 2017, 18, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, S.; Tanaka, S.; Iimuro, S.; Akanuma, Y.; Ohashi, Y.; Yamada, N.; Araki, A.; Ito, H.; Sone, H. Japan diabetes complications study group and the Japanese elderly diabetes intervention trial group. Body mass index and mortality among Japanese patients with type 2 diabetes: Pooled analysis of the Japan diabetes complications study and the Japanese elderly diabetes intervention trial. J. Clin. Endocrinol. Metab. 2014, 99, E2692–F2696. [Google Scholar] [PubMed] [Green Version]
- Hubbard, R.E.; Lang, I.A.; Llewellyn, D.J.; Rockwood, K. Frailty, body mass index, and abdominal obesity in older people. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celis-Morales, C.A.; Petermann, F.; Hui, L.; Lyall, D.M.; Iliodromiti, S.; McLaren, J.; Anderson, J.; Welsh, P.; Mackay, D.F.; Pell, J.P.; et al. Associations between diabetes and both cardiovascular disease and all-cause mortality are modified by grip strength: Evidence from UK Biobank, a prospective population-based cohort study. Diabetes Care 2017, 40, 1710–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.-G.; Jiang, Z.-S.; Gong, P.-Y.; Zhang, N.-M.; Zou, Z.-W.; Zhang, Q.; Ma, H.-M.; Guo, Z.-G.; Zhao, J.-Y.; Dong, J.; et al. Efficacy of low-protein diet for diabetic nephropathy: A systematic review of randomized controlled trials. Lipids Health Dis. 2018, 17, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nezu, U.; Kamiyama, H.; Kondo, Y.; Sakuma, M.; Morimoto, T.; Ueda, S. Effect of low-protein diet on kidney function in diabetic nephropathy: Meta-analysis of randomised controlled trials. BMJ Open 2013, 3, e002934. [Google Scholar] [CrossRef]
- Malhotra, R.; Cavanaugh, K.L.; Blot, W.J.; Ikizler, T.A.; Lipworth, L.; Kabagambe, E.K. Higher protein intake is associated with increased risk for incident end-stage renal disease among blacks with diabetes in the Southern Community Cohort Study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Menon, V.; Kopple, J.D.; Wang, X.; Beck, G.J.; Collins, A.J.; Kusek, J.W.; Greene, T.; Levey, A.S.; Sarnak, M.J. Effect of a very low-protein diet on outcomes: Long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am. J. Kidney Dis. 2019, 53, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Sone, H.; Tanaka, S.; Iimuro, S.; Tanaka, S.; Oida, K.; Yamasaki, Y.; Oikawa, S.; Ishibashi, S.; Katayama, S.; Yamashita, H.; et al. Long-term lifestyle intervention lowers the incidence of stroke in Japanese patients with type 2 diabetes: A nationwide multicentre randomised controlled trial (the Japan Diabetes Complications Study). Diabetologia 2010, 53, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, S.; Tanaka, S.; Iimuro, S.; Yamashita, H.; Katayama, S.; Ohashi, Y.; Akanuma, Y.; Yamada, N.; Sone, H. On behalf of the Japan Diabetes Complications Study Group. Cohort profile: The Japan diabetes complications study: A long-term follow-up of a randomised lifestyle intervention study of type 2 diabetes. Int. J. Epidemiol. 2014, 43, 1054–1062. [Google Scholar] [CrossRef] [Green Version]
- Araki, A.; Iimuro, S.; Sakurai, T.; Umegaki, H.; Iijima, K.; Nakano, H.; Oba, K.; Yokono, K.; Sone, H.; Yamada, N.; et al. Long-term multiple risk factor interventions in Japanese elderly diabetic patients: The Japanese Elderly Diabetes Intervention Trial—Study design, baseline characteristics and effects of intervention. Geriatr. Gerontol. Int. 2012, 12, 7–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sone, H.; Yamada, N.; Mizuno, S.; Aida, R.; Ohashi, Y. Alcohol use and diabetes mellitus. Ann. Intern. Med. 2004, 141, 408–409. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, C.; Yoshimura, Y.; Kamada, C.; Tanaka, S.; Tanaka, S.; Takahashi, A.; Hanyu, O.; Araki, A.; Ito, H.; Tanaka, A.; et al. Dietary intake in Japanese patients with type 2 diabetes: Analysis from Japan Diabetes Complications Study. J. Diabetes Investig. 2014, 5, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yoshimura, Y.; Kaimoto, T.; Kunii, D.; Komatsu, T.; Yamamoto, S. Validation of a Food Frequency Questionnaire based on food groups for estimating individual nutrient intake. Jpn. J. Nutr. 2001, 59, 221–232. [Google Scholar] [CrossRef]
- Beaglehole, R.; Stewart, A.W.; Butler, M. Comparability of old and new World Health Organization criteria for definite myocardial infarction. Int. J. Epidemiol. 1987, 16, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, J.; Kuulasmaa, K. WHO MONICA Project: Assessing CHD mortality and morbidity. Int. J. Epidemiol. 1989, 18, S38–S45. [Google Scholar]
- The Committee of Ministry of Health. Labor and Welfare on the Diagnostic Criteria of Stroke. Report of The Committee of Ministry of Health, Labor and Welfare on the Diagnostic Criteria of Stroke; Ministry of Health, Labor and Welfare: Tokyo, Japan, 2013.
