Dietary Protein Intake and Single-Nephron Glomerular Filtration Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurements
2.3. Data on Dietary Intake
2.4. Estimation of Single-Nephron Glomerular Filtration Rate
2.5. Statistical Analysis
3. Results
3.1. Subjects Characteristics
3.2. Histopathological Characteristics and Morphometric Data
3.3. Diet-Related Parameters according to Single-Nephron and Whole-Kidney GFR
3.4. Dietary Factors and SNGFRCr
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Naghavi, M.; Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Adetokunboh, O.; Afshin, A.; Agrawal, A.; et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1151–1210. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional management of chronic kidney disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Wesson, D.E.; Simoni, J. Increased tissue acid mediates a progressive decline in the glomerular filtration rate of animals with reduced nephron mass. Kidney Int. 2009, 75, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Wesson, D.E.; Simoni, J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int. 2010, 78, 1128–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goraya, N.; Simoni, J.; Jo, C.; Wesson, D.E. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012, 81, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014, 86, 1031–1038. [Google Scholar] [CrossRef] [Green Version]
- Jhee, J.H.; Kee, Y.K.; Park, S.; Kim, H.; Park, J.T.; Han, S.H.; Kang, S.W.; Yoo, T.H. High-protein diet with renal hyperfiltration is associated with rapid decline rate of renal function: A community-based prospective cohort study. Nephrol. Dial. Transpl. 2020, 35, 98–106. [Google Scholar] [CrossRef]
- Seney, F.D., Jr.; Wright, F.S. Dietary protein suppresses feedback control of glomerular filtration in rats. J. Clin. Investig. 1985, 75, 558–568. [Google Scholar] [CrossRef]
- Helal, I.; Fick-Brosnahan, G.M.; Reed-Gitomer, B.; Schrier, R.W. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 2012, 8, 293–300. [Google Scholar] [CrossRef]
- Hostetter, T.H.; Olson, J.L.; Rennke, H.G.; Venkatachalam, M.A.; Brenner, B.M. Hyperfiltration in remnant nephrons: A potentially adverse response to renal ablation. Am. J. Physiol. Ren. Physiol. 1981, 241, F85–F93. [Google Scholar] [CrossRef] [Green Version]
- Melsom, T.; Stefansson, V.; Schei, J.; Solbu, M.; Jenssen, T.; Wilsgaard, T.; Eriksen, B.O. Association of increasing GFR with change in albuminuria in the general population. Clin. J. Am. Soc. Nephrol. 2016, 11, 2186–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denic, A.; Lieske, J.C.; Chakkera, H.A.; Poggio, E.D.; Alexander, M.P.; Singh, P.; Kremers, W.K.; Lerman, L.O.; Rule, A.D. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol. 2017, 28, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Denic, A.; Mathew, J.; Lerman, L.O.; Lieske, J.C.; Larson, J.J.; Alexander, M.P.; Poggio, E.; Glassock, R.J.; Rule, A.D. Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 2017, 376, 2349–2357. [Google Scholar] [CrossRef] [PubMed]
- Kanzaki, G.; Puelles, V.G.; Cullen-McEwen, L.A.; Hoy, W.E.; Okabayashi, Y.; Tsuboi, N.; Shimizu, A.; Denton, K.M.; Hughson, M.D.; Yokoo, T.; et al. New insights on glomerular hyperfiltration: A Japanese autopsy study. Jci Insight 2017, 2, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, T.; Tsuboi, N.; Kanzaki, G.; Haruhara, K.; Okabayashi, Y.; Koike, K.; Kobayashi, A.; Yamamoto, I.; Ogura, M.; Hoy, W.E.; et al. Biopsy-based estimation of total nephron number in Japanese living kidney donors. Clin. Exp. Nephrol. 2019, 23, 629–637. [Google Scholar] [CrossRef]
