Prevalence and Impact of Vitamin D Deficiency in Critically Ill Cancer Patients Admitted to the Intensive Care Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Measurement of 25(OH) D Levels and Definitions
2.3. Data Collection
2.4. Presentation of Data and Statistics
3. Results
3.1. Patient Characteristics
3.2. Intensive Care Unit Treatment, Hospital Survival, and 1-Year Survival
3.3. Prevalence and Risk Factors for Vitamin D Deficiency
3.4. Vitamin D Deficiency and Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouillon, R.; Norman, A.W.; Lips, P. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 1980–1981. [Google Scholar] [PubMed]
- Zittermann, A.; Gummert, J.F. Nonclassical vitamin D action. Nutrients 2010, 2, 408–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amrein, K.; Papinutti, A.; Mathew, E.; Vila, G.; Parekh, D. Vitamin D and critical illness: What endocrinology can learn from intensive care and vice versa. Endocr. Connect. 2018, 7, R304–R315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatram, S.; Chilimuri, S.S.; Adrish, M.; Salako, A.; Patel, M.; Diaz-Fuentes, F.M.G. Vitamin D deficiency is associated with mortality in the medical intensive care unit. Crit. Care 2011, 15, R292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, A.; Chang, D.; Mahadevappa, K.; Gibbons, F.K.; Liu, Y.; Giovannucci, E.; Christopher, K.B. Association of low serum 25-hydroxyvitamin D levels and mortality in the critically ill. Crit. Care Med. 2011, 39, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Amrein, K.; Zajic, P.; Schnedl, C.; Waltensdorfer, A.; Fruhwald, S.; Holl, A.; Purkart, T.U.; Wünsch, G.; Valentin, T.; Grisold, A.; et al. Vitamin D status and its association with season, hospital and sepsis mortality in critical illness. Crit. Care 2014, 18, R47. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.; Lee, P.; Reynolds, C.; Nguyen, N.D.; Myburgh, J.; Eisman, J.A.; Center, J.R. Significant perturbation of vitamin D–parathyroid–calcium axis and adverse clinical outcomes in critically ill patients. Intensiv. Care Med. 2013, 39, 267–274. [Google Scholar] [CrossRef]
- De Haan, K.; Groeneveld, A.B.J.; de Geus, H.R.H.; Egal, M.; Struijs, A. Vitamin D deficiency as a risk factor for infection, sepsis and mortality in the critically ill: Systematic review and meta-analysis. Crit. Care 2014, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Parekh D, Thickett DR, Turner AM: Vitamin D deficiency and acute lung injury. Inflamm. Allergy Drug Targets 2013, 12, 253–261. [CrossRef]
- Braun, A.B.; Litonjua, A.A.; Moromizato, T.; Gibbons, F.K.; Giovannucci, E.; Christopher, K.B. Association of low serum 25-hydroxyvitamin D levels and acute kidney injury in the critically ill. Crit. Care Med. 2012, 40, 3170–3179. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J.L.; Lefrant, J.Y.; Kotfis, K.; Nanchal, R.; Martin-Loeches, I.; Wittebole, X.; Sakka, S.G.; Pickkers, P.; Moreno, R.; Sakr, Y.; et al. Comparison of European ICU patients in 2012 (ICON) versus 2002 (SOAP). Intensive Care Med. 2018, 44, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schellongowski, P.; Staudinger, T.; Kundi, M.; Laczika, K.; Locker, G.J.; Bojic, A.; Robak, O.; Fuhrmann, V.; Jäger, U.; Valent, P.; et al. Prognostic factors for intensive care unit admission, intensive