Prediabetes Conversion to Normoglycemia Is Superior Adding a Low-Carbohydrate and Energy Deficit Formula Diet to Lifestyle Intervention—A 12-Month Subanalysis of the ACOORH Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Intervention
2.4. Diet Regimen
2.5. Outcomes and Measurements
2.6. Statistics
3. Results
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet 2017, 391, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Steven, S.; Hollingsworth, K.G.; Al-Mrabeh, A.; Avery, L.; Aribisala, B.; Caslake, M.; Taylor, R. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care 2016, 39, 808–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempf, K.; Schloot, N.C.; Gartner, B.; Keil, R.; Schadewaldt, P.; Martin, S. Meal replacement reduces insulin requirement, HbA1c and weight long-term in type 2 diabetes patients with >100 U insulin per day. J. Hum. Nutr. Diet. 2014, 27 Suppl. S2, 21–27. [Google Scholar] [CrossRef]
- Kempf, K.; Röhling, M.; Niedermeier, K.; Gärtner, B.; Martin, S. Individualized Meal Replacement Therapy Improves Clinically Relevant Long-Term Glycemic Control in Poorly Controlled Type 2 Diabetes Patients. Nutrients 2018, 10, 1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konig, D.; Kookhan, S.; Schaffner, D.; Deibert, P.; Berg, A. A meal replacement regimen improves blood glucose levels in prediabetic healthy individuals with impaired fasting glucose. Nutrition 2014, 30, 1306–1309. [Google Scholar] [CrossRef] [PubMed]
- Kempf, K.; Altpeter, B.; Berger, J.; Reuss, O.; Fuchs, M.; Schneider, M.; Gartner, B.; Niedermeier, K.; Martin, S. Efficacy of the Telemedical Lifestyle intervention Program TeLiPro in Advanced Stages of Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care 2017, 40, 863–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.; Al-Mrabeh, A.; Zhyzhneuskaya, S.; Peters, C.; Barnes, A.C.; Aribisala, B.S.; Hollingsworth, K.G.; Mathers, J.C.; Sattar, N.; Lean, M.E.J. Remission of Human Type 2 Diabetes Requires Decrease in Liver and Pancreas Fat Content but Is Dependent upon Capacity for beta Cell Recovery. Cell Metab. 2018, 28, 547–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lean, M.E.J.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019, 7, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.L.; Hollingsworth, K.G.; Aribisala, B.S.; Chen, M.J.; Mathers, J.C.; Taylor, R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011, 54, 2506–2514. [Google Scholar] [CrossRef] [Green Version]
- Steven, S.; Taylor, R. Restoring normoglycaemia by use of a very low calorie diet in long- and short-duration Type 2 diabetes. Diabet. Med. 2015, 32, 1149–1155. [Google Scholar] [CrossRef]
- American Diabetes Association. 4. Lifestyle Management: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S38–S50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018, 41, 2669–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018, 61, 2461–2498. [Google Scholar] [CrossRef] [Green Version]
