Relationship between Sleep and Hedonic Appetite in Shift Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- St-Onge, M.-P.; Grandner, M.A.; Brown, D.; Conroy, M.B.; Jean-Louis, G.; Coons, M.; Bhatt, D.L. Sleep duration and quality: Impact on lifestyle behaviors and cardiometabolic health: A scientific statement from the American Heart Association. Circulation 2016, 134, e367–e386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shechter, A.; Grandner, M.A.; St-Onge, M.-P. The role of sleep in the control of food intake. Am. J. Lifestyle Med. 2014, 8, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Baron, K.G.; Reid, K.J.; Kern, A.S.; Zee, P.C. Role of sleep timing in caloric intake and BMI. Obesity 2011, 19, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Zuraikat, F.M.; Makarem, N.; Redline, S.; Aggarwal, B.; Jelic, S.; St-Onge, M.-P. Sleep regularity and cardiometabolic heath: Is variability in sleep patterns a risk factor for excess adiposity and glycemic dysregulation? Curr. Diabetes Rep. 2020, 20, 38. [Google Scholar] [CrossRef]
- Lunsford-Avery, J.R.; Engelhard, M.M.; Navar, A.M.; Kollins, S.H. Validation of the sleep regularity index in older adults and associations with cardiometabolic risk. Sci. Rep. 2018, 8, 14158. [Google Scholar] [CrossRef] [PubMed]
- Van Drongelen, A.; Boot, C.R.; Merkus, S.L.; Smid, T.; Van Der Beek, A.J. The effects of shift work on body weight change—a systematic review of longitudinal studies. Scand. J. Work Environ. Health 2011, 37, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Suwazono, Y.; Dochi, M.; Sakata, K.; Okubo, Y.; Oishi, M.; Tanaka, K.; Kobayashi, E.; Kido, T.; Nogawa, K. A longitudinal study on the effect of shift work on weight gain in male Japanese workers. Obesity 2008, 16, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Åkerstedt, T.; Wright, K.P., Jr. Sleep loss and fatigue in shift work and shift work disorder. Sleep Med. Clin. 2009, 4, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Gupta, C.C.; Coates, A.M.; Dorrian, J.; Banks, S. The factors influencing the eating behaviour of shiftworkers: What, when, where and why. Ind. Health 2019, 57, 419–453. [Google Scholar] [CrossRef] [Green Version]
- Bonnell, E.K.; Huggins, C.E.; Huggins, C.T.; McCaffrey, T.A.; Palermo, C.; Bonham, M.P. Influences on dietary choices during day versus night shift in shift workers: A mixed methods study. Nutrients 2017, 9, 193. [Google Scholar] [CrossRef] [PubMed]
- Flahr, H.; Brown, W.J.; Kolbe-Alexander, T.L. A systematic review of physical activity-based interventions in shift workers. Prev. Med. Rep. 2018, 10, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Van Amelsvoort, L.G.P.M.; Schouten, E.G.; Kok, F.J. Impact of one year of shift work on cardiovascular disease risk factors. J. Occup. Environ. Med. 2004, 46, 699–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Amelsvoort, L.G.P.M.; Jansen, N.W.H.; Kant, I. Smoking among shift workers: More than a confounding factor. Chronobiol. Int. 2006, 23, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- McHill, A.W.; Melanson, E.L.; Higgins, J.; Connick, E.; Moehlman, T.M.; Stothard, E.R.; Wright, K.P., Jr. Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc. Natl. Acad. Sci. USA 2014, 111, 17302–17307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxton, O.M.; Cain, S.W.; O’Connor, S.P.; Porter, J.H.; Duffy, J.F.; Wang, W.; Czeisler, C.A.; Shea, S.A. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 2012, 4, 129ra43. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.-P.; McReynolds, A.; Trivedi, Z.B.; Roberts, A.L.; Sy, M.; Hirsch, J. Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. Am. J. Clin. Nutr. 2012, 95, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Benedict, C.; Brooks, S.J.; O’Daly, O.G.; Almen, M.S.; Morell, A.; Aberg, K.; Gingnell, M.; Schultes, B.; Hallschmis, M.; Broman, J.-E.; et al. Acute sleep deprivation enhances the brain’s response to hedonic food stimuli: An fMRI study. J. Clin. Endocrinol. Metab. 2012, 97, E443–E447. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Wolfe, S.; Sy, M.; Shechter, A.; Hirsch, J. Sleep restriction increases the neuronal response to unhealthy food in normal-weight individuals. Int. J. Obes. 2014, 38, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Duraccio, K.M.; Zaugg, K.; Jensen, C.D. Effects of sleep restriction on food-related inhibitory control and reward in adolescents. J. Pediatric Psychol. 2019, 44, 692–702. [Google Scholar] [CrossRef]
- Blumfield, M.L.; Bei, B.; Zimberg, I.Z.; Cain, S.W. Dietary disinhibition mediates the relationship between poor sleep quality and body weight. Appetite 2018, 120, 602–608. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [PubMed]
- Kitamura, S.; Hida, A.; Watanabe, M.; Enomoto, M.; Aritake-Okada, S.; Moriguchi, Y.; Kamei, Y.; Mishima, K. Evening preference is related to the incidence of depressive states independent of sleep-wake conditions. Chronobiol. Int. 2010, 27, 1797–1812. [Google Scholar]
- Mastin, D.; Bryson, J.; Corwyn, R. Assessment of sleep hygiene using the sleep hygiene index. J. Behav. Med. 2006, 29, 223–227. [Google Scholar] [PubMed]
- White, M.A.; Whisenhunt, B.L.; Williamson, D.A.; Greenway, F.L.; Netemeyer, R.G. Development and validation of the food-craving inventory. Obes. Res. 2002, 10, 107. [Google Scholar]
- Lowe, M.R.; Butryn, M.L.; Didie, E.R.; Annunziato, R.A.; Thomas, J.G.; Crerand, C.E.; Ochner, C.N.; Coletta, M.C.; Bellace, D.; Wallaert, M.; et al. The power of food scale. A new measure of the psychological influence of the food environment. Appetite 2009, 53, 114–118. [Google Scholar] [PubMed]
- Cappelleri, J.C.; Bushmakin, A.G.; Gerber, R.A.; Leidy, N.K.; Sexton, C.C.; Karlsson, J.; Lowe, M.R. Evaluating the Power of Food Scale in obese subjects and a general sample of individuals: Development and measurement properties. Int. J. Obes. 2009, 33, 913. [Google Scholar]
- Tucker, P.; Smith, L.; Macdonald, I.; Folkard, S. Effects of direction of rotation in continuous and discontinuous 8 hour shift systems. Occup Environ. Med. 2000, 57, 678–684. [Google Scholar]
- Duchon, J.; Wagner, J.; Keran, C. Forward versus backward shift rotation. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 1989, 33, 806–810. [Google Scholar]
- Kilkus, J.M.; Booth, J.N.; Bromley, L.E.; Darukhanavala, A.P.; Imperial, J.G.; Penev, P.D. Sleep and eating behavior in adults at risk for type 2 diabetes. Obesity 2012, 20, 112–117. [Google Scholar]
- Markwald, R.R.; Melanson, E.L.; Smith, M.R.; Higgins, J.; Perreault, L.; Eckel, R.H.; Wright, K.P., Jr. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc. Natl. Acad. Sci. USA 2013, 110, 5695–5700. [Google Scholar]
- Kracht, C.; Chaput, J.-P.; Martin, C.; Champagne, C.; Katzmarzyk, P.; Staiano, A. Associations of sleep with food cravings, diet, and obesity in adolescence. Nutrients 2019, 11, 2899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goel, N.; Rao, H.; Durmer, J.S.; Dinges, D.F. Neurocognitive consequences of sleep deprivation. Semin Neurol 2009, 29, 320–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitney, P.; Hinson, J.M.; Jackson, M.L.; Van Dongen, H.P.A. Feedback blunting: Total sleep deprivation impairs decision making that requires updating based on feedback. Sleep 2015, 38, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Dorrian, J.; Centofanti, S.; Smith, A.; McDermott, K.D. Chapter 4—Self-Regulation and Social Behavior During Sleep Deprivation. In Progress in Brain Research; Van Dongen, H.P.A., Whitney, P., Hinson, J.M., Honn, K.A., Chee, M.W.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 73–110. [Google Scholar]
