Gynura procumbens Root Extract Ameliorates Ischemia-Induced Neuronal Damage in the Hippocampal CA1 Region by Reducing Neuroinflammation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Preparation of GPE-R
2.3. Administration of GPE-R
2.4. Ischemic Surgery
2.5. Locomotor Activity
2.6. Tissue Processing
2.7. ELISA for Pro-Inflammatory Cytokines
2.8. Statistical Analysis
3. Results
3.1. Body Weights
3.2. Effects of GPE-R on Locomotor Activity before and 1 Day after Ischemia
3.3. Effects of GPE-R on Ischemia-Induced Neuronal Death 4 Days after Ischemia
3.4. Effects of GPE-R on Ischemia-Induced Activation of Microglia 4 Days after Ischemia
3.5. Effects of GPE-R on ISCHEMIA-Induced Release of Pro-Inflammatory Cytokines 6 h after Ischemia
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bertolino, G.; de Araujo, F.L.; Souza, H.C.; Coimbra, N.C.; de Araujo, J.E. Neuropathology and behavioral impairments after bilateral global ischemia surgery and exposure to static magnetic field: Evidence in the motor cortex, the hippocampal CA1 region and the neostriatum. Int. J. Radiat. Biol. 2013, 89, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Wahul, A.B.; Joshi, P.C.; Kumar, A.; Chakravarty, S. Transient global cerebral ischemia differentially affects cortex, striatum and hippocampus in Bilateral Common Carotid Arterial occlusion (BCCAo) mouse model. J. Chem. Neuroanat. 2018, 92, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Duszczyk, M.; Ziembowicz, A.; Gadamski, R.; Wieronska, J.M.; Smialowska, M.; Lazarewicz, J.W. Changes in the NPY immunoreactivity in gerbil hippocampus after hypoxic and ischemic preconditioning. Neuropeptides 2009, 43, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Levine, S.; Payan, H. Effects of ischemia and other procedures on the brain and retina of the gerbil (Meriones unguiculatus). Exp. Neurol. 1966, 16, 255–262. [Google Scholar] [CrossRef]
- Andersen, M.B.; Zimmer, J.; Sams-Dodd, F. Postischemic hyperactivity in the Mongolian gerbil correlates with loss of hippocampal neurons. Behav. Neurosci. 1997, 111, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Yoshida, S.; Nagai, H.; Takeshita, A.; Mino, M.; Morioka, H.; Nakajima, T.; Kusakabe, K.T.; Okada, T. Transient forebrain ischemia induces impairment in cognitive performance prior to extensive neuronal cell death in Mongolian gerbil (Meriones unguiculatus). J. Vet. Sci. 2018, 19, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Katsuta, K.; Umemura, K.; Ueyama, N.; Matsuoka, N. Pharmacological evidence for a correlation between hippocampal CA1 cell damage and hyperlocomotion following global cerebral ischemia in gerbils. Eur. J. Pharmacol. 2003, 467, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Kuroiwa, T.; Bonnekoh, P.; Hossmann, K.A. Locomotor hyperactivity and hippocampal CA1 injury after transient forebrain ischemia of gerbils. Neurosci. Lett. 1991, 122, 141–144. [Google Scholar] [CrossRef]
- Mileson, B.E.; Schwartz, R.D. The use of locomotor activity as a behavioral screen for neuronal damage following transient forebrain ischemia in gerbils. Neurosci. Lett. 1991, 128, 71–76. [Google Scholar] [CrossRef]
- Wang, Q.; Tompkins, K.D.; Simonyi, A.; Korthuis, R.J.; Sun, A.Y.; Sun, G.Y. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res. 2006, 1090, 182–189. [Google Scholar] [CrossRef]