- Aho, K.; Harmsen, P.; Hatano, S.; Marquardsen, J.; Smirnov, V.E.; Strasser, T. Cerebrovascular disease in the community: Results of a WHO collaborative study. Bull. World Health Organ. 1980, 58, 113–130. [Google Scholar]
- Levine, M.E.; Suarez, J.A.; Brandhorst, S.; Balasubramanian, P.; Cheng, C.W.; Madia, F.; Fontana, L.; Mirisola, M.G.; Guevara-Aguirre, J.; Wan, J.; et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014, 19, 407–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miki, A.; Hashimoto, Y.; Matsumoto, S.; Ushigome, E.; Fukuda, T.; Sennmaru, T.; Tanaka, M.; Yamazaki, M.; Fukui, M. Protein intake, especially vegetable protein intake, is associated with higher skeletal muscle mass in elderly patients with type 2 diabetes. J. Diabetes Res. 2017, 2017, 7985728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho-Júnior, H.J.; Rodrigues, B.; Uchida, M.; Marzetti, E. Low protein intake is associated with frailty in older adults: A systematic review and meta-analysis of observational studies. Nutrients 2018, 10, 1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Rodríguez, M.; Carnicero, J.A.; Garcia-Garcia, F.J.; Walter, S.; Morley, J.E.; Rodríguez-Artalejo, F.; Sinclair, A.J.; Rodríguez-Mañas, L. Frailty as a major factor in the increased risk of death and disability in older people with diabetes. J. Am. Med. Dir. Assoc. 2016, 17, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, E.; Miller, M.; Yaxley, A.; Isenring, E. Malnutrition in the elderly: A narrative review. Maturitas 2013, 76, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araki, A.; Ito, H. Diabetes mellitus and geriatric syndromes. Geriatr. Gerontol. Int. 2009, 9, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.X.; Chen, Y.; Yang, Y.X.; Yang, K.; Liang, J.; Wang, S.; Gan, H.T. Pilot study of the Mini Nutritional Assessment on predicting outcomes in older adults with type 2 diabetes. Geriatr. Gerontol. Int. 2017, 17, 2485–2492. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Choe, Y.; Mustad, V.A.; Chakraborty, S.; Goates, S.; Luo, M.; Mechanick, J.I. Impact of malnutrition on survival and healthcare utilization in Medicare beneficiaries with diabetes: A retrospective cohort analysis. BMJ Open Diabetes Res. Care 2018, 6, e000471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern. Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef]
- Kelemen, L.E.; Kushi, L.H.; Jacobs, D.R., Jr.; Cerhan, J.R. Associations of dietary protein with disease and mortality in a prospective study of postmenopausal women. Am. J. Epidemiol. 2005, 161, 239–249. [Google Scholar] [CrossRef]