- Nilsson, J.P.; Söderström, M.; Karlsson, A.U.; Lekander, M.; Åkerstedt, T.; Lindroth, N.E.; Axelsson, J. Less effective executive functioning after one night’s sleep deprivation. J. Sleep Res. 2005, 14, 1–6. [Google Scholar] [CrossRef]
- Gissoni, N.B.; dos Santos Quaresma, M.V.L. Short sleep duration and food intake: An overview and analysis of the influence of the homeostatic and hedonic system. Nutrire 2020, 45, 8. [Google Scholar] [CrossRef]
- Chaput, J.-P.; St-Onge, M.-P. Increased food intake by insufficient sleep in humans: Are we jumping the gun on the hormonal explanation? Front. Endocrinol. 2014, 5, 116. [Google Scholar] [CrossRef] [PubMed]
- Hogenkamp, P.S.; Shechter, A.; St-Onge, M.-P.; Sclafani, A.; Kissileff, H. A sipometer for measuring motivation to consume and reward value of foods and beverages in humans: Description and proof of principle. Physiol. Behav. 2017, 171, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Morris, C.J.; Caputo, R.; Wang, W.; Garaulet, M.; Scheer, F.A.J.L. Sex differences in the circadian misalignment effects on energy regulation. Proc. Natl. Acad. Sci. USA 2019, 116, 23806–23812. [Google Scholar] [CrossRef]
Sample Size (n) | Mean (Standard Deviation) or % | |
Age (years) | 63 | 36.7 (12) |
Females | 37 | 59% |
Males | 26 | 41% |
Body mass index, Females | 28.3 (8.2) kg/m2 | |
Body mass index, Males | 31.7 (11.5) kg/m2 | |
Work schedule type | ||
Night shifts | 11 | 17% |
Forward rotating shifts | 15 | 24% |
Backward rotating shifts | 6 | 10% |
Early morning shifts | 6 | 10% |
Evening/swing shifts | 4 | 6% |
On-call | 2 | 3% |
Other (e.g., 24 h on, 24 h off) | 19 | 30% |
Workforce sector | ||
Emergency responders | 21 | 33% |
Health care workers | 26 | 41% |
Goods and services | 6 | 10% |
Transport | 9 | 14% |
YES | NO | N/A | |
---|---|---|---|
Shift Work Affects Weight Maintenance | 83% (n = 52) | 17% (n = 11) | -- |
Night shifts (n = 11) | 73% (n = 8) | 27% (n = 3) | |
Forward rotating shifts (n = 15) | 73% (n = 11) | 27% (n = 4) | |
Backward rotating shifts (n = 6) | 83% (n = 5) | 17% (n = 1) | |
Early morning shifts (n = 6) | 67% (n = 4) | 33% (n = 2) | |
Evening/swing shifts (n = 4) | 50% (n = 2) | 50% (n = 2) | |
On-call (n = 2) | 100% (n = 2) | 0% (n = 0) | |
Other (e.g., 24 h on, 24 h off; n = 19) | 68% (n = 13) | 32% (n = 6) | |
Weight change since starting shift work | 71% (n = 45) | 29% (n = 18) | -- |
Weight gain: 84%, n = 38, +11.3 (9.1) kg | |||
Weight loss: 16%, n = 7, −11.0 (12.9) kg | |||
Weight loss attempt since shift work | 60% (n = 38) | 8% (n = 5) | 32% (n = 20) |
Successful weight loss attempt | 21% (n = 13) | 41% (n = 26) | 38% (n = 24) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidafar, P.; Cain, S.W.; Shechter, A. Relationship between Sleep and Hedonic Appetite in Shift Workers. Nutrients 2020, 12, 2835. https://doi.org/10.3390/nu12092835
Vidafar P, Cain SW, Shechter A. Relationship between Sleep and Hedonic Appetite in Shift Workers. Nutrients. 2020; 12(9):2835. https://doi.org/10.3390/nu12092835
Chicago/Turabian StyleVidafar, Parisa, Sean W. Cain, and Ari Shechter. 2020. "Relationship between Sleep and Hedonic Appetite in Shift Workers" Nutrients 12, no. 9: 2835. https://doi.org/10.3390/nu12092835
APA StyleVidafar, P., Cain, S. W., & Shechter, A. (2020). Relationship between Sleep and Hedonic Appetite in Shift Workers. Nutrients, 12(9), 2835. https://doi.org/10.3390/nu12092835