Later Meal and Sleep Timing Predicts Higher Percent Body Fat
Abstract
:1. Introduction
2. Materials and Methods
Study Design
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahleova, H.; Lloren, J.I.; Mashchak, A.; Hill, M.; Fraser, G.E. Meal Frequency and Timing Are Associated with Changes in Body Mass Index in Adventist Health Study 2. J. Nutr. 2017, 147, 1722–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willis, E.A.; Creasy, S.A.; Honas, J.J.; Melanson, E.L.; Donnelly, J.E. The effects of exercise session timing on weight loss and components of energy balance: Midwest exercise trial 2. Int. J. Obes. 2020, 44, 114–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, K.G.; Reid, K.J.; Kern, A.S.; Zee, P.C. Role of sleep timing in caloric intake and BMI. Obesity 2011, 19, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Reppert, S.M.; Weaver, D.R. Coordination of circadian timing in mammals. Nature 2002, 418, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Bass, J.; Takahashi, J.S. Circadian integration of metabolism and energetics. Science 2010, 330, 1349–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bass, J. Circadian topology of metabolism. Nature 2012, 491, 348–356. [Google Scholar] [CrossRef]
- Oosterman, J.E.; Kalsbeek, A.; la Fleur, S.E.; Belsham, D.D. Impact of nutrients on circadian rhythmicity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308. [Google Scholar] [CrossRef] [Green Version]
- Kant, A.K.; Graubard, B.I. 40-year trends in meal and snack eating behaviors of American adults. J. Acad. Nutr. Diet. 2015, 115, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.; Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab. 2015, 22, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Cahill, L.E.; Chiuve, S.E.; Mekary, R.A.; Jensen, M.K.; Flint, A.J.; Hu, F.B.; Rimm, E.B. Prospective Study of Breakfast Eating and Incident Coronary Heart Disease in a Cohort of Male US Health Professionals. Circulation 2013, 128, 337–343. [Google Scholar] [CrossRef]
- Mekary, R.A.; Giovannucci, E.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Eating patterns and type 2 diabetes risk in men: Breakfast omission, eating frequency, and snacking. Am. J. Clin. Nutr. 2012, 95, 1182–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odegaard, A.O.; Jacobs, D.R., Jr.; Steffen, L.M.; Van Horn, L.; Ludwig, D.S.; Pereira, M.A. Breakfast frequency and development of metabolic risk. Diabetes Care 2013, 36, 3100–3106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.J.; Gall, S.L.; McNaughton, S.A.; Blizzard, L.; Dwyer, T.; Venn, A.J. Skipping breakfast: Longitudinal associations with cardiometabolic risk factors in the Childhood Determinants of Adult Health Study. Am. J. Clin. Nutr. 2010, 92, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Stote, K.S.; Baer, D.J.; Spears, K.; Paul, D.R.; Harris, G.K.; Rumpler, W.V.; Strycula, P.; Najjar, S.S.; Ferrucci, L.; Ingram, D.K.; et al. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am. J. Clin. Nutr. 2007, 85, 981–988. [Google Scholar] [CrossRef]
- Berg, C.; Lappas, G.; Wolk, A.; Strandhagen, E.; Toren, K.; Rosengren, A.; Thelle, D.S.; Lissner, L. Eating patterns and portion size associated with obesity in a Swedish population. Appetite 2009, 52, 21–26. [Google Scholar] [CrossRef]