- Iimuro, S.; Yoshimura, Y.; Umegaki, H.; Sakurai, T.; Araki, A.; Ohashi, Y.; Ito, H. Dietary pattern and mortality in Japanese elderly patients with type 2 diabetes mellitus-Does vegetable- and fish-rich diet improve mortality? An explanatory study. Geriatr. Gerontol. Int. 2012, 12, 59–67. [Google Scholar] [CrossRef]
- Horikawa, C.; Kamada, C.; Tanaka, S.; Tanaka, S.; Araki, A.; Ito, H.; Matsunaga, S.; Fujihara, K.; Yoshimura, Y.; Ohashi, Y.; et al. Meat intake and incidence of cardiovascular disease in Japanese patients with type 2 diabetes: Analysis of the Japan Diabetes Complications Study (JDCS). Eur. J. Nutr. 2019, 58, 281–290. [Google Scholar] [CrossRef]
- Campmans-Kuijpers, M.J.; Sluijs, I.; Nöthlings, U.; Freisling, H.; Overvad, K.; Weiderpass, E.; Fagherazzi, G.; Kühn, T.; Katzke, V.A.; Mattiello, A.; et al. Isocaloric substitution of carbohydrates with protein: The association with weight change and mortality among patients with type 2 diabetes. Cardiovasc. Diabetol. 2015, 14, 39. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.T.; van Dam, R.M.; Hankinson, S.E.; Stampfer, M.; Willett, W.C.; Hu, F.B. Low-carbohydrate diets and all-cause and cause-specific mortality: Two cohort studies. Ann. Intern. Med. 2010, 153, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Haring, B.; Selvin, E.; Liang, M.; Coresh, J.; Grams, M.E.; Petruski-Ivleva, N.; Steffen, L.M.; Rebholz, C.M. Dietary protein sources and risk for incident chronic kidney disease: Results from the Atherosclerosis Risk in Communities (ARIC) study. J. Ren. Nutr. 2017, 27, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Dunkler, D.; Dehghan, M.; Teo, K.K.; Heinze, G.; Gao, P.; Kohl, M.; Clase, C.M.; Mann, J.F.; Yusuf, S.; Oberbauer, R. Diet and kidney disease in high-risk individuals with type 2 diabetes mellitus. JAMA Intern. Med. 2013, 173, 1682–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, D.; Hodson, E.M.; Fouque, D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst. Rev. 2018, 10, CD001892. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Tanaka, S.; Iimuro, S.; Yamashita, H.; Katayama, S.; Akanuma, Y.; Yamada, N.; Araki, A.; Ito, H.; Sone, H.; et al. Predicting macro- and microvascular complications in type 2 diabetes: The Japan Diabetes Complications Study/the Japanese Elderly Diabetes Intervention Trial risk engine. Diabetes Care 2013, 36, 1193–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Q1 (<0.92 g/kg BW) (n = 624) | Q2 (0.92–1.15 g/kg BW) (n = 623) | Q3 (1.15–1.41 g/kg BW) (n = 624) | Q4 (>1.41 g/kg BW) (n = 623) | p–Value | |