- Esposito, K.; Maiorino, M.I.; Ciotola, M.; Di Palo, C.; Scognamiglio, P.; Gicchino, M.; Petrizzo, M.; Saccomanno, F.; Beneduce, F.; Ceriello, A.; et al. Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: A randomized trial. Ann. Intern. Med. 2009, 151, 306–314. [Google Scholar] [CrossRef]
- Kahleova, H.; Belinova, L.; Malinska, H.; Oliyarnyk, O.; Trnovska, J.; Skop, V.; Kazdova, L.; Dezortova, M.; Hajek, M.; Tura, A.; et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: A randomised crossover study. Diabetologia 2014, 57, 1552–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebbeling, C.B.; Feldman, H.A.; Klein, G.L.; Wong, J.M.W.; Bielak, L.; Steltz, S.K.; Luoto, P.K.; Wolfe, R.R.; Wong, W.W.; Ludwig, D.S. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: Randomized trial. BMJ 2018, 363, k4583. [Google Scholar] [CrossRef] [Green Version]
- Kolb, H.; Stumvoll, M.; Kramer, W.; Kempf, K.; Martin, S. Insulin translates unfavourable lifestyle into obesity. BMC Med. 2018, 16, 232. [Google Scholar] [CrossRef] [Green Version]
- Bojsen-Moller, K.N.; Lundsgaard, A.M.; Madsbad, S.; Kiens, B. Hepatic Insulin Clearance in Regulation of Systemic Insulin Concentrations-Role of Carbohydrate and Energy Availability. Diabetes 2018, 67, 2129–2136. [Google Scholar] [CrossRef] [Green Version]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I.; et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [Green Version]
- Konig, D.; Hörmann, J.; Predel, H.G.; Berg, A. A 12-Month Lifestyle Intervention Program Improves Body Composition and Reduces the Prevalence of Prediabetes in Obese Patients. Obes. Facts 2018, 11, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Saslow, L.R.; Kim, S.; Daubenmier, J.J.; Moskowitz, J.T.; Phinney, S.D.; Goldman, V.; Murphy, E.J.; Cox, R.M.; Moran, P.; Hecht, F.M. A randomized pilot trial of a moderate carbohydrate diet compared to a very low carbohydrate diet in overweight or obese individuals with type 2 diabetes mellitus or prediabetes. PLoS ONE 2014, 9, e91027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. Investigational New Drug Application (IND); Government Publishing Office: Washington, DC, USA, 2018. [Google Scholar]
- Berg, A.; Deibert, P.; Landmann, U.; König, D.; Schmidt-Trucksäss, A.; Rücker, G.; Kreiter, A.; Berg, A. Gewichtsreduktion ist machbar. Halbjahresergebnisse einer klinisch kontrollierten, randomisierten Interventionsstudie mit übergewichtigen Erwachsenen. Ernährungs Umschau 2003, 50, 386–393. [Google Scholar]
- Snorgaard, O.; Poulsen, G.M.; Andersen, H.K.; Astrup, A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2017, 5, e000354. [Google Scholar] [CrossRef]
- Qian, F.; Korat, A.A.; Malik, V.; Hu, F.B. Metabolic Effects of Monounsaturated Fatty Acid-Enriched Diets Compared With Carbohydrate or Polyunsaturated Fatty Acid-Enriched Diets in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care 2016, 39, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. New Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Salas-Salvado, J.; Bullo, M.; Babio, N.; Martinez-Gonzalez, M.A.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Aros, F.; et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Salas-Salvado, J.; Fito, M.; Chiva-Blanch, G.; Fiol, M.; Gomez-Gracia, E.; Aros, F.; Lapetra, J.; et al. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: A prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 2016, 4, 666–676. [Google Scholar] [CrossRef]