care outcome, and post-intensive care survival in patients with de novo acute myeloid leukemia: A single center experience. Haematologica 2010, 96, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, M.; Caruso, P.; Silva, E.; Teles, J.M.M.; Lobo, S.M.A.; Friedman, G.; Pizzol, F.D.; Mello, P.V.C.; Bozza, F.A.; Silva, U.V.A.; et al. Characteristics and outcomes of patients with cancer requiring admission to intensive care units: A prospective multicenter study. Crit. Care Med. 2010, 38, 9–15. [Google Scholar] [CrossRef]
- Wohlfarth, P.; Carlstrom, A.; Staudinger, T.; Clauss, S.; Hermann, A.; Rabitsch, W.; Bojic, A.; Skrabs, C.; Porpaczy, E.; Schiefer, A.I.; et al. Incidence of intensive care unit admission, outcome and post intensive care survival in patients with diffuse large B-cell lymphoma. Leuk. Lymphoma 2016, 57, 1–8. [Google Scholar] [CrossRef]
- Kiehl, M.; Beutel, G.; Böll, B.; Buchheidt, D.; Forkert, R.; Fuhrmann, V.; Knöbl, P.; Kochanek, M.; Kroschinsky, F.; La Rosée, P.; et al. Consensus statement for cancer patients requiring intensive care support. Ann. Hematol. 2018, 97, 1271–1282. [Google Scholar] [CrossRef] [Green Version]
- Kennel, K.A.; Drake, M.T. Vitamin D in the cancer patient. Curr. Opin. Supportive Palliat. Care 2013, 7, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Amrein, K.; Schnedl, C.; Holl, A.; Riedl, R.; Christopher, K.B.; Pachler, C.; Urbanic Purkart, T.; Waltensdorfer, A.; Munch, A.; Warnkross, H.; et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: The VITdAL-ICU randomized clinical trial. JAMA 2014, 312, 1520–1530. [Google Scholar] [CrossRef] [Green Version]
- Amrein, K.; Parekh, D.; Westphal, S.; Preiser, J.-C.; Berghold, A.; Riedl, R.; Eller, P.; Schellongowski, P.; Thickett, D.; Meybohm, P. Effect of high-dose vitamin D3 on 28-day mortality in adult critically ill patients with severe vitamin D deficiency: A study protocol of a multicentre, placebo-controlled double-blind phase III RCT (the VITDALIZE study). BMJ Open 2019, 9, e031083. [Google Scholar] [CrossRef] [Green Version]
- Giustina, A.; Adler, R.A.; Binkley, N.; Bouillon, R.; Ebeling, P.R.; Lazaretti-Castro, M.; Marcocci, C.; Rizzoli, R.; Sempos, C.T.; Bilezikian, J.P. Controversies in Vitamin D: Summary Statement From an International Conference. J. Clin. Endocrinol. Metab. 2019, 104, 234–240. [Google Scholar] [CrossRef] [Green Version]
- National Heart, Lung, and Blood Institute PETAL Clinical Trials Network; Ginde, A.A.A.; Brower, R.G.; Caterino, J.M.; Finck, L.; Banner-Goodspeed, V.M.; Grissom, C.K.; Hayden, D.; Hough, C.L.; Hyzy, R.C.; et al. Early High-Dose Vitamin D3 for Critically Ill, Vitamin D–Deficient Patients. N. Engl. J. Med. 2019, 381, 2529–2540. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; de Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Azoulay, E.; Soares, M.; Darmon, M.; Benoit, D.; Pastores, S.M.; Afessa, B. Intensive care of the cancer patient: Recent achievements and remaining challenges. Ann. Intensiv. Care 2011, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-P.; Wan, Y.-D.; Sun, T.; Kan, Q.-C.; Wang, L.-X. Association between vitamin D deficiency and mortality in critically ill adult patients: A meta-analysis of cohort studies. Crit. Care 2014, 18, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Rech, M.; Hidalgo, D.C.; Larson, J.; Zavala, S.; Mosier, M. Vitamin D in burn-injured patients. Burns 2019, 45, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Kok, D.E.; van den Berg, M.; Posthuma, L.; van Erve, I.; van Duijnhoven, F.J.B.; de Roos, W.K.; Grosfeld, S.; Los, M.; Sommeijer, D.W.; van Laarhoven, H.W.M.; et al. Changes in Circulating Levels of 25-hydroxyvitamin D3 in Breast Cancer Patients Receiving Chemotherapy. Nutr. Cancer 2019, 71, 756–766. [Google Scholar] [CrossRef] [Green Version]