---|---|---|---|---|---|
Age (years) | 63.2 ± 9.0 | 63.1 ± 9.2 | 63.7 ± 8.8 | 63.8 ± 8.3 | 0.38 |
Women (%) | 38.3 | 50.9 | 51.9 | 58.9 | <0.01 |
HbA1c (%) | 7.9 ± 1.1 | 7.9 ± 1.1 | 8.0 ± 1.2 | 8.0 ± 1.2 | 0.36 |
Duration of diabetes (years) (n = 1899) | 10.6 ± 7.1 | 11 ± 6.9 | 11.1 ± 7.6 | 12.1 ± 7.7 | 0.01 |
Body mass index (kg/m2) (n = 2481) | 24.9 ± 3.2 | 23.7 ± 3.0 | 22.9 ± 2.8 | 21.7 ± 2.8 | <0.01 |
Systolic blood pressure (mmHg) (n = 2482) | 134.6 ± 15.4 | 134.5 ± 16.6 | 132.8 ± 15.9 | 132.0 ± 16.9 | <0.01 |
LDL cholesterol (mg/dL) (n = 2438) | 121.2 ± 32 | 125.7 ± 31.3 | 120.8 ± 33.4 | 119.0 ± 30.4 | <0.01 |
Ex- or current smoker (%) (n = 2350) | 29.8 | 26.1 | 18.4 | 19.8 | <0.01 |
Alcohol intake (%) (n = 2361) | 39.3 | 37.3 | 34.0 | 30.7 | 0.01 |
Exercise (%) (n = 2362) | 55.9 | 59.9 | 61.5 | 60.4 | 0.22 |
Urine albumin creatinine ratio * (mg/g Cr) (n = 2342) | 23.0(10.7–68.3) | 21.2 (9.8–65.1) | 20.1 (9.7–58.6) | 19.0 (9.4–53.3) | 0.17 ** |
eGFR (mL/min/1.73 m2) (n = 2473) | 78.0 ± 31.0 | 79.4 ± 28.1 | 80.6 ± 29.0 | 80.2 ± 25.2 | 0.40 |
History of cardiovascular disease (n = 2480) | 41/621 (6.6%) | 44/623 (7.1%) | 34/619 (5.5%) | 34/617 (5.5%) | 0.57 |
History of stroke (n = 2479) | 38/621 (6.1%) | 31/622 (5.0%) | 25/619 (4.0%) | 28/617 (4.5%) | 0.37 |
Protein intake (g/day/kg BW) | 0.8 ± 0.1 | 1.0 ± 0.1 | 1.3 ± 0.1 | 1.7 ± 0.3 | <0.01 |
Protein energy ratio (%) | 13.8 ± 1.8 | 15.1 ± 1.9 | 16.1 ± 1.8 | 17.5 ± 2.2 | <0.01 |
Carbohydrate intake (g/day/kg BW) | 3.3 ± 0.7 | 3.8 ± 0.7 | 4.4 ± 0.8 | 5.0 ± 1.0 | <0.01 |
Carbohydrate energy ratio (%) | 58.4 ± 6.7 | 55.6 ± 6.0 | 54.2 ± 5.4 | 51.1 ± 6.0 | <0.01 |
Fat intake (g/day/kg BW) | 0.6 ± 0.2 | 0.8 ± 0.2 | 1.0 ± 0.2 | 1.3 ± 0.3 | <0.01 |
Fat energy ratio (%) | 24.1 ± 5.1 | 26.2 ± 4.5 | 27.5 ± 4.3 | 29.4 ± 4.7 | <0.01 |
Total energy intake (kcal/day) | 1410.9 ± 258.2 | 1622.0 ± 287.5 | 1818.8 ± 306.3 | 2071.6 ± 384.5 | <0.01 |
Total energy intake (g/day/kg BW) | 22.3 ± 3.6 | 27.5 ± 3.5 | 32.0 ± 3.9 | 39.5 ± 6.6 | <0.01 |
n* | Q1 (<0.92 g/kg BW) | Q2 (0.92–1.15 g/kg BW) | Q3 (1.15–1.41 g/kg BW) | Q4 (>1.41 g/kg BW) | p for Trend | ||||
---|---|---|---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | Reference | |||
Model 1 | 152 | 1.83 (1.17–2.84) | 0.008 | 1.28 (0.80–2.05) | 0.302 | 0.89 (0.53–1.49) | 0.654 | 1 | 0.002 |
Model 2 | 142 | 1.95 (1.18–3.21) | 0.009 | 1.43 (0.87–2.36) | 0.155 | 0.79 (0.46–1.37) | 0.405 | 1 | 0.001 |