- Kosmadopoulos, A.; Kervezee, L.; Boudreau, P.; Gonzales-Aste, F.; Vujovic, N.; Scheer, F.A.J.L.; Boivin, D.B. Effects of Shift Work on the Eating Behavior of Police Officers on Patrol. Nutrients 2020, 12, 999. [Google Scholar] [CrossRef] [Green Version]
- Shaw, E.; Dorrian, J.; Coates, A.M.; Leung, G.K.W.; Davis, R.; Rosbotham, E.; Warnock, R.; Huggins, C.E.; Bonham, M.P. Temporal pattern of eating in night shift workers. Chronobiol. Int. 2019, 36, 1613–1625. [Google Scholar] [CrossRef]
- Lowden, A.; Moreno, C.; Holmback, U.; Lennernas, M.; Tucker, P. Eating and shift work-effects on habits, metabolism and performance. Scand. J. Work Environ. Health 2010, 36, 150–162. [Google Scholar] [CrossRef]
- McHill, A.W.; Phillips, A.J.; Czeisler, C.A.; Keating, L.; Yee, K.; Barger, L.K.; Garaulet, M.; Scheer, F.; Klerman, E.B. Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 2017. [Google Scholar] [CrossRef]
- Sun, M.; Feng, W.; Wang, F.; Li, P.; Li, Z.; Li, M.; Tse, G.; Vlaanderen, J.; Vermeulen, R.; Tse, L.A. Meta-analysis on shift work and risks of specific obesity types. Obes. Rev. 2017. [Google Scholar] [CrossRef]
- Bonham, M.P.; Bonnell, E.K.; Huggins, C.E. Energy intake of shift workers compared to fixed day workers: A systematic review and meta-analysis. Chronobiol. Int. 2016, 33, 1086–1100. [Google Scholar] [CrossRef] [PubMed]
- De Assis, M.A.; Kupek, E.; Nahas, M.V.; Bellisle, F. Food intake and circadian rhythms in shift workers with a high workload. Appetite 2003, 40, 175–183. [Google Scholar] [CrossRef]
- Beebe, D.; Chang, J.J.; Kress, K.; Mattfeldt-Beman, M. Diet quality and sleep quality among day and night shift nurses. J. Nurs. Manag. 2017, 25, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Hulsegge, G.; Boer, J.M.; van der Beek, A.J.; Verschuren, W.M.; Sluijs, I.; Vermeulen, R.; Proper, K. Shift workers have a similar diet quality but higher energy intake than day workers. Scand. J. Work Environ. Health 2016, 42, 459–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucassen, E.A.; Zhao, X.; Rother, K.I.; Mattingly, M.S.; Courville, A.B.; de Jonge, L.; Csako, G.; Cizza, G.; Sleep Extension Study Group. Evening chronotype is associated with changes in eating behavior, more sleep apnea, and increased stress hormones in short sleeping obese individuals. PLoS ONE 2013, 8, e56519. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Garaulet, M.; Scheer, F. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. 2019, 43, 1701–1711. [Google Scholar] [CrossRef]
- Wang, J.B.; Patterson, R.E.; Ang, A.; Emond, J.A.; Shetty, N.; Arab, L. Timing of energy intake during the day is associated with the risk of obesity in adults. J. Hum. Nutr. Diet. 2014, 27, 255–262. [Google Scholar] [CrossRef]
- Jakubowicz, D.; Barnea, M.; Wainstein, J.; Froy, O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity 2013. [Google Scholar] [CrossRef]
- Garaulet, M.; Gomez-Abellan, P.; Alburquerque-Bejar, J.J.; Lee, Y.C.; Ordovas, J.M.; Scheer, F.A. Timing of food intake predicts weight loss effectiveness. Int. J. Obes. 2013, 37, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Bixler, E. Sleep and society: An epidemiological perspective. Sleep Med. 2009, 10. [Google Scholar] [CrossRef]