- Velimirović, M.; Jevtić Dožudić, G.; Selaković, V.; Stojković, T.; Puškaš, N.; Zaletel, I.; Živković, M.; Dragutinović, V.; Nikolić, T.; Jelenković, A.; et al. Effects of vitamin D3 on the NADPH oxidase and matrix metalloproteinase 9 in an animal model of global cerebral ischemia. Oxid. Med. Cell. Longev. 2018, 2018, 3273654. [Google Scholar] [CrossRef] [PubMed]
- Streit, W.J.; Graeber, M.B.; Kreutzberg, G.W. Functional plasticity of microglia: A review. Glia 1988, 1, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zhang, H.L.; Zhang, X.P.; Jiang, H.L. Arachidonic acid attenuates brain damage in a rat model of ischemia/reperfusion by inhibiting inflammatory response and oxidative stress. Hum. Exp. Toxicol. 2018, 37, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tang, X.N.; Yenari, M.A. The inflammatory response in stroke. J. Neuroimmunol. 2007, 184, 53–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godefroy, O.; Fickl, A.; Roussel, M.; Auribault, C.; Bugnicourt, J.M.; Lamy, C.; Canaple, S.; Petitnicolas, G. Is the Montreal Cognitive Assessment superior to the Mini-Mental State Examination to detect poststroke cognitive impairment? A study with neuropsychological evaluation. Stroke 2011, 42, 1712–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mijajlović, M.D.; Pavlović, A.; Brainin, M.; Heiss, W.D.; Quinn, T.J.; Ihle-Hansen, H.B.; Hermann, D.M.; Assayag, E.B.; Richard, E.; Thiel, A.; et al. Post-stroke dementia—A comprehensive review. BMC Med. 2017, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Ciccone, A.; Valvassori, L.; Nichelatti, M.; Sgoifo, A.; Ponzio, M.; Sterzi, R.; Boccardi, E. SYNTHESIS Expansion Investigators. Endovascular treatment for acute ischemic stroke. N. Engl. J. Med. 2013, 368, 904–913. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, V.; Ahmad, S.; Mahmood, M. Antioxidant potential in different parts and callus of Gynura procumbens and different parts of Gynura bicolor. Biomed. Res. Int. 2015, 2015, 147909. [Google Scholar] [CrossRef] [Green Version]
- Rosidah Yam, M.F.; Sadikun, A.; Ahmad, M.; Akowuah, G.A.; Asmawi, M.Z. Toxicology evaluation of standardized methanol extract of Gynura procumbens. J. Ethnopharmacol. 2009, 123, 244–249. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, H.J.; Wiryowidagdo, S.; Kim, H.K. Antihypertensive effects of Gynura procumbens extract in spontaneously hypertensive rats. J. Med. Food 2006, 9, 587–590. [Google Scholar] [CrossRef]
- Iskander, M.N.; Song, Y.; Coupar, I.M.; Jiratchariyakul, W. Antiinflammatory screening of the medicinal plant Gynura procumbens. Plant Foods Hum. Nutr. 2002, 57, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Hoe, S.Z.; Kamaruddin, M.Y.; Lam, S.K. Inhibition of angiotensin-converting enzyme activity by a partially purified fraction of Gynura procumbens in spontaneously hypertensive rats. Med. Princ. Pract. 2007, 16, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Tan, B.K. Effects of an ethanolic extract of Gynura procumbens on serum glucose, cholesterol and triglyceride levels in normal and streptozotocin-induced diabetic rats. Singap. Med. J. 2000, 41, 9–13. [Google Scholar]