Model 3 | 135 | 2.26 (1.34–3.82) | 0.002 | 1.73 (1.03–2.91) | 0.038 | 0.92 (0.52–1.64) | 0.785 | 1 | <0.001 |
Model 4 | 135 | 1.93 (0.87–4.26) | 0.106 | 1.56 (0.82–2.98) | 0.177 | 0.87 (0.47–1.61) | 0.665 | 1 | 0.047 |
Q1 (<0.92 g/kg BW) | Q2 (0.92–1.15 g/kg BW) | Q3 (1.15–1.41 g/kg BW) | Q4 (>1.41 g/kg BW) | p for Trend | |||||
---|---|---|---|---|---|---|---|---|---|
n * | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | Reference | ||
Men | |||||||||
Model 1 | 98 | 1.75 (0.98–3.13) | 0.058 | 1.31 (0.7–2.45) | 0.399 | 0.93 (0.47–1.84) | 0.834 | 1 | 0.018 |
Model 2 | 91 | 2.04 (1.07–3.86) | 0.029 | 1.43 (0.74–2.77) | 0.290 | 0.79 (0.38–1.65) | 0.539 | 1 | 0.005 |
Model 3 | 87 | 2.19 (1.12–4.28) | 0.021 | 1.61 (0.82–3.17) | 0.170 | 0.92 (0.43–1.93) | 0.817 | 1 | 0.005 |
Model 4 | 87 | 1.43 (0.54–3.77) | 0.475 | 1.22 (0.54–2.75) | 0.634 | 0.8 (0.37–1.75) | 0.582 | 1 | 0.335 |
Women | |||||||||
Model 1 | 54 | 1.51 (0.73–3.12) | 0.271 | 1.14 (0.56–2.34) | 0.712 | 0.77 (0.35–1.72) | 0.526 | 1 | 0.209 |
Model 2 | 51 | 1.88 (0.81–4.37) | 0.143 | 1.59 (0.74–3.43) | 0.235 | 0.85 (0.36–1.98) | 0.702 | 1 | 0.081 |
Model 3 | 48 | 2.35 (0.99–5.58) | 0.053 | 2.13 (0.95–4.77) | 0.068 | 1.00 (0.40–2.48) | 0.993 | 1 | 0.021 |
Model 4 | 48 | 4.22 (1.04–17.16) | 0.044 | 3.15 (1.05–9.47) | 0.041 | 1.29 (0.45–3.64) | 0.636 | 1 | 0.019 |
Age ≥ 75 yrs | |||||||||
Model 1 | 27 | 2.51 (0.86–7.34) | 0.094 | 1.87 (0.63–5.57) | 0.263 | 0.48 (0.11–2.00) | 0.311 | 1 | 0.017 |
Model 2 | 27 | 4.38 (1.22–15.8) | 0.024 | 2.16 (0.66–7.09) | 0.206 | 0.62 (0.14–2.70) | 0.521 | 1 | 0.007 |
Model 3 | 25 | 5.59 (1.45–21.55) | 0.012 | 2.63 (0.71–9.84) | 0.150 | 0.83 (0.17–3.93) | 0.810 | 1 | 0.004 |
Model 4 | 25 | 15.3 (2.17–107.3) | 0.006 | 5.45 (1.03–28.76) | 0.046 | 1.05 (0.21–5.23) | 0.950 | 1 | 0.004 |
Age: 65–74 yrs | |||||||||
Model 1 | 71 | 1.33 (0.73–2.42) | 0.347 | 0.85 (0.43–1.7) | 0.649 | 0.71 (0.35–1.43) | 0.336 | 1 | 0.261 |
Model 2 | 62 | 1.33 (0.66–2.69) | 0.427 | 0.84 (0.4–1.79) | 0.654 | 0.57 (0.26–1.26) | 0.163 | 1 | 0.280 |
Model 3 | 59 | 1.27 (0.62–2.64) | 0.513 | 0.88 (0.41–1.89) | 0.750 | 0.52 (0.23–1.19) | 0.122 | 1 | 0.333 |
Model 4 | 59 | 1.03 (0.31–3.38) | 0.962 | 0.77 (0.29–2.04) | 0.598 | 0.48 (0.2–1.18) | 0.111 | 1 | 0.720 |
Age < 65 yrs | |||||||||
Model 1 | 46 | 2.67 (1.04–6.89) | 0.042 | 2.14 (0.82–5.56) | 0.120 | 1.93 (0.71–5.21) | 0.196 | 1 | 0.044 |
Model 2 | 45 | 2.67 (0.98–7.30) | 0.055 | 2.36 (0.88–6.32) | 0.087 | 1.80 (0.65–5.03) | 0.259 | 1 | 0.048 |