- Leslie, W.S.; Taylor, R.; Harris, L.; Lean, M.E. Weight losses with low-energy formula diets in obese patients with and without type 2 diabetes: Systematic review and meta-analysis. Int. J. Obes. 2017, 41, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Stefan, N.; Haring, H.U.; Schulze, M.B. Metabolically healthy obesity: The low-hanging fruit in obesity treatment? Lancet Diabetes Endocrinol. 2017, 6, 249–258. [Google Scholar] [CrossRef]
- Sellahewa, L.; Khan, C.; Lakkunarajah, S.; Idris, I. A Systematic Review of Evidence on the Use of Very Low Calorie Diets in People with Diabetes. Curr. Diabetes Rev. 2017, 13, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Jackness, C.; Karmally, W.; Febres, G.; Conwell, I.M.; Ahmed, L.; Bessler, M.; McMahon, D.J.; Korner, J. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and beta-cell Function in type 2 diabetic patients. Diabetes 2013, 62, 3027–3032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhanpuri, N.H.; Hallberg, S.J.; Williams, P.T.; McKenzie, A.L.; Ballard, K.D.; Campbell, W.W.; McCarter, J.P.; Phinney, S.D.; Volek, J.S. Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: An open label, non-randomized, controlled study. Cardiovasc. Diabetol. 2018, 17, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
INT Group (n = 96) | CON Group (n = 45) | P | |
---|---|---|---|
Sex (% male) | 27.1 | 31.1 | 0.690 |
Age (years) | 53 ± 9 | 52 ± 8 | 0.619 |
Weight (kg) | 92 ± 14 | 92 ± 10 | 0.923 |
BMI (kg/m2) | 32.2 ± 2.2 | 32.2 ± 2.3 | 0.900 |
WC (cm) | 107 ± 9 | 108 ± 8 | 0.438 |
WHR | 0.95 ± 0.08 | 0.96 ± 0.08 | 0.343 |
FM (kg) | 38.1 ± 6.5 | 38.8 ± 6.4 | 0.566 |
FFM (kg) | 53.7 ± 12.2 | 52.8 ± 8.8 | 0.665 |
HbA1c (%) (mmol/mol) | 5.90 ± 0.22 41.0 ± 2.4 | 5.89 ± 0.21 41.0 ± 2.3 | 0.968 |
FBG (mg/dl) | 101 ± 15 | 102 ± 11 | 0.560 |
FBI (uU/mL) | 17.4 ± 10.4 | 15.9 ± 8.7 | 0.441 |
HOMA-Index | 4.4 ± 2.7 | 4.1 ± 2.4 | 0.627 |
SBP (mmHg) | 133 ± 12 | 133 ± 12 | 0.737 |
DBP (mmHg) | 88 ± 11 | 89 ± 9 | 0.375 |
Total cholesterol (mg/dl) | 221 ± 40 | 222 ± 41 | 0.948 |
HDL-C (mg/dl) | 55 ± 13 | 54 ± 15 | 0.957 |
LDL-C (mg/dl) | 142 ± 37 | 140 ± 40 | 0.838 |
Triglycerides (mg/dl) | 148 ± 81 | 160 ± 77 | 0.406 |
12 Weeks | 52 Weeks | |||||
---|---|---|---|---|---|---|
INT | CON | P (INT vs. CON) | INT | CON | P (INT vs. CON) | |
Weight (kg) | −5.6 [−6.6; −4.5] *** | −1.9 [−3.5; −0.4] ** | <0.001 | −4.1 [−5.4; −2.8] *** | −2.3 [−4.2; −0.3] * | 0.040 |
BMI (kg/m2) | −1.9 [−2.3; −1.6] *** | −0.7 [−1.2; −0.1] ** | <0.001 | −1.4 [−1.9; −1.0] *** | −0.8 [−1.5; −0.1] * | 0.046 |
WC (cm) | −4.8 [−6.1; −3.4] *** | −2.3 [−4.3; −0.3] * | 0.003 | −4.0 [−5.7; −2.3] *** | −2.8 [−5.4; −0.3] * | 0.223 |