- Algariri, K.; Meng, K.Y.; Atangwho, I.J.; Asmawi, M.Z.; Sadikun, A.; Murugaiyah, V.; Ismail, N. Hypoglycemic and anti-hyperglycemic study of Gynura procumbens leaf extracts. Asian Pac. J. Trop. Biomed. 2013, 3, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Hoe, S.Z.; Lee, C.N.; Mok, S.L.; Kamaruddin, M.Y.; Lam, S.K. Gynura procumbens Merr. decreases blood pressure in rats by vasodilatation via inhibition of calcium channels. Clinics (Sao Paulo) 2011, 66, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrika, O.S.; Yam, M.F.; Asmawi, M.Z.; Sadikun, A.; Dieng, H.; Hussain, E.A. Effects of extracts and fractions of Gynura procumbens on rat atrial contraction. J. Acupunct. Meridian Stud. 2013, 6, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, C.W.; Kim, E.K.; Lee, S.J.; Park, N.H.; Kim, H.S.; Kim, H.K.; Char, K.; Jang, Y.P.; Kim, J.W. Inhibition effect of Gynura procumbens extract on UV-B-induced matrix-metalloproteinase expression in human dermal fibroblasts. J. Ethnopharmacol. 2011, 137, 427–433. [Google Scholar] [CrossRef]
- Ahmad Nazri, K.A.; Fauzi, N.M.; Buang, F.; Mohd Saad, Q.H.; Husain, K.; Jantan, I.; Jubri, Z. Gynura procumbens standardised extract reduces cholesterol levels and modulates oxidative status in postmenopausal rats fed with cholesterol diet enriched with repeatedly heated palm oil. Evid. Based Complement. Alternat. Med. 2019, 2019, 7246756. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Z.; Bello, I.; Asmawi, M.Z.; Al-Mansoub, M.A.; Ahmad, A.; Jabeen, Q.; Fei, Y.M. Vasorelaxant activities and the underlying pharmacological mechanisms of Gynura procumbens Merr. leaf extracts on rat thoracic aorta. Inflammopharmacology 2019, 27, 421–431. [Google Scholar] [CrossRef]
- Zahra, A.A.; Kadir, F.A.; Mahmood, A.A.; Al Hadi, A.A.; Suzy, S.M.; Sabri, S.Z.; Latifl, I.I.; Katuly, K.A. Acute toxicity study and wound healing potential of Gynura procumbens leaf extract in rats. J. Med. Plants Res. 2011, 5, 2551–2558. [Google Scholar]
- Tan, H.L.; Chan, K.G.; Pusparajah, P.; Lee, L.H.; Goh, B.H. Gynura procumbens: An overview of the biological activities. Front. Pharmacol. 2016, 7, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirza, M.A.; Ritzel, R.; Xu, Y.; McCullough, L.D.; Liu, F. Sexually dimorphic outcomes and inflammatory responses in hypoxic-ischemic encephalopathy. J. Neuroinflamm. 2015, 12, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, D.Y.; Jung, H.Y.; Nam, S.M.; Kim, J.W.; Choi, J.H.; Kwak, Y.G.; Yoo, M.; Lee, S.; Yoon, Y.S.; Hwang, I.K. Valeriana officinalis extracts ameliorate neuronal damage by suppressing lipid peroxidation in the gerbil hippocampus following transient cerebral ischemia. J. Med. Food 2015, 18, 642–647. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.Y.; Kim, W.; Hahn, K.R.; Kang, M.S.; Kim, T.H.; Kwon, H.J.; Nam, S.M.; Chung, J.Y.; Choi, J.H.; Yoon, Y.S.; et al. Pyridoxine deficiency exacerbates neuronal damage after ischemia by increasing oxidative stress and reduces proliferating cells and neuroblasts in the gerbil hippocampus. Int. J. Mol. Sci. 2020, 21, 5551. [Google Scholar]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef]
- Kamaruzaman, K.A.; Aizat, W.M.; Mat Noor, M. Gynura procumbens improved fertility of diabetic rats: Preliminary study of sperm proteomic. Evid. Based Complement. Alternat. Med. 2018, 2018, 9201539. [Google Scholar] [CrossRef] [Green Version]
- Li, X.J.; Mu, Y.M.; Li, T.T.; Yang, Y.L.; Zhang, M.T.; Li, Y.S.; Zhang, W.K.; Tang, H.B.; Shang, H.C. Gynura procumbens reverses acute and chronic ethanol-induced liver steatosis through MAPK/SREBP-1c-dependent and -independent pathways. J. Agric. Food Chem. 2015, 63, 8460–8471. [Google Scholar]
- De Segura, I.A.; de la Víbora, J.B.; Criado, A. Determination of the minimum alveolar concentration for halothane, isoflurane and sevoflurane in the gerbil. Lab. Anim. 2009, 43, 239–242. [Google Scholar]
- Erickson, R.L.; Blevins, C.E.; Souza Dyer, C.; Marx, J.O. Alfaxalone-xylazine anesthesia in laboratory mice (Mus musculus). J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 30–39. [Google Scholar]