- Wesselink, E.; Bours, M.J.; De Wilt, J.H.; Aquarius, M.; Breukink, S.O.; Hansson, B.; Keulen, E.T.; Kok, D.E.; Ouweland, J.V.D.; Van Roekel, E.H.; et al. Chemotherapy and vitamin D supplement use are determinants of serum 25-hydroxyvitamin D levels during the first six months after colorectal cancer diagnosis. J. Steroid Biochem. Mol. Biol. 2020, 199, 105577. [Google Scholar] [CrossRef]
- Radujkovic, A.; Kordelas, L.; Krzykalla, J.; Beelen, D.W.; Benner, A.; Lehners, N.; Schmidt, K.; Dreger, P.; Luft, T. Pretransplant Vitamin D Deficiency Is Associated With Higher Relapse Rates in Patients Allografted for Myeloid Malignancies. J. Clin. Oncol. 2017, 35, 3143–3152. [Google Scholar] [CrossRef] [Green Version]
- Parekh, D.; Patel, J.M.; Scott, A.; Lax, S.; Dancer, R.C.A.; D’Souza, V.; Greenwood, H.; Fraser, W.D.; Gao, F.; Sapey, E.; et al. Vitamin D Deficiency in Human and Murine Sepsis. Crit. Care Med. 2017, 45, 282–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dancer, R.C.A.; Parekh, D.; Lax, S.; D’Souza, V.; Zheng, S.; Bassford, C.R.; Park, D.; Bartis, D.G.; Mahida, R.; Turner, A.M.; et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 2015, 70, 617–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amrein, K.; Christopher, K.B.; McNally, J.D. Understanding vitamin D deficiency in intensive care patients. Intensiv. Care Med. 2015, 41, 1961–1964. [Google Scholar] [CrossRef]
- High-Dose Vitamin D3 for Critically Ill Vitamin D–Deficient Patients. N. Engl. J. Med. 2020, 382, 1669–1671. [CrossRef]
- Jassil, N.K.; Sharma, A.; Bikle, D.; Wang, X. Vitamin D binding protein and 25-Hydroxyvitamin D levels: Emerging clinical applications. Endocr. Pr. 2017, 23, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Valcour, A.; Blocki, F.; Hawkins, D.M.; Rao, S.D. Effects of Age and Serum 25-OH-Vitamin D on Serum Parathyroid Hormone Levels. J. Clin. Endocrinol. Metab. 2012, 97, 3989–3995. [Google Scholar] [CrossRef] [PubMed]
- Martucci, G.; McNally, J.D.; Parekh, D.; Zajic, P.; Tuzzolino, F.; Arcadipane, A.; Christopher, K.B.; Dobnig, H.; Amrein, K. Trying to identify who may benefit most from future vitamin D intervention trials: A post hoc analysis from the VITDAL-ICU study excluding the early deaths. Crit. Care 2019, 23, 200. [Google Scholar] [CrossRef] [Green Version]
- Schleicher, R.L.; Sternberg, M.R.; Looker, A.C.; A Yetley, E.; Lacher, D.A.; Sempos, C.T.; Taylor, C.L.; Durazo-Arvizu, R.A.; Maw, K.L.; Chaudhary-Webb, M.; et al. National Estimates of Serum Total 25-Hydroxyvitamin D and Metabolite Concentrations Measured by Liquid Chromatography–Tandem Mass Spectrometry in the US Population during 2007–2010. J. Nutr. 2016, 146, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-K.; Hung, K.-C.; Lin, Y.-T.; Chang, Y.-J.; Wu, Z.-F.; Chang, C.-H.; Chen, J.-Y. Age, Gender and Season Are Good Predictors of Vitamin D Status Independent of Body Mass Index in Office Workers in a SubtropicalRegion. Nutrients 2020, 12, 2719. [Google Scholar] [CrossRef]