Model 3 | 44 | 3.33 (1.11–10.02) | 0.032 | 2.86 (0.96–8.52) | 0.060 | 2.31 (0.75–7.10) | 0.144 | 1 | 0.033 |
Model 4 | 44 | 1.32 (0.29–5.93) | 0.715 | 1.53 (0.42–5.55) | 0.518 | 1.71 (0.53–5.50) | 0.372 | 1 | 0.924 |
HbA1c ≥ 7.5% | |||||||||
Model 1 | 105 | 1.72 (1.03–2.87) | 0.039 | 1.28 (0.75–2.18) | 0.364 | 0.54 (0.27–1.06) | 0.071 | 1 | 0.004 |
Model 2 | 100 | 1.70 (0.95–3.04) | 0.073 | 1.42 (0.81–2.49) | 0.226 | 0.52 (0.26–1.06) | 0.071 | 1 | 0.011 |
Model 3 | 96 | 1.99 (1.08–3.66) | 0.027 | 1.65 (0.92–2.98) | 0.095 | 0.64 (0.31–1.32) | 0.227 | 1 | 0.004 |
Model 4 | 96 | 1.79 (0.68–4.74) | 0.241 | 1.55 (0.72–3.31) | 0.261 | 0.62 (0.29–1.33) | 0.220 | 1 | 0.099 |
HbA1c < 7.5% | |||||||||
Model 1 | 47 | 2.33 (0.97–5.62) | 0.060 | 1.28 (0.48–3.43) | 0.625 | 2.15 (0.87–5.32) | 0.099 | 1 | 0.147 |
Model 2 | 42 | 2.86 (1.03–7.91) | 0.043 | 1.51 (0.52–4.35) | 0.446 | 1.90 (0.69–5.25) | 0.213 | 1 | 0.067 |
Model 3 | 39 | 3.26 (1.09–9.78) | 0.035 | 1.85 (0.60–5.7) | 0.286 | 1.94 (0.64–5.91) | 0.241 | 1 | 0.040 |
Model 4 | 39 | 2.44 (0.55–10.73) | 0.239 | 1.51 (0.41–5.64) | 0.539 | 1.76 (0.55–5.62) | 0.342 | 1 | 0.303 |
SBP ≥ 135mmHg | |||||||||
Model 1 | 69 | 2.22 (1.16–4.25) | 0.017 | 1.05 (0.50–2.21) | 0.890 | 0.79 (0.36–1.77) | 0.574 | 1 | 0.005 |
Model 2 | 65 | 4.00 (1.85–8.67) | <0.001 | 1.51 (0.68–3.35) | 0.311 | 0.86 (0.36–2.09) | 0.746 | 1 | <0.001 |
Model 3 | 62 | 5.04 (2.30–11.04) | <0.001 | 1.90 (0.84–4.30) | 0.126 | 0.94 (0.37–2.38) | 0.895 | 1 | <0.001 |
Model 4 | 62 | 3.00 (0.89–10.09) | 0.076 | 1.33 (0.48–3.73) | 0.583 | 0.79 (0.30–2.11) | 0.642 | 1 | 0.039 |
SBP < 135 mmHg | |||||||||
Model 1 | 83 | 1.49 (0.81–2.74) | 0.202 | 1.46 (0.8–2.67) | 0.222 | 0.96 (0.49–1.88) | 0.904 | 1 | 0.103 |
Model 2 | 77 | 1.13 (0.57–2.25) | 0.732 | 1.39 (0.73–2.65) | 0.311 | 0.79 (0.38–1.60) | 0.507 | 1 | 0.414 |
Model 3 | 73 | 1.17 (0.56–2.44) | 0.669 | 1.55 (0.79–3.04) | 0.203 | 0.92 (0.44–1.92) | 0.821 | 1 | 0.408 |
Model 4 | 73 | 1.14 (0.40–3.30) | 0.803 | 1.52 (0.66–3.52) | 0.324 | 0.91 (0.42–1.99) | 0.814 | 1 | 0.583 |
Total energy intake < 1533 kcal/day | |||||||||
Model 1 | 71 | 1.53 (0.37–6.32) | 0.554 | 0.88 (0.2–3.84) | 0.867 | 0.93 (0.19–4.46) | 0.924 | 1 | 0.080 |
Model 2 | 66 | 1.03 (0.22–4.85) | 0.969 | 0.80 (0.17–3.72) | 0.777 | 0.68 (0.13–3.57) | 0.648 | 1 | 0.452 |
Model 3 | 63 | 0.74 (0.16–3.52) | 0.707 | 0.68 (0.15–3.21) | 0.629 | 0.58 (0.11–3.06) | 0.519 | 1 | 0.840 |
Total energy intake: 1533–1833 kcal/day | |||||||||