- Cullen-McEwen, L.; Douglas-Denton, R.; Bertram, J. Estimating total nephron number in the adult kidney using the physical disector/fractionator combination. Methods Mol. Biol. 2012, 886, 333–350. [Google Scholar] [CrossRef] [PubMed]
- Delmonico, F. A report of the Amsterdam Forum on the care of the live kidney donor: Data and medical guidelines. Transplantation 2005, 79, S53–S66. [Google Scholar]
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989, 5, 303–311. [Google Scholar]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Müller-Suur, R.; Magnusson, G.; Bois-Svensson, I.; Jansson, B. Estimation of technetium 99m mercaptoacetyltriglycine lasma clearance by use of one single plasma sample. Eur. J. Nucl. Med. 1991, 18, 28–31. [Google Scholar] [CrossRef]
- Maroni, B.J.; Steinman, T.I.; Mitch, W.E. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985, 27, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokunaga, K.; Matsuzawa, Y.; Kotani, K.; Keno, Y.; Kobatake, T.; Fujioka, S.; Tarui, S. Ideal body weight estimated from the body mass index with the lowest morbidity. Int. J. Obes. 1991, 15, 1–5. [Google Scholar] [PubMed]
- Weibel, E.R.; Gomez, D.M. A principle for counting tissue structures on random sections. J. Appl. Physiol. 1962, 17, 343–348. [Google Scholar] [CrossRef] [PubMed]
- The Examination Committee of Criteria for ‘Obesity Disease’ in Japan; Japan Society for the Study of Obesity. New criteria for ‘obesity disease’ in Japan. Circ. J. 2002, 66, 987–992. [CrossRef] [Green Version]
- Baylis, C. Effect of amino acid infusion as an index of renal vasodilatory capacity in pregnant rats. Am. J. Physiol. Ren. Physiol. 1988, 254, F650–F656. [Google Scholar] [CrossRef]
- Meyer, T.W.; Ichikawa, I.; Zatz, R.; Brenner, B.M. The renal hemodynamic response to amino acid infusion in the rat. Trans. Assoc. Am. Physicians 1983, 96, 76–83. [Google Scholar]
- Woods, L.L.; DeYoung, D.R.; Smith, B.E. Regulation of renal hemodynamics after protein feeding: Effects of loop diuretics. Am. J. Physiol. Ren. Physiol. 1991, 261, F815–F823. [Google Scholar] [CrossRef]
- Yao, B.; Xu, J.; Qi, Z.; Harris, R.C.; Zhang, M.-Z. Role of renal cortical cyclooxygenase-2 expression in hyperfiltration in rats with high-protein intake. Am. J. Physiol. Ren. Physiol. 2006, 291, F368–F374. [Google Scholar] [CrossRef]
- Seney, F.D.J.; Persson, E.G.; Wright, F.S. Modification of tubuloglomerular feedback signal by dietary protein. Am. J. Physiol. Ren. Physiol. 1987, 252, F83–F90. [Google Scholar] [CrossRef]
- Thomson, S.C.; Vallon, V.; Blantz, R.C. Kidney function in early diabetes: The tubular hypothesis of glomerular filtration. Am. J. Physiol. Ren. Physiol. 2004, 286, F8–F15. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, J.; Jiang, S.; Wang, L.; Persson, A.E.G.; Liu, R. High-protein diet–induced glomerular hyperfiltration is dependent on neuronal nitric oxide synthase β in the macula densa via tubuloglomerular feedback response. Hypertension 2019, 74, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Gonska, T.; Hirsch, J.R.; Schlatter, E. Amino acid transport in the renal proximal tubule. Amino Acids 2000, 19, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Navar, L.G. Renal autoregulation: Perspectives from whole kidney and single nephron studies. Am. J. Physiol. Ren. Physiol. 1978, 234, F357–F370. [Google Scholar] [CrossRef] [PubMed]