- Van Cauter, E.; Spiegel, K.; Tasali, E.; Leproult, R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Kronholm, E.; Partonen, T.; Laatikainen, T.; Peltonen, M.; Harma, M.; Hublin, C.; Kaprio, J.; Aro, A.R.; Partinen, M.; Fogelholm, M.; et al. Trends in self-reported sleep duration and insomnia-related symptoms in Finland from 1972 to 2005: A comparative review and re-analysis of Finnish population samples. J. Sleep Res. 2008, 17, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: A systematic review, meta-analysis, and meta-regression. Sleep Med. 2017, 32, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Hairston, K.G.; Bryer-Ash, M.; Norris, J.M.; Haffner, S.; Bowden, D.W.; Wagenknecht, L.E. Sleep duration and five-year abdominal fat accumulation in a minority cohort: The IRAS family study. Sleep 2010, 33, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiura, C.; Hashimoto, H. A 4-year study of the association between short sleep duration and change in body mass index in Japanese male workers. J. Epidemiol. 2010, 20, 385–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiura, C.; Noguchi, J.; Hashimoto, H. Dietary patterns only partially explain the effect of short sleep duration on the incidence of obesity. Sleep 2010, 33, 753–757. [Google Scholar] [CrossRef] [Green Version]
- Arora, T.; Taheri, S. Associations among late chronotype, body mass index and dietary behaviors in young adolescents. Int. J. Obes. 2015, 39, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.E.; Subar, A.F. Dietary Assessment Methodology; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Hess, M.A. Portions of Popular Foods; Culinary Nutrition: New York, NY, USA, 2014. [Google Scholar]
- Schakel, S.F. Maintaining a Nutrient Database in a Changing Marketplace: Keeping Pace with Changing Food Products—A Research Perspective. J. Food Compos. Anal. 2001, 14, 315–322. [Google Scholar] [CrossRef]
- Huang, T.T.; Roberts, S.B.; Howarth, N.C.; McCrory, M.A. Effect of screening out implausible energy intake reports on relationships between diet and BMI. Obes. Res. 2005, 13, 1205–1217. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.R.; Weng, J.; Rueschman, M.; Dudley, K.A.; Loredo, J.S.; Mossavar-Rahmani, Y.; Ramirez, M.; Ramos, A.R.; Reid, K.; Seiger, A.N.; et al. Reproducibility of a Standardized Actigraphy Scoring Algorithm for Sleep in a US Hispanic/Latino Population. Sleep 2015, 38, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Stekhoven, D.J.; Buhlmann, P. MissForest--non-parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, H.R.; Grunwald, G.K.; Mosca, C.L.; Klem, M.L.; Wing, R.R.; Hill, J.O. Long-term weight loss and breakfast in subjects in the National Weight Control Registry. Obes. Res. 2002, 10, 78–82. [Google Scholar] [CrossRef]
- Betts, J.A.; Richardson, J.D.; Chowdhury, E.A.; Holman, G.D.; Tsintzas, K.; Thompson, D. The causal role of breakfast in energy balance and health: A randomized controlled trial in lean adults. Am. J. Clin. Nutr. 2014. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, E.A.; Richardson, J.D.; Holman, G.D.; Tsintzas, K.; Thompson, D.; Betts, J.A. The causal role of breakfast in energy balance and health: A randomized controlled trial in obese adults. Am. J. Clin. Nutr. 2016, 103, 747–756. [Google Scholar] [CrossRef]