- Goyagi, T.; Toung, T.J.; Kirsch, J.R.; Traystman, R.J.; Koehler, R.C.; Hurn, P.D.; Bhardwaj, A. Neuroprotective kappa-opioid receptor agonist BRL 52537 attenuates ischemia-evoked nitric oxide production in vivo in rats. Stroke 2003, 34, 1533–1538. [Google Scholar]
- Wang, S.Y.; Duan, Y.L.; Zhao, B.; Wang, X.R.; Zhao, Z.; Zhang, G.M. Effect of delta opioid receptor activation on spatial cognition and neurogenesis in cerebral ischemic rats. Neurosci. Lett. 2016, 620, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.Y.; Hwang, L.; Jin, J.J.; Ko, I.G.; Kim, S.E.; Shin, M.S.; Shin, K.M.; Kim, C.J.; Park, S.W.; Han, J.H.; et al. Dexmedetomidine alleviates cerebral ischemia-induced short-term memory impairment by inhibiting the expression of apoptosis-related molecules in the hippocampus of gerbils. Exp. Ther. Med. 2017, 13, 107–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pétrault, M.; Gautier, S.; Bérézowski, V.; Ouk, T.; Bastide, M.; Pétrault, O.; Bordet, R. Neither nefopam nor acetaminophen can be used as postoperative analgesics in a rat model of ischemic stroke. Fundam. Clin. Pharmacol. 2017, 31, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Du Sert, N.P.; Alfieri, A.; Allan, S.M.; Carswell, H.V.; Deuchar, G.A.; Farr, T.D.; Flecknell, P.; Gallagher, L.; Gibson, C.L.; Haley, M.J.; et al. The IMPROVE Guidelines (Ischaemia Models: Procedural Refinements Of In Vivo Experiments). J. Cereb. Blood Flow Metab. 2017, 37, 3488–3517. [Google Scholar] [CrossRef]
- Flecknell, P.A. Laboratory Animal Anaesthesia; Academic Press: Amsterdam, The Netherland, 2016; pp. 210–213. [Google Scholar]
- Loskota, W.A.; Lomax, P.; Verity, M.A. A Stereotaxic Atlas of the Mongolian Gerbil Brain (Meriones Unguiculatus); Ann Arbor Science Publishers Inc.: Ann Arbor, MI, USA, 1974. [Google Scholar]
- Moon, S.M.; Choi, G.M.; Yoo, D.Y.; Jung, H.Y.; Yim, H.S.; Kim, D.W.; Hwang, I.K.; Cho, B.M.; Chang, I.B.; Cho, S.M.; et al. Differential effects of pioglitazone in the hippocampal CA1 region following transient forebrain ischemia in low- and high-fat diet-fed gerbils. Neurochem. Res. 2015, 40, 1063–1073. [Google Scholar] [CrossRef]
- Tuttolomondo, A.; Pecoraro, R.; Arnao, V.; Maugeri, R.; Iacopino, D.G.; Pinto, A. Developing drug strategies for the neuroprotective treatment of acute ischemic stroke. Expert. Rev. Neurother. 2015, 15, 1271–1284. [Google Scholar] [CrossRef]
- Sanganalmath, S.K.; Gopal, P.; Parker, J.R.; Downs, R.K.; Parker, J.C., Jr.; Dawn, B. Global cerebral ischemia due to circulatory arrest: Insights into cellular pathophysiology and diagnostic modalities. Mol. Cell. Biochem. 2017, 426, 111–127. [Google Scholar] [CrossRef]
- Chun, H.S.; Kim, J.M.; Choi, E.H.; Chang, N. Neuroprotective effects of several Korean medicinal plants traditionally used for stroke remedy. J. Med. Food 2008, 11, 246–251. [Google Scholar] [CrossRef]
- Rodrigues, F.T.S.; de Sousa, C.N.S.; Ximenes, N.C.; Almeida, A.B.; Cabral, L.M.; Patrocínio, C.F.V.; Silva, A.H.; Leal, L.K.A.M.; Honório Júnior, J.E.R.; Macedo, D.; et al. Effects of standard ethanolic extract from Erythrina velutina in acute cerebral ischemia in mice. Biomed. Pharmacother. 2017, 96, 1230–1239. [Google Scholar] [CrossRef]