FM (kg) | −4.5 [−5.4; −3.7] *** | −1.6 [−2.8; −0.3] ** | <0.001 | −3.2 [−4.3; −2.1] *** | −1.6 [−3.2; 0.1] | 0.019 |
FFM (kg) | −1.0 [−1.5; −0.6] *** | −0.2 [−0.9; 0.4] | 0.010 | −0.9 [−1.4; −0.5] *** | −0.5 [−1.2; 0.1] | 0.243 |
HbA1c (%) (mmol/mol) | −0.19 [−0.25; −0.13] *** −2.1 [−2.7; −1.4] *** | −0.11 [−0.20; −0.02] * −1.2 [−2.2; −0.2] * | 0.048 | −0.19 [−0.25; −0.13] *** −2.1 [−2.7; −1.4] *** | −0.09 [−0.17; −0.01] * −1.0 [−1.9; −0.1] * | 0.008 |
FBG (mg/dL) | −4.9 [−7.9; −1.9] *** | −2.0 [−6.4; 2.4] | 0.068 | −2.1 [−5.1; 0.8] | −3.8 [−8.1; 0.5] | 0.471 |
FBI (uU/mL) | −2.4 [−5.5; 0.7] | −1.6 [−6.2; 3.0] | 0.886 | −1.7 [−5.0; 1.5] | −2.6 [−7.3; 2.2] | 0.241 |
HOMA-Index | −0.75 [−1.60; 0.10] | −0.44 [−1.69; 0.80] | 0.824 | −0.51 [−1.30; 0.30] | −0.76 [−1.98; 0.45] | 0.310 |
SBP (mmHg) | −6 [−10; −2] *** | −5 [−11; 1] | 0.471 | −3 [−6; 1] | −2 [−7; 3] | 0.583 |
DBP (mmHg) | −3 [−5; −1] ** | −4 [−7; −1] * | 0.985 | −2 [−4; 1] | −3 [−6; 1] | 0.811 |
Total cholesterol (mg/dl) | −16 [−23; −9] *** | −6 [−17; 4] | 0.027 | −6 [−15; 2] | 0 [−12; 12] | 0.247 |
HDL-C (mg/dl) | −1 [−4; 1] | 0 [−3; 3] | 0.432 | 1 [−1; 4] | 1 [−2; 4] | 0.739 |
LDL-C (mg/dl) | −13 [−19; −7] *** | −3 [−12; 6] | 0.007 | −9 [−15; −2] ** | −2 [−12; 8] | 0.115 |
Triglycerides (mg/dl) | −15 [−33; 3] *** | −18 [−44; 8] | 0.790 | −7 [−27; 13] | −9 [−37; 20] | 0.824 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Röhling, M.; Kempf, K.; Banzer, W.; Berg, A.; Braumann, K.-M.; Tan, S.; Halle, M.; McCarthy, D.; Pinget, M.; Predel, H.-G.; et al. Prediabetes Conversion to Normoglycemia Is Superior Adding a Low-Carbohydrate and Energy Deficit Formula Diet to Lifestyle Intervention—A 12-Month Subanalysis of the ACOORH Trial. Nutrients 2020, 12, 2022. https://doi.org/10.3390/nu12072022
Röhling M, Kempf K, Banzer W, Berg A, Braumann K-M, Tan S, Halle M, McCarthy D, Pinget M, Predel H-G, et al. Prediabetes Conversion to Normoglycemia Is Superior Adding a Low-Carbohydrate and Energy Deficit Formula Diet to Lifestyle Intervention—A 12-Month Subanalysis of the ACOORH Trial. Nutrients. 2020; 12(7):2022. https://doi.org/10.3390/nu12072022
Chicago/Turabian StyleRöhling, Martin, Kerstin Kempf, Winfried Banzer, Aloys Berg, Klaus-Michael Braumann, Susanne Tan, Martin Halle, David McCarthy, Michel Pinget, Hans-Georg Predel, and et al. 2020. "Prediabetes Conversion to Normoglycemia Is Superior Adding a Low-Carbohydrate and Energy Deficit Formula Diet to Lifestyle Intervention—A 12-Month Subanalysis of the ACOORH Trial" Nutrients 12, no. 7: 2022. https://doi.org/10.3390/nu12072022
APA StyleRöhling, M., Kempf, K., Banzer, W., Berg, A., Braumann, K. -M., Tan, S., Halle, M., McCarthy, D., Pinget, M., Predel, H. -G., Scholze, J., Toplak, H., Martin, S., & ACOORH Study Group. (2020). Prediabetes Conversion to Normoglycemia Is Superior Adding a Low-Carbohydrate and Energy Deficit Formula Diet to Lifestyle Intervention—A 12-Month Subanalysis of the ACOORH Trial. Nutrients, 12(7), 2022. https://doi.org/10.3390/nu12072022