- Schembre, S.M.; Wen, C.K.; Davis, J.N.; Shen, E.; Nguyen-Rodriguez, S.T.; Belcher, B.R.; Hsu, Y.W.; Weigensberg, M.J.; Goran, M.I.; Spruijt-Metz, D. Eating breakfast more frequently is cross-sectionally associated with greater physical activity and lower levels of adiposity in overweight Latina and African American girls. Am. J. Clin. Nutr. 2013, 98, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Jamshed, H.; Beyl, R.A.; Della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves 24-h Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients 2019, 11, 1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Meta. 2018, 27, 1212–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, C.R.; Rossman, M.J.; Mazzo, M.R.; Jankowski, L.R.; Nagy, E.E.; Denman, B.A.; Richey, J.J.; Johnson, S.A.; Ziemba, B.P.; Wang, Y.; et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. Geroscience 2020. [Google Scholar] [CrossRef] [PubMed]
- Ravussin, E.; Beyl, R.A.; Poggiogalle, E.; Hsia, D.S.; Peterson, C.M. Early Time-Restricted Feeding Reduces Appetite and Increases Fat Oxidation But Does Not Affect Energy Expenditure in Humans. Obesity 2019, 27, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Gabel, K.; Hoddy, K.K.; Haggerty, N.; Song, J.; Kroeger, C.M.; Trepanowski, J.F.; Panda, S.; Varady, K.A. Effects of 8-h time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr. Health Aging 2018, 4, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Antoni, R.; Robertson, T.; Robertson, M.; Johnston, J. A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. J. Nutr. Sci. 2018, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Chow, L.S.; Manoogian, E.N.C.; Alvear, A.; Fleischer, J.G.; Thor, H.; Dietsche, K.; Wang, Q.; Hodges, J.S.; Esch, N.; Malaeb, S.; et al. Time-Restricted Eating Effects on Body Composition and Metabolic Measures in Humans who are Overweight: A Feasibility Study. Obesity 2020, 28, 860–869. [Google Scholar] [CrossRef]
- Cienfuegos, S.; Gabel, K.; Kalam, F.; Ezpeleta, M.; Wiseman, E.; Pavlou, V.; Lin, S.; Oliveria, M.L.; Varady, K.A. Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab. 2020. [Google Scholar] [CrossRef]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31, 92–104. [Google Scholar] [CrossRef]
- Zinczenko, D.; Moore, P. The 8 Hour Diet: Watch the Pounds Disappear Without Watching What You Eat! Rodale: Kutztown, PA, USA, 2013. [Google Scholar]
- Hofmekler, O. The Warrior Diet: Switch on Your Biological Powerhouse for High Energy, Explosive Strenght, and a Leaner, Harder Body; Blue Snake Books: Berkeley, CA, USA, 2007; p. 277. [Google Scholar]
- Carlson, O.; Martin, B.; Stote, K.S.; Golden, E.; Maudsley, S.; Najjar, S.S.; Ferrucci, L.; Ingram, D.K.; Longo, D.L.; Rumpler, W.V.; et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism 2007, 56, 1729–1734. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, G.M.; Forsse, J.S.; Butler, N.K.; Paoli, A.; Bane, A.A.; La Bounty, P.M.; Morgan, G.B.; Grandjean, P.W. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur. J. Sport Sci. 2017, 17, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.A.; Wu, N.; Rohdin-Bibby, L.; Moore, A.H.; Kelly, N.; Liu, Y.E.; Philip, E.; Vittinghoff, E.; Heymsfield, S.B.; Olgin, J.E. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men With Overweight and Obesity: The TREAT Randomized Clinical Trial. JAMA Intern. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Romon, M.; Edme, J.L.; Boulenguez, C.; Lescroart, J.L.; Frimat, P. Circadian variation of diet-induced thermogenesis. Am. J. Clin. Nutr. 1993, 57, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.J.; Garcia, J.I.; Myers, S.; Yang, J.N.; Trienekens, N.; Scheer, F.A. The Human Circadian System Has a Dominating Role in Causing the Morning/Evening Difference in Diet-Induced Thermogenesis. Obesity 2015, 23, 2053–2058. [Google Scholar] [CrossRef] [Green Version]
- Dhurandhar, N.V.; Schoeller, D.; Brown, A.W.; Heymsfield, S.B.; Thomas, D.; Sorensen, T.I.; Speakman, J.R.; Jeansonne, M.; Allison, D.B. Energy balance measurement: When something is not better than nothing. Int. J. Obes. 2015, 39, 1109–1113. [Google Scholar] [CrossRef] [Green Version]
- Freedman, L.S.; Commins, J.M.; Moler, J.E.; Arab, L.; Baer, D.J.; Kipnis, V.; Midthune, D.; Moshfegh, A.J.; Neuhouser, M.L.; Prentice, R.L. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am. J. Epidemiol. 2014, 180, 172–188. [Google Scholar] [CrossRef] [Green Version]
- Archer, E.; Hand, G.A.; Blair, S.N. Validity of U.S. nutritional surveillance:National Health and Nutrition Examination Survey caloric energy intake data, 1971–2010. PLoS ONE 2013, 8, e76632. [Google Scholar] [CrossRef]
- Pendergast, F.J.; Ridgers, N.D.; Worsley, A.; McNaughton, S.A. Evaluation of a smartphone food diary application using objectively measured energy expenditure. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 30. [Google Scholar] [CrossRef] [Green Version]
- Rollo, M.E.; Ash, S.; Lyons-Wall, P.; Russell, A.W. Evaluation of a Mobile Phone Image-Based Dietary Assessment Method in Adults with Type 2 Diabetes. Nutrients 2015, 7, 4897–4910. [Google Scholar] [CrossRef] [Green Version]
n (%) | |
Sex | |
Female | 71 (86%) |
Male | 12 (14%) |
Race | |
American Indian/Alaska Native | 0 (0%) |
Asian | 5 (6%) |
Native Hawaiian or Other Pacific Islander | 0 (0%) |
Black or African American | 10 (12%) |
White | 67 (81%) |
More than one race | 0 (0%) |
Unknown/not reported | 1 (1%) |
Ethnicity | |
Hispanic or Latino | 13 (16%) |
Not Hispanic or Latino | 69 (83%) |
Unknown/not reported | 1 (1%) |
Mean (Std Dev) | |
Age (years) | 38.7 (7.8) |
Weight (kg) | 93.8 (17.8) |
BMI (kg/m2) | 33.7 (5.6) |
Lean body mass (kg) | 53.0 (9.4) |
Fat mass (kg) | 40.8 (11.5) |
Percent fat (%) | 43.1 (6) |
Meal Timing | n | Mean (SD) |
---|---|---|
Start of eating window (clock time) | 77 | 08:48 (01:30) |
Standard deviation of start of eating window (hours:mins) | 77 | 01:18 (00:42) |
Midpoint of eating window (clock time) | 77 | 14:30 (01:12) |
Standard deviation of midpoint of eating window (hours:mins) | 77 | 1:06 (00:30) |
End of eating window (clock time) | 77 | 20:06 (01:18) |
Standard deviation of end of eating window (hours:mins) | 77 | 01:36 (00:48) |
Duration of eating window (hours:mins) | 77 | 11:18 (01:24) |
Standard deviation of duration of eating window (hours:mins) | 77 | 02:12 (02:00) |