Model 1 | 41 | 1.25 (0.44–3.55) | 0.680 | 1.60 (0.66–3.86) | 0.295 | 1.02 (0.39–2.68) | 0.969 | 1 | 0.388 |
Model 2 | 39 | 1.37 (0.33–5.73) | 0.671 | 1.55 (0.53–4.52) | 0.418 | 0.91 (0.32–2.55) | 0.850 | 1 | 0.425 |
Model 3 | 37 | 1.82 (0.42–8.01) | 0.425 | 1.96 (0.64–6.07) | 0.240 | 1.04 (0.34–3.15) | 0.943 | 1 | 0.246 |
Total energy intake ≥ 1834 kcal/day | |||||||||
Model 1 | 40 | 0.57 (0.08–4.26) | 0.587 | 1.23 (0.52–2.87) | 0.640 | 0.74 (0.35–1.56) | 0.427 | 1 | 0.839 |
Model 2 | 37 | 0.91 (0.11–7.58) | 0.930 | 1.30 (0.48–3.52) | 0.599 | 0.66 (0.29–1.52) | 0.329 | 1 | 0.936 |
Model 3 | 35 | 1.01 (0.12–8.54) | 0.996 | 1.48 (0.54–4.06) | 0.451 | 0.78 (0.34–1.83) | 0.572 | 1 | 0.698 |
eGFR≥ 75.4 mL/min/1.73 m2 | |||||||||
Model 1 | 54 | 2.72 (1.25–5.94) | 0.012 | 1.47 (0.62–3.50) | 0.379 | 1.42 (0.60–3.37) | 0.426 | 1 | 0.010 |
Model 2 | 51 | 2.76 (1.19–6.42) | 0.018 | 1.60 (0.66–3.88) | 0.295 | 1.26 (0.51–3.12) | 0.620 | 1 | 0.013 |
Model 3a | 48 | 4.32 (1.60–11.64) | 0.004 | 2.57 (0.92–7.21) | 0.072 | 2.14 (0.75–6.12) | 0.155 | 1 | 0.003 |
Model 4a | 48 | 2.20 (0.53–9.06) | 0.276 | 1.66 (0.49–5.62) | 0.418 | 1.73 (0.58–5.18) | 0.330 | 1 | 0.341 |
eGFR < 75.4 mL/min/1.73 m2 | |||||||||
Model 1 | 98 | 1.38 (0.81–2.37) | 0.239 | 1.13 (0.65–1.98) | 0.665 | 0.66 (0.34–1.28) | 0.217 | 1 | 0.085 |
Model 2 | 91 | 1.58 (0.84–2.96) | 0.153 | 1.35 (0.74–2.47) | 0.334 | 0.61 (0.30–1.24) | 0.174 | 1 | 0.039 |
Model 3a | 87 | 1.68 (0.88–3.22) | 0.115 | 1.50 (0.81–2.78) | 0.192 | 0.61 (0.30–1.27) | 0.188 | 1 | 0.025 |
Model 4a | 87 | 1.92 (0.72–5.15) | 0.196 | 1.64 (0.75–3.58) | 0.217 | 0.64 (0.30–1.39) | 0.261 | 1 | 0.075 |
Duration of diabetes ≥ 9.8 years | |||||||||
Model 1 | 51 | 1.31 (0.64–2.68) | 0.462 | 0.72 (0.32–1.62) | 0.424 | 0.90 (0.41–1.99) | 0.803 | 1 | 0.596 |
Model 2 | 47 | 2.00 (0.89–4.50) | 0.093 | 1.05 (0.45–2.47) | 0.909 | 0.78 (0.32–1.91) | 0.589 | 1 | 0.088 |
Model 3 | 46 | 2.44 (1.04–5.69) | 0.040 | 1.34 (0.54–3.28) | 0.526 | 1.02 (0.40–2.55) | 0.974 | 1 | 0.036 |
Model 4 | 46 | 1.88 (0.49–7.17) | 0.357 | 1.13 (0.36–3.47) | 0.837 | 0.93 (0.35–2.49) | 0.891 | 1 | 0.354 |
Duration of diabetes < 9.8 years | |||||||||
Model 1 | 47 | 3.20 (1.28–8.01) | 0.013 | 2.21 (0.84–5.81) | 0.108 | 1.52 (0.54–4.26) | 0.430 | 1 | 0.006 |
Model 2 | 46 | 2.31 (0.87–6.15) | 0.093 | 1.87 (0.69–5.05) | 0.216 | 1.39 (0.48–3.97) | 0.543 | 1 | 0.065 |
Model 3 | 44 | 1.93 (0.70–5.34) | 0.204 | 1.80 (0.66–4.93) | 0.250 | 1.17 (0.40–3.43) | 0.772 | 1 | 0.123 |
Model 4 | 44 | 1.16 (0.26–5.28) | 0.846 | 1.33 (0.40–4.45) | 0.647 | 0.98 (0.31–3.07) | 0.969 | 1 | 0.731 |