- Hwang, S.N.; Kim, J.C.; Bhuiyan, M.I.H.; Kim, J.Y.; Yang, J.S.; Yoon, S.H.; Yoon, K.D.; Kim, S.Y. Black rice (Oryza sativa L., Poaceae) extract reduces hippocampal neuronal cell death induced by transient global cerebral ischemia in mice. Exp. Neurobiol. 2018, 27, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Akowuah, G.A.; Sadikun, A.; Mariam, A. Flavonoid identification and hypoglycaemic studies of the butanol fraction from Gynura procumbens. Pharm. Biol. 2002, 40, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Janać, B.; Radenović, L.; Selaković, V.; Prolić, Z. Time course of motor behavior changes in Mongolian gerbils submitted to different durations of cerebral ischemia. Behav. Brain Res. 2006, 175, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, Y.H.; Ahn, J.H.; Choi, S.Y.; Hong, S.; Kim, S.K.; Kang, I.J.; Kim, Y.M.; Lee, T.K.; Won, M.H.; et al. Atomoxetine protects against NMDA receptor-mediated hippocampal neuronal death following transient global cerebral ischemia. Curr. Neurovasc. Res. 2017, 14, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, S.C.; Boast, C.A. Motor activity changes following cerebral ischemia in gerbils are correlated with the degree of neuronal degeneration in hippocampus. Behav. Neurosci. 1988, 102, 301–303, 328. [Google Scholar] [CrossRef]
- Ramos-Zúñiga, R.; Gómez, P.U.; Navarro Ruiz, A.; de Luquín, A.S.; García-Estrada, J. Locomotor activity is a predictive test after global ischemia-reperfusion in Mongolian gerbils. Minim. Invasive Neurosurg. 2008, 51, 87–90. [Google Scholar]
- Hyeon, W.L.; Ga, H.R.; Woo, S.Y.; Choong, J.M. Gynura procumbens (Lour.) Merr inhibits the glutamate induced toxicity in neuronal cell lines. Plant. Med. Int. Open 2017, 4, S1–S202. [Google Scholar]
- Wang, Y.; Ge, P.; Yang, L.; Wu, C.; Zha, H.; Luo, T.; Zhu, Y. Protection of ischemic post conditioning against transient focal ischemia-induced brain damage is associated with inhibition of neuroinflammation via modulation of TLR2 and TLR4 pathways. J. Neuroinflamm. 2014, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.X.; Han, Y.L.; Zhu, G.F.; Huang, L.Q.; Deng, Y.Y.; Wang, Q.S.; Jiang, W.Q.; Wen, M.Y.; Han, Q.P.; Xie, D.; et al. Hypertonic saline attenuates expression of Notch signaling and proinflammatory mediators in activated microglia in experimentally induced cerebral ischemia and hypoxic BV-2 microglia. BMC Neurosci. 2017, 18, 32. [Google Scholar]
- Lavine, S.D.; Hofman, F.M.; Zlokovic, B.V. Circulating antibody against tumor necrosis factor-alpha protects rat brain from reperfusion injury. J. Cereb. Blood Flow Metab. 1998, 18, 52–58. [Google Scholar]
- Saito, K.; Suyama, K.; Nishida, K.; Sei, Y.; Basile, A.S. Early increases in TNF-α, IL-6 and IL-1β levels following transient cerebral ischemia in gerbil brain. Neurosci. Lett. 1996, 206, 149–152. [Google Scholar]
- Umezawa, K.; Ariga, A.; Matsumoto, N. Naturally occurring and synthetic inhibitors of NF-kappaB functions. Anticancer Drug Des. 2000, 15, 239–244. [Google Scholar] [PubMed]
- Wang, H.; Zhou, J.W.; Fu, D.H.; Zhou, Y.; Cheng, W.Z.; Liu, Z.L. Gynura procumbens ethanolic extract suppresses osteosarcoma cell proliferation and metastasis in vitro. Oncol. Lett. 2013, 6, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, T.J.; Yusoff, S.D.; Jubri, Z.; Buang, F.; Song, T.Z.; Budiono, A.; Jantan, I.; Dianita, R.; Kumolosasi, E.; Azmi, N.; et al. Inhibitory Effects of Gynura procumbens ethanolic extract on nitric oxide production and inducible nitric oxide synthase (iNOS) protein. Sains Malays. 2019, 48, 1737–1744. [Google Scholar]