Midpoint of meal timing on weekends minus weekdays (hours:mins) | 66 | −00:36 (01:00) |
Sleep | ||
Social Jet Lag (sleep timing on weekends minus weekdays) (hours:mins) | 71 | 00:54 (01:24) |
Time of sleep onset (clock time) | 71 | 23:18 (01:12) |
Time of sleep offset (clock time) | 71 | 06:36 (01:00) |
Time in bed (hours:mins) | 71 | 07:18 (00:48) |
Sleep duration (hours:mins) | 71 | 06:48 (00:48) |
Midpoint of sleep (clock time) | 71 | 03:06 (01:06) |
Sleep and Meal timing | ||
Time elapsed between sleep offset and start of eating window (hours:mins) | 66 | 02:12 (01:06) |
Time elapsed between end of eating window and sleep onset (hours:mins) | 66 | 03:12 (01:00) |
Primary Physical Activity | ||
Stepping time (min) | 82 | 95.7 (27.9) |
Steps (n) | 82 | 7769.0 (2473.5) |
Standing time (min) | 82 | 222.3 (76.9) |
Sitting time (min) | 82 | 630.2 (90.4) |
Metabolic Equivalents (METh) | 82 | 33.6 (1.0) |
Energy intake | ||
Fat (%) | 45 | 38.1 (6.3) |
Carbohydrate (%) | 45 | 45.2 (7.1) |
Protein (%) | 45 | 16.6 (3.1) |
Intake (kcals) | 45 | 2328.6 (481.8) |
Healthy Eating Index Score | 45 | 55.1 (12.5) |
Estimate [95% CI] | Raw p-Value | FDR-Adjusted p-Value | n | |
---|---|---|---|---|
Start of eating window (hour) | 1.25 [0.6, 1.91] | 0.0003 | 0.010 | 77 |
MET-h | −1.57 [−2.52, −0.62] | 0.002 | 0.029 | 82 |
Total number of steps (per 1000 steps) | −0.66 [−1.06, −0.26] | 0.002 | 0.029 | 82 |
Midpoint of eating window (hour) | 1.35 [0.51, 2.19] | 0.002 | 0.031 | 77 |
Time of sleep offset (hour) | 1.64 [0.56, 2.72] | 0.003 | 0.044 | 71 |
Total stepping time (hour) | −3.02 [−5.21, −0.83] | 0.008 | 0.083 | 82 |
Duration of eating window (hour) | −0.96 [−1.71, −0.21] | 0.013 | 0.117 | 77 |
Midpoint of sleep (hour) | 1.12 [0.13, 2.11] | 0.028 | 0.193 | 71 |
Time of sleep onset (hour) | 0.95 [−0.01, 1.91] | 0.053 | 0.346 | 71 |
Standing time (hour) | −0.68 [−1.49, 0.14] | 0.102 | 0.413 | 82 |
End of eating window (hour) | 0.67 [−0.18, 1.52] | 0.123 | 0.413 | 77 |
Standard deviation of start of eating window (hour) | 1.11 [−0.34, 2.56] | 0.133 | 0.413 | 77 |
Standard deviation of end of eating window (hour) | −0.85 [−2.16, 0.47] | 0.205 | 0.440 | 77 |
Time elapsed between sleep offset and start of eating window (hour) | 0.60 [−0.41, 1.6] | 0.238 | 0.476 | 66 |
Standard deviation of duration of eating window (hour) | −0.66 [−1.91, 0.58] | 0.292 | 0.519 | 77 |
Protein intake (%) | 0.19 [−0.22, 0.6] | 0.361 | 0.577 | 45 |
Sitting time (hour) | 0.30 [−0.41, 1.01] | 0.399 | 0.620 | 82 |
Time in bed (hour) | 0.60 [−0.88, 2.07] | 0.423 | 0.647 | 71 |
Time elapsed between end of eating window and sleep onset (hour) | −0.41 [−1.51, 0.69] | 0.458 | 0.684 | 66 |
Standard deviation of average sleep duration (hour) | 0.35 [−1.23, 1.94] | 0.658 | 0.856 | 71 |
Carbohydrate intake (%) | −0.04 [−0.21, 0.14] | 0.676 | 0.858 | 45 |
Energy intake (100 kcals) | 0.02 [−0.24, 0.29] | 0.870 | 0.973 | 45 |
Metabolic jetlag (midpoint of meal timing weekends-weekdays) (hour) | 0.05 [−1.08, 1.17] | 0.934 | 0.985 | 66 |
Standard deviation of midpoint of eating window (hours) | −0.060 [−2.28, 2.16] | 0.958 | 0.985 | 77 |
2015 healthy index score | −0.002 [−0.11, 0.1] | 0.974 | 0.985 | 45 |