- Choi, H.S.; Oh, H.J.; Choi, H.; Choi, W.H.; Kim, J.G.; Kim, K.M.; Kim, K.J.; Rhee, Y.; Lim, S.-K. Vitamin D Insufficiency in Korea—A Greater Threat to Younger Generation: The Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J. Clin. Endocrinol. Metab. 2011, 96, 643–651. [Google Scholar] [CrossRef]
- Skversky, A.L.; Kumar, J.; Abramowitz, M.K.; Kaskel, F.J.; Melamed, M.L. Association of Glucocorticoid Use and Low 25-Hydroxyvitamin D Levels: Results from the National Health and Nutrition Examination Survey (NHANES): 2001–2006. J. Clin. Endocrinol. Metab. 2011, 96, 3838–3845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; O’Keefe, J.H.; Bell, D.; Hensrud, D.D.; Holick, M.F. Vitamin D deficiency an important, common, and easily treatable cardiovascular risk factor? J. Am. Coll. Cardiol. 2008, 52, 1949–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schellongowski, P.; Sperr, W.R.; Wohlfarth, P.; Knoebl, P.; Rabitsch, W.; Watzke, H.H.; Staudinger, T. Critically ill patients with cancer: Chances and limitations of intensive care medicine—a narrative review. ESMO Open 2016, 1, e000018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, D.; Soule, S.; Gaddam, R.R.; Elder, P.; Chambers, S.; Doogue, M. Unbound Vitamin D Concentrations Are Not Decreased in Critically Ill Patients. Intern. Med. J. 2020. [Google Scholar] [CrossRef] [PubMed]
- McNally, J.D.; Nama, N.; O’Hearn, K.; Sampson, M.; Amrein, K.; Iliriani, K.; McIntyre, L.; Fergusson, D.; Menon, K. Vitamin D deficiency in critically ill children: A systematic review and meta-analysis. Crit. Care 2017, 21, 287. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Chen, P.; Li, J.; Chu, R.; Xie, D.; Wang, H. Review:The Impacts of Circulating 25-Hydroxyvitamin D Levels on Cancer Patient Outcomes: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2014, 99, 2327–2336. [Google Scholar] [CrossRef] [Green Version]
- Keum, N.; Lee, D.; Greenwood, D.; Manson, J.; Giovannucci, E. Vitamin D supplementation and total cancer incidence and mortality: A meta-analysis of randomized controlled trials. Ann. Oncol. 2019, 30, 733–743. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Gluud, L.L.; Nikolova, D.; Whitfield, K.; Wetterslev, J.; Simonetti, R.G.; Bjelakovic, M.; Gluud, C. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst. Rev. 2014, 2014, CD007470. [Google Scholar] [CrossRef]
- Coleman, R.; Hadji, P.; Body, J.J.; Santini, D.; Chow, E.; Terpos, E.; Oudard, S.; Bruland, O.; Flamen, P.; Kurth, A.; et al. Bone health in cancer: ESMO Clinical Practice Guidelines. Ann. Oncol. 2020, 31, 1650–1663. [Google Scholar] [CrossRef]
- Barry, E.L.; Passarelli, M.N.; Baron, J.A. Vitamin D as Cancer Therapy? Insights From 2 New Trials. JAMA 2019, 321, 1354–1355. [Google Scholar] [CrossRef]
- Yousefzadeh, P.; Shapses, S.A.; Wang, X. Vitamin D Binding Protein Impact on 25-Hydroxyvitamin D Levels under Different Physiologic and Pathologic Conditions. Int. J. Endocrinol. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 178) | 25(OH) D ≥20 ng/mL (n = 47) | 25(OH) D 12–20 ng/mL (n = 35) | 25(OH) D ≤12 ng/mL (n = 96) | |
---|---|---|---|---|