- Huang, X.L.; Li, X.J.; Qin, Q.F.; Li, Y.S.; Zhang, W.K.; Tang, H.B. Anti-inflammatory and antinociceptive effects of active ingredients in the essential oils from Gynura procumbens, a traditional medicine and a new and popular food material. J. Ethnopharmacol. 2019, 239, 111916. [Google Scholar] [CrossRef] [PubMed]
- Poh, T.F.; Ng, H.K.; Hoe, S.Z.; Lam, S.K. Gynura procumbens causes vasodilation by inhibiting angiotensin II and enhancing bradykinin actions. J. Cardiovasc. Pharmacol. 2013, 61, 378–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, H.K.; Poh, T.F.; Lam, S.K.; Hoe, S.Z. Potassium channel openers and prostacyclin play a crucial role in mediating the vasorelaxant activity of Gynura procumbens. BMC Complement. Altern. Med. 2013, 13, 188. [Google Scholar] [CrossRef] [Green Version]
- Zapater, P.; Moreno, J.; Horga, J.F. Neuroprotection by the novel calcium antagonist PCA50938, nimodipine and flunarizine, in gerbil global brain ischemia. Brain Res. 1997, 772, 57–62. [Google Scholar]
- Fernandez, L.A.; Spencer, D.D.; Kaczmar, T., Jr. Angiotensin II decreases mortality rate in gerbils with unilateral carotid ligation. Stroke 1986, 17, 82–85. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Lee, J.S.; Jang, H.J.; Kim, S.M.; Chang, M.S.; Park, S.H.; Kim, K.S.; Bae, J.; Park, J.W.; Lee, B.; et al. Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur. J. Pharmacol. 2012, 689, 89–95. [Google Scholar] [CrossRef]
- López-Sánchez, C.; Martín-Romero, F.J.; Sun, F.; Luis, L.; Samhan-Arias, A.K.; García-Martínez, V.; Gutiérrez-Merino, C. Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain. Brain Res. 2007, 1182, 123–137. [Google Scholar]
- Hwang, I.K.; Lee, C.H.; Yoo, K.Y.; Choi, J.H.; Park, O.K.; Lim, S.S.; Kang, I.J.; Kwon, D.Y.; Park, J.; Yi, J.S.; et al. Neuroprotective effects of onion extract and quercetin against ischemic neuronal damage in the gerbil hippocampus. J. Med. Food 2009, 12, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.P.; Shi, Y.W.; Tang, M.; Zhang, X.C.; Gu, Y.; Liang, X.M.; Wang, Z.W.; Ding, F. Isoquercetin ameliorates cerebral impairment in focal ischemia through anti-oxidative, anti-inflammatory, and anti-apoptotic effects in primary culture of rat hippocampal neurons and hippocampal CA1 region of rats. Mol. Neurobiol. 2017, 54, 2126–2142. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.; Jung, H.Y.; Yoo, D.Y.; Kwon, H.J.; Hahn, K.R.; Kim, D.W.; Yoon, Y.S.; Choi, S.Y.; Hwang, I.K. Gynura procumbens Root Extract Ameliorates Ischemia-Induced Neuronal Damage in the Hippocampal CA1 Region by Reducing Neuroinflammation. Nutrients 2021, 13, 181. https://doi.org/10.3390/nu13010181
Kim W, Jung HY, Yoo DY, Kwon HJ, Hahn KR, Kim DW, Yoon YS, Choi SY, Hwang IK. Gynura procumbens Root Extract Ameliorates Ischemia-Induced Neuronal Damage in the Hippocampal CA1 Region by Reducing Neuroinflammation. Nutrients. 2021; 13(1):181. https://doi.org/10.3390/nu13010181
Chicago/Turabian StyleKim, Woosuk, Hyo Young Jung, Dae Young Yoo, Hyun Jung Kwon, Kyu Ri Hahn, Dae Won Kim, Yeo Sung Yoon, Soo Young Choi, and In Koo Hwang. 2021. "Gynura procumbens Root Extract Ameliorates Ischemia-Induced Neuronal Damage in the Hippocampal CA1 Region by Reducing Neuroinflammation" Nutrients 13, no. 1: 181. https://doi.org/10.3390/nu13010181
APA StyleKim, W., Jung, H. Y., Yoo, D. Y., Kwon, H. J., Hahn, K. R., Kim, D. W., Yoon, Y. S., Choi, S. Y., & Hwang, I. K. (2021). Gynura procumbens Root Extract Ameliorates Ischemia-Induced Neuronal Damage in the Hippocampal CA1 Region by Reducing Neuroinflammation. Nutrients, 13(1), 181. https://doi.org/10.3390/nu13010181