Q1 | Q2 | Q3 | Q4 | p for Trend | |||||
---|---|---|---|---|---|---|---|---|---|
n * | HR(95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR | ||
Animal Protein | |||||||||
<4.2 g/kg BW | 4.2–5.8 g/kg BW | 5.8–7.4 g/kg BW | >7.4 g/kg BW | ||||||
Model 1 | 149 | 1.70 (1.10–2.64) | 0.017 | 1.18 (0.74–1.88) | 0.494 | 0.87 (0.52–1.43) | 0.573 | 1 | 0.006 |
Model 2 | 139 | 1.58 (0.96–2.59) | 0.070 | 1.18 (0.71–1.96) | 0.517 | 0.87 (0.51–1.47) | 0.603 | 1 | 0.030 |
Model 3 | 132 | 1.69 (1.01–2.83) | 0.045 | 1.34 (0.79–2.27) | 0.271 | 0.99 (0.57–1.71) | 0.965 | 1 | 0.022 |
Model 4 | 132 | 1.21 (0.66–2.22) | 0.531 | 1.05 (0.59–1.86) | 0.869 | 0.85 (0.48–1.50) | 0.575 | 1 | 0.359 |
Vegetable Protein | |||||||||
<4.2 g/kg BW | 4.2–6.1 g/kg BW | 6.1–8.4 g/kg BW | >8.4 g/kg BW | ||||||
Model 1 | 150 | 2.32 (1.43–3.78) | 0.001 | 1.85 (1.12–3.06) | 0.016 | 1.43 (0.84–2.42) | 0.184 | 1 | <0.001 |
Model 2 | 140 | 2.21 (1.30–3.75) | 0.003 | 1.77 (1.03–3.02) | 0.037 | 1.35 (0.78–2.35) | 0.286 | 1 | 0.002 |
Model 3 | 133 | 2.32 (1.35–3.98) | 0.002 | 1.88 (1.09–3.25) | 0.024 | 1.27 (0.72–2.26) | 0.412 | 1 | 0.001 |
Model 4 | 133 | 1.92 (1.07–3.43) | 0.028 | 1.65 (0.94–2.91) | 0.082 | 1.22 (0.68–2.17) | 0.501 | 1 | 0.017 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaoka, T.; Araki, A.; Tamura, Y.; Tanaka, S.; Fujihara, K.; Horikawa, C.; Aida, R.; Kamada, C.; Yoshimura, Y.; Moriya, T.; et al. Association between Low Protein Intake and Mortality in Patients with Type 2 Diabetes. Nutrients 2020, 12, 1629. https://doi.org/10.3390/nu12061629
Yamaoka T, Araki A, Tamura Y, Tanaka S, Fujihara K, Horikawa C, Aida R, Kamada C, Yoshimura Y, Moriya T, et al. Association between Low Protein Intake and Mortality in Patients with Type 2 Diabetes. Nutrients. 2020; 12(6):1629. https://doi.org/10.3390/nu12061629
Chicago/Turabian StyleYamaoka, Takuya, Atsushi Araki, Yoshiaki Tamura, Shiro Tanaka, Kazuya Fujihara, Chika Horikawa, Rei Aida, Chiemi Kamada, Yukio Yoshimura, Tatsumi Moriya, and et al. 2020. "Association between Low Protein Intake and Mortality in Patients with Type 2 Diabetes" Nutrients 12, no. 6: 1629. https://doi.org/10.3390/nu12061629
APA StyleYamaoka, T., Araki, A., Tamura, Y., Tanaka, S., Fujihara, K., Horikawa, C., Aida, R., Kamada, C., Yoshimura, Y., Moriya, T., Ohashi, Y., Akanuma, Y., Ito, H., & Sone, H. (2020). Association between Low Protein Intake and Mortality in Patients with Type 2 Diabetes. Nutrients, 12(6), 1629. https://doi.org/10.3390/nu12061629