Fat intake (%) | 0.003 [−0.2, 0.2] | 0.976 | 0.985 | 45 |
Estimate [95% CI] | Raw p-Value | FDR-Adjusted p-Value | n | |
---|---|---|---|---|
Energy intake (100 kcals) | 0.53 [0.26, 0.79] | 0.0002 | 0.010 | 45 |
Start of eating window (hour) | 0.98 [0.19, 1.77] | 0.016 | 0.130 | 77 |
Midpoint of eating window (hour) | 1.16 [0.16, 2.16] | 0.023 | 0.172 | 77 |
Time of sleep offset (hour) | 1.06 [−0.29, 2.4] | 0.123 | 0.413 | 71 |
Midpoint of sleep (hour) | 0.92 [−0.29, 2.12] | 0.134 | 0.413 | 71 |
Carbohydrate intake (%) | −0.15 [−0.36, 0.05] | 0.140 | 0.413 | 45 |
Time elapsed between sleep offset and start of eating window (hour) | 0.93 [−0.32, 2.18] | 0.141 | 0.413 | 66 |
End of eating window (hour) | 0.72 [−0.26, 1.69] | 0.147 | 0.413 | 77 |
Standard deviation of start of eating window (hour) | 1.17 [−0.51, 2.84] | 0.169 | 0.440 | 77 |
Total number of steps (per 1000 steps) | −0.32 [−0.82, 0.18] | 0.207 | 0.440 | 82 |
Duration of eating window (hour) | −0.56 [−1.45, 0.32] | 0.207 | 0.440 | 77 |
Time of sleep onset (hour) | 0.70 [−0.44, 1.84] | 0.224 | 0.457 | 71 |
Fat intake (%) | 0.14 [−0.1, 0.37] | 0.249 | 0.480 | 45 |
MET-h | −0.63 [−1.81, 0.54] | 0.286 | 0.519 | 82 |
Metabolic jetlag (midpoint of meal timing weekends-weekdays) (hour) | 0.69 [−0.62, 2.01] | 0.294 | 0.519 | 66 |
Protein intake (%) | 0.24 [−0.23, 0.72] | 0.308 | 0.534 | 45 |
2015 healthy index score | −0.06 [−0.18, 0.06] | 0.324 | 0.553 | 45 |
Standard deviation of midpoint of eating window (hour) | 1.24 [−1.3, 3.77] | 0.334 | 0.560 | 77 |
Stepping time (hour) | −1.15 [−3.82, 1.51] | 0.393 | 0.609 | 82 |
Sitting time (hour) | 0.24 [−0.58, 1.07] | 0.557 | 0.772 | 82 |
Standing time (hour) | 0.17 [−0.8, 1.14] | 0.723 | 0.894 | 82 |
Sleep duration (hour) | −0.31 [−2.08, 1.46] | 0.730 | 0.894 | 71 |
Time elapsed between end of eating window and sleep onset (hour) | −0.10 [−1.48, 1.27] | 0.879 | 0.973 | 66 |
Time in bed (hour) | 0.09 [−1.57, 1.75] | 0.913 | 0.985 | 71 |
Standard deviation of duration of eating window (hour) | 0.03 [−1.41, 1.47] | 0.964 | 0.985 | 77 |
Standard deviation of end of eating window (hour) | 0.003 [−1.53, 1.54] | 0.997 | 0.997 | 77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, E.A.; Zaman, A.; Cornier, M.-A.; Catenacci, V.A.; Tussey, E.J.; Grau, L.; Arbet, J.; Broussard, J.L.; Rynders, C.A. Later Meal and Sleep Timing Predicts Higher Percent Body Fat. Nutrients 2021, 13, 73. https://doi.org/10.3390/nu13010073
Thomas EA, Zaman A, Cornier M-A, Catenacci VA, Tussey EJ, Grau L, Arbet J, Broussard JL, Rynders CA. Later Meal and Sleep Timing Predicts Higher Percent Body Fat. Nutrients. 2021; 13(1):73. https://doi.org/10.3390/nu13010073
Chicago/Turabian StyleThomas, Elizabeth A., Adnin Zaman, Marc-Andre Cornier, Victoria A. Catenacci, Emma J. Tussey, Laura Grau, Jaron Arbet, Josiane L. Broussard, and Corey A. Rynders. 2021. "Later Meal and Sleep Timing Predicts Higher Percent Body Fat" Nutrients 13, no. 1: 73. https://doi.org/10.3390/nu13010073
APA StyleThomas, E. A., Zaman, A., Cornier, M. -A., Catenacci, V. A., Tussey, E. J., Grau, L., Arbet, J., Broussard, J. L., & Rynders, C. A. (2021). Later Meal and Sleep Timing Predicts Higher Percent Body Fat. Nutrients, 13(1), 73. https://doi.org/10.3390/nu13010073