Sex, male | 117 (66) | 28 (60) | 25 (71) | 64 (67) |
Age, years | 61 (53–71) | 65 (55–73) | 56 (36–68) | 60 (54–69) |
Body mass index (kg/m2) | 25.2 (21.9–29.1) | 24.5 (20.8–28.5) | 26.3 (23.9–28.7) | 24.8 (22–30) |
Season of ICU admission | ||||
Spring | 53 (30) | 14 (30) | 8 (23) | 31 (32) |
Summer | 45 (25) | 9 (19) | 10 (29) | 26 (27) |
Autumn | 42 (24) | 14 (30) | 10 (29) | 18 (19) |
Winter | 38 (21) | 10 (21) | 7 (20) | 21 (22) |
Type of cancer | ||||
Hematologic | 108 (61) | 26 (55) | 26 (74) | 56 (58) |
Solid cancer | 70 (39) | 21 (45) | 9 (26) | 40 (42) |
Disease state | ||||
Naïve | 34 (19) | 11 (23) | 3 (9) | 20 (21) |
Complete or partial remission | 67 (38) | 16 (34) | 15 (43) | 36 (37) |
Relapsed or refractory | 37 (21) | 4 (9) | 12 (34) | 21 (22) |
Undetermined/Unknown | 40 (22) | 16 (34) | 5 (14) | 19 (20) |
Time from diagnosis, months | 15.4 (2.6–44) | 16 (1.9–54.4) | 13.8 (2.9–37.9) | 16.7 (2.6–38.4) |
Time since last therapy, months | 1 (0.3–16) | 1.6 (0.3–45.2) | 1.1 (0.4–15) | 0.9 (0.2–6.3) |
Therapy during last 12 months | 106 (60) | 21 (45) | 24 (69) | 61 (64) |
Allogeneic HSCT | 25 (14) | 5 (11) | 5 (14) | 15 (16) |
Charlson comorbidity index (CCI) | 3 (2–5) | 3 (2–5) | 3 (2–4) | 3 (2–5) |
Hospital to ICU admission, days | 3 (0–13) | 2 (0–7) | 4 (0–23) | 3 (0–15) |
Reasons for ICU admission | ||||
Acute respiratory failure | 121 (68) | 34 (72) | 24 (69) | 63 (66) |
Infection | 107 (60) | 23 (49) | 25 (69) | 60 (63) |
Shock | 87 (49) | 21 (45) | 19 (54) | 47 (49) |
Acute kidney injury | 73 (41) | 15 (32) | 17 (49) | 41 (43) |
Neurological dysfunction | 22 (12) | 4 (9) | 4 (11) | 14 (15) |
SAPSII at ICU admission | 52 (40–66) | 48 (43–58) | 49 (34–71) | 55 (40–67) |
SOFA score at ICU admission | 10 (7–13) | 9 (7–10) | 11 (8–15) | 11 (8–13) |
Life-supporting interventions | ||||
Vasopressors | 135 (76) | 35 (75) | 27 (77) | 73 (76) |
Invasive ventilation | 109 (61) | 25 (53) | 26 (74) | 58 (60) |
Renal replacement therapy | 44 (25) | 7 (15) | 9 (26) | 28 (29) |
Extracorporeal life support | 15 (8) | 3 (6) | 3 (9) | 9 (9) |
25(OH)-D3 (ng/mL) | 11.6 (7.2–21.9) | 28.4 (24–31.8) | 15.8 (13.4–19.4) | 7.8 (5.4–9.9) |
25(OH)-D3 (<20 ng/mL) | 131 (74) | |||
25(OH)-D3 (≤12 ng/mL) | 96 (54) | |||
Total calcium (mmol/L) | 2.01 (1.87–2.10) | 2.02 (1.91–2.12) | 2.04 (1.88–2.13) | 1.95 (1.86–2.08) |
Ionized calcium (mmol/L) | 1.1 (1.04–1.65) | 1.09 (1.05–1.14) | 1.13 (1.05–1.24) | 1.1 (1.02–1.17) |
Phosphate (mmol/L) | 1.24 (0.89–1.56) | 1.23 (0.9–1.42) | 1.24 (0.89–1.50) | 1.24 (0.87–1.71) |
iPTH (pg/mL) | 50.6 (30.3–115.1) | 52.7 (32.4–113.4) | 45.5 (25.3–79.3) | 55.5 (30.8–140.3) |
WBC (G/L) | 12.2 (3–18) | 12.8 (6.6–19.2) | 10.2 (1.9–18.5) | 12.2 (2.8–17.1) |
Albumin (mg/dL) | 25.7 (23.1–29.8) | 25 (22.1–28.2) | 27.2 (23.3–31.1) | 25.7 (22.8–30.2) |
Creatinine (mg/dL) | 1.19 (0.8–2.2) | 1 (0.8–1.67) | 1.23 (0.81–2.43) | 1.37 (0.75–2.48) |
CRP (mg/dL) | 20.4 (7–35.2) | 18.4 (6.2–40.8) | 23.3 (4.8–40) | 21.3 (7.6–33.4) |
Variable (Univariate Analysis) | Odds Ratio | 95% Confidence Interval | p |
Age | 0.96/year | 0.93 to 0.99 | <0.01 |
Relapsed or refractory disease | 3.62 | 1.21 to 10.85 | 0.02 |
Therapy during the last 12 months | 2.29 | 1.16 to 4.51 | 0.02 |
Days from hospital to ICU admission | 1.03/day | 1.00 to 1.07 | 0.05 |
Infection | 1.87 | 0.95 to 3.66 | 0.07 |