- Sallstrom, J.; Carlstrom, M.; Olerud, J.; Fredholm, B.B.; Kouzmine, M.; Sandler, S.; Persson, A.E. High-protein-induced glomerular hyperfiltration is independent of the tubuloglomerular feedback mechanism and nitric oxide synthases. Am. J. Physiol Regul. Integr. Comp. Physiol. 2010, 299, 1263–1268. [Google Scholar] [CrossRef] [Green Version]
- Bankir, L.; Roussel, R.; Bouby, N. Protein- and diabetes-induced glomerular hyperfiltration: Role of glucagon, vasopressin, and urea. Am. J. Physiol. Ren. Physiol. 2015, 309, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Knepper, M.A.; Miranda, C.A. Urea channel inhibitors: A new functional class of aquaretics. Kidney Int. 2013, 83, 991–993. [Google Scholar] [CrossRef] [Green Version]
- Martin, W.F.; Armstrong, L.E.; Rodriguez, N.R. Dietary protein intake and renal function. Nutr. Metab. 2005, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Fattah, H.; Layton, A.; Vallon, V. How do kidneys adapt to a deficit or loss in nephron number? Physiology 2019, 34, 189–197. [Google Scholar] [CrossRef]
- Ko, G.J.; Obi, Y.; Tortorici, A.R.; Kalantar-Zadeh, K. Dietary protein intake and chronic kidney disease. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 77–85. [Google Scholar] [CrossRef]
- Friedman, A.N. High-protein diets: Potential effects on the kidney in renal health and disease. Am. J. Kidney Dis. 2004, 44, 950–962. [Google Scholar] [CrossRef]
- Kistler, B.M.; Moore, L.W.; Benner, D.; Biruete, A.; Boaz, M.; Brunori, G.; Chen, J.; Drechsler, C.; Guebre-Egziabher, F.; Hensley, M.K.; et al. The International Society of Renal Nutrition and Metabolism Commentary on the National Kidney Foundation and Academy of Nutrition and Dietetics KDOQI clinical practice guideline for nutrition in chronic kidney disease. J. Ren. Nutr. 2020, 20, S1051–S2276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Rule, A.D.; McCulloch, C.E.; Lieske, J.C.; Ku, E.; Hsu, C.Y. Tubular secretion of creatinine and kidney function: An observational study. Bmc Nephrol. 2020, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Ritz, E.; Koleganova, N.; Piecha, G. Role of sodium intake in the progression of chronic kidney disease. J. Ren. Nutr. 2009, 19, 61–62. [Google Scholar] [CrossRef] [PubMed]
- Parmer, R.J.; Stone, R.A.; Cervenka, J.H. Renal hemodynamics in essential hypertension. Racial differences in response to changes in dietary sodium. Hypertension 1994, 24, 752–757. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Tsuboi, N.; Okabayashi, Y.; Haruhara, K.; Kanzaki, G.; Koike, K.; Kobayashi, A.; Yamamoto, I.; Takahashi, S.; Ninomiya, T.; et al. Estimation of nephron number in living humans by combining unenhanced computed tomography with biopsy-based stereology. Sci. Rep. 2019, 9, 14400. [Google Scholar] [CrossRef] [Green Version]
All (n = 43) | Low PI/IBW (≤0.88 g/kg/day) (n = 14) | Intermediate PI/IBW (0.89–1.13 g/kg/day) (n = 14) | High PI/IBW (>1.13 g/kg/day) (n = 15) | p for Trend | |
---|---|---|---|---|---|
Age, years | 56.4 ± 10.2 | 51.6 ± 11.2 | 61.1 ± 8.4 | 56.3 ± 9.1 | 0.27 |
Male, n (%) | 15 (35) | 5 (36) | 4 (29) | 6 (40) | 0.80 |
MAP (mmHg) | 85.7 ± 9.5 | 85.8 ± 12.7 | 86.5 ± 6.5 | 85.0 ± 8.9 | 0.65 |
Hypertension, n (%) | 7 (16) | 3 (21) | 2 (14) | 2 (13) | 0.56 |
Height (m) | 1.61 ± 0.08 | 1.62 ± 0.10 | 1.59 ± 0.08 | 1.62 ± 0.08 | 0.79 |
BMI (kg/m2) | 23.3 ± 3.0 | 23.8 ± 3.6 | 22.8 ± 2.5 | 23.2 ± 3.0 | 0.71 |
BSA (m2) | 1.63 ± 0.16 | 1.66 ± 0.17 | 1.58 ± 0.15 | 1.65 ± 0.17 | 0.71 |
UN (mg/dL) | 13.5 ± 3.0 | 12.3 ± 3.4 | 13.9 ± 3.1 | 14.3 ± 2.3 | 0.12 |
Cr (mg/dL) | 0.70 ± 0.11 | 0.68 ± 0.10 | 0.70 ± 0.12 | 0.72 ± 0.13 | 0.56 |