SOFA Score | 1.16 | 1.05 to 1.27 | <0.01 |
Variable (Multivariate Analysis) | Odds Ratio | 95% Confidence Interval | |
Age | 0.95/year | 0.92 to 0.98 | <0.01 |
Relapsed or refractory disease | 3.25 | 1.04 to 10.19 | 0.04 |
SOFA score | 1.19/point | 1.07 to 1.33 | <0.01 |
25(OH) D | ICU Survival | p | Odds Ratio (Mortality) | 95% Confidence Interval | |
No | Yes | ||||
≥20 ng/mL | 10 (26) | 28 (74) | Reference | ||
12–20 ng/mL | 10 (36) | 18 (64) | 0.43 | 1.56 | 0.54 to 4.48 |
≤12 ng/mL | 34 (44) | 44 (56) | 0.10 | 2.16 | 0.93 to 5.06 |
25(OH) D | Hospital Survival | p | Odds Ratio (Mortality) | 95% Confidence Interval | |
≥20 ng/mL | 13 (34) | 25 (66) | Reference | ||
12–20 ng/mL | 14 (50) | 14 (50) | 0.22 | 1.92 | 0.71 to 5.22 |
≤12 ng/mL | 46 (59) | 32 (41) | 0.02 | 2.85 | 1.27 to 6.42 |
25(OH) D | 1-Year Survival | p | Odds Ratio (Mortality) | 95% Confidence Interval | |
≥20 ng/mL | 19 (51) | 18 (49) | |||
12–20 ng/mL | 17 (61) | 11 (39) | 0.61 | 1.46 | 0.54 to 3.96 |
≤12 ng/mL | 59 (79) | 16 (21) | <0.01 | 3.49 | 1.49 to 8.17 |
Variables | Adjusted Odds Ratio | 95% Confidence Interval | p |
---|---|---|---|
ICU Mortality | |||
Infection at ICU admission | 2.81 | 1.30 to 6.08 | <0.01 |
SOFA score | 1.14/point | 1.02 to 1.26 | 0.02 |
RRT within 24 h of ICU admission | 3.56 | 1.12 to 11.34 | 0.03 |
Hospital Mortality | |||
Relapsed/refractory disease | 2.99 | 1.14 to 7.87 | 0.03 |
Infection at ICU admission | 2.48 | 1.15 to 5.36 | 0.02 |
IMV within 24 h of ICU admission | 3.10 | 1.43 to 6.71 | <0.01 |
RRT within 24 h of ICU admission | 9.32 | 1.84 to 47.21 | <0.01 |
Severe 25(OH) D deficiency (≤12 ng/mL) | 2.21 | 1.03 to 4.72 | 0.04 |
1-Year Mortality | |||
Relapsed/refractory disease | 4.44 | 1.91 to 16.56 | 0.03 |
Infection at ICU admission | 3.16 | 1.41 to 7.07 | <0.01 |
IMV within 24 h of ICU admission | 2.54 | 1.11 to 5.82 | 0.03 |
Severe 25(OH) D deficiency (≤12 ng/mL) | 3.40 | 1.50 to 7.71 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchtele, N.; Lobmeyr, E.; Cserna, J.; Zauner, C.; Heinz, G.; Sengölge, G.; Sperr, W.R.; Staudinger, T.; Schellongowski, P.; Wohlfarth, P. Prevalence and Impact of Vitamin D Deficiency in Critically Ill Cancer Patients Admitted to the Intensive Care Unit. Nutrients 2021, 13, 22. https://doi.org/10.3390/nu13010022
Buchtele N, Lobmeyr E, Cserna J, Zauner C, Heinz G, Sengölge G, Sperr WR, Staudinger T, Schellongowski P, Wohlfarth P. Prevalence and Impact of Vitamin D Deficiency in Critically Ill Cancer Patients Admitted to the Intensive Care Unit. Nutrients. 2021; 13(1):22. https://doi.org/10.3390/nu13010022
Chicago/Turabian StyleBuchtele, Nina, Elisabeth Lobmeyr, Julia Cserna, Christian Zauner, Gottfried Heinz, Gürkan Sengölge, Wolfgang R. Sperr, Thomas Staudinger, Peter Schellongowski, and Philipp Wohlfarth. 2021. "Prevalence and Impact of Vitamin D Deficiency in Critically Ill Cancer Patients Admitted to the Intensive Care Unit" Nutrients 13, no. 1: 22. https://doi.org/10.3390/nu13010022
APA StyleBuchtele, N., Lobmeyr, E., Cserna, J., Zauner, C., Heinz, G., Sengölge, G., Sperr, W. R., Staudinger, T., Schellongowski, P., & Wohlfarth, P. (2021). Prevalence and Impact of Vitamin D Deficiency in Critically Ill Cancer Patients Admitted to the Intensive Care Unit. Nutrients, 13(1), 22. https://doi.org/10.3390/nu13010022