eGFR (mL/min/1.73 m2) | 76.9 ± 12.9 | 81.4 ± 13.0 | 73.6 ± 13.6 | 75.8 ± 11.6 | 0.21 |
ERPF (mL/min) | 224 ± 62 | 209 ± 46 | 210 ± 48 | 250 ± 79 | 0.11 |
TP (g/dL) | 7.1 ± 0.4 | 7.1 ± 0.4 | 7.1 ± 0.4 | 7.1 ± 0.4 | 0.36 |
Alb (g/dL) | 4.2 ± 0.3 | 4.1 ± 0.3 | 4.3 ± 0.4 | 4.3 ± 0.2 | 0.13 |
UA (mg/dL) | 4.9 ± 1.2 | 5.0 ± 1.1 | 4.3 ± 1.5 | 5.3 ± 0.9 | 0.26 |
Pi (mg/dL) | 3.6 ± 0.4 | 3.7 ± 0.4 | 3.6 ± 0.4 | 3.6 ± 0.4 | 0.64 |
SI (g/day) | 8.0 ± 2.9 | 6.7 ± 2.8 | 7.2 ± 2.1 | 10.0 ± 2.8 | 0.003 |
All (n = 43) | Low PI/IBW (≤0.88 g/kg/day) (n = 14) | Intermediate PI/IBW (0.89–1.13 g/kg/day) (n = 14) | High PI/IBW (>1.13 g/kg/day) (n = 15) | p for Trend | |
---|---|---|---|---|---|
NglomTOTAL (/kidney) | 733,000 ± 237,000 | 832,000 ± 296,000 | 666,000 ± 158,000 | 702,000 ± 222,000 | 0.23 |
NglomNSG (/kidney) | 685,000 ± 242,000 | 767,000 ± 325,000 | 642,000 ± 183,000 | 649,000 ± 191,000 | 0.23 |
NglomGSG (/kidney) | 48,000 ± 97,000 | 64,000 ± 120,000 | 25,000 ± 63,000 | 54,000 ± 100,000 | 0.95 |
Vglom (×106 μm3) | 2.39 ± 1.03 | 2.23 ± 1.03 | 2.69 ± 1.16 | 2.24 ± 0.89 | 0.93 |
Kidney volume (cm3/kidney) | 125 ± 25.4 | 124 ± 29.7 | 122 ± 22.6 | 129 ± 24.9 | 0.66 |
Cortical volume (cm3/kidney) | 89.5 ± 20.2 | 92.0 ± 27.3 | 86.6 ± 15.5 | 89.9 ± 17.1 | 0.77 |
GS (%) | 5.64 ± 9.85 | 5.39 ± 9.95 | 5.35 ± 8.81 | 6.16 ± 11.2 | 1.00 |
IF/TA (%) | 5.48 ± 5.93 | 6.43 ± 6.38 | 2.71 ± 2.52 | 7.17 ± 7.07 | 0.31 |
eGFR (mL/min/1.73 m2) | Vglom (×106 μm3) | Kidney Volume (cm3/Kidney) | Cortical Volume (cm3/Kidney) | |||||
---|---|---|---|---|---|---|---|---|
r Coefficient | p Value | r Coefficient | p Value | r Coefficient | p Value | r Coefficient | p Value | |
PI/IBW (g/kg/day) | −0.11 | 0.48 | 0.03 | 0.87 | 0.14 | 0.38 | −0.08 | 0.63 |
SI (g/day) | 0.15 | 0.33 | −0.15 | 0.33 | 0.15 | 0.34 | 0.05 | 0.75 |
Univariable | Multivariable Model 1 | Multivariable Model 2 | ||||
---|---|---|---|---|---|---|
SNGFRCr (nL/min) | SNGFRCr (nL/min) | SNGFRCr (nL/min) | ||||
β Coefficient | p Value | β Coefficient | p Value | β Coefficient | p Value | |
PI/IBW (g/kg/day) | 0.42 | 0.005 | 0.43 | 0.004 | 0.49 | 0.01 |
Height (m) | 0.08 | 0.62 | 0.08 | 0.60 | 0.15 | 0.37 |
BMI (kg/m2) | 0.10 | 0.51 | 0.14 | 0.33 | 0.16 | 0.38 |
MAP (mmHg) | 0.03 | 0.83 | - | - | −0.04 | 0.80 |
Alb (mg/dL) | 0.03 | 0.87 | - | - | −0.10 | 0.55 |
SI (g/day) | 0.19 | 0.23 | - | - | −0.14 | 0.51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oba, R.; Kanzaki, G.; Sasaki, T.; Okabayashi, Y.; Haruhara, K.; Koike, K.; Kobayashi, A.; Yamamoto, I.; Tsuboi, N.; Yokoo, T. Dietary Protein Intake and Single-Nephron Glomerular Filtration Rate. Nutrients 2020, 12, 2549. https://doi.org/10.3390/nu12092549
Oba R, Kanzaki G, Sasaki T, Okabayashi Y, Haruhara K, Koike K, Kobayashi A, Yamamoto I, Tsuboi N, Yokoo T. Dietary Protein Intake and Single-Nephron Glomerular Filtration Rate. Nutrients. 2020; 12(9):2549. https://doi.org/10.3390/nu12092549
Chicago/Turabian StyleOba, Rina, Go Kanzaki, Takaya Sasaki, Yusuke Okabayashi, Kotaro Haruhara, Kentaro Koike, Akimitsu Kobayashi, Izumi Yamamoto, Nobuo Tsuboi, and Takashi Yokoo. 2020. "Dietary Protein Intake and Single-Nephron Glomerular Filtration Rate" Nutrients 12, no. 9: 2549. https://doi.org/10.3390/nu12092549
APA StyleOba, R., Kanzaki, G., Sasaki, T., Okabayashi, Y., Haruhara, K., Koike, K., Kobayashi, A., Yamamoto, I., Tsuboi, N., & Yokoo, T. (2020). Dietary Protein Intake and Single-Nephron Glomerular Filtration Rate. Nutrients, 12(9), 2549. https://doi.org/10.3390/nu12092549