Inadequate Intake of Dietary Fibre in Adolescents, Adults, and Elderlies: Results of Slovenian Representative SI. Menu Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Subjects
2.2. Food Consumption Data
- 1.
- General Questionnaire (GQ) enabled the collection of data for accessing general socio-demographic, socio-economic, and lifestyle determinants, such as place of living, number of household members, marital status, level of education, monthly net income of the household, dietary and consumer habits, as well as usual frequency and duration of physical activity.
- 2.
- Food Propensity Questionnaire (FPQ) was used to record the usual frequency of consumption of specific foods in the last 12 months: Altogether, 78 food items were allocated into 9 food groups. For example, within cereals and cereal products, FPQ included separate questions for white bread, whole-grain bread, etc. The FPQ considered the following frequency response options: never, 1–3 times per month or less, once per week, 2–3 times per week, 4–6 times per week, 1–2 times per day or more. More details about the SI.Menu FPQ can be found elsewhere [19].
- 3.
- Information about the participant’s dietary habits was collected by two non-consecutive 24 h dietary recalls which were carried out up to three weeks apart (71% of the recalls were performed on workdays and 29% on weekends). The majority (87%) of the second 24 h recalls was collected within 7 days; the rest was completed within the next two weeks. The first 24 h recalls occurred at the participant’s home and were completed by the participant’s interviewer. The second 24 h recall was performed over the telephone or at participants’ homes (in cases when they could not be reached over the telephone). The latter was only performed for a small sample of participants. Portion sizes were estimated with the help of a nationally adjusted picture book, containing 46 pictures of different food products or simple recipes presented in 6 different portion sizes [19]. For home-cooked (mixed) dishes, participants were asked to provide recipes. When this was not available, and for all outdoor dining, standard recipes from the Open Platform for Clinical Nutrition (OPEN) [21] were used.
2.3. Assessment of Dietary Fibre Content
2.4. Study Sample
2.5. Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Codex Alimentarius Commission. Guidelines on nutrition labelling CAC/GL 2–1985 as last amended 2017. In Joint FAO/WHO Food Standards Programme; Secretariat of the Codex Alimentarius Commission, FAO: Rome, Italy; p. 10.
- EFSA Panel on Dietetic Products. Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA J. 2010, 8. [CrossRef] [Green Version]
- Hervik, A.K.; Svihus, B. The Role of Fibre in Energy Balance. J. Nutr. Metab. 2019, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Available online: https://eur-lex.europa.eu/legal-content/EN/AUTO/?uri=CELEX:02011R1169-20180101&qid=1547797296601 (accessed on 28 December 2020).
- Wan, Y.; Wang, F.; Yuan, J.; Li, J.; Jiang, D.; Zhang, J.; Li, H.; Wang, R.; Tang, J.; Huang, T.; et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-month randomised controlled-feeding trial. Gut 2019, 68, 1417–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linus Pauling Institute, Micronutrient Information Center. Fiber. Available online: https://lpi.oregonstate.edu/mic/other-nutrients/fiber (accessed on 26 October 2021).
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef]
- Cronin, P.; Joyce, S.; O’Toole, P.; O’Connor, E. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Stephen, A.M.; Champ, M.M.-J.; Cloran, S.J.; Fleith, M.; Van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- Mehta, N.; Ahlawat, S.S.; Sharma, D.P.; Dabur, R. Novel trends in development of dietary fiber rich meat products—A critical review. J. Food Sci. Technol. 2013, 52, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Doets, E.L.; de Wit, L.S.; Dhonukshe-Rutten, R.A.M.; Cavelaars, A.E.J.M.; Raats, M.M.; Timotijevic, L.; Brzozowska, A.; Wijnhoven, T.M.A.; Pavlovic, M.; Totland, T.H.; et al. Current micronutrient recommendations in Europe: Towards understanding their differences and similarities. Eur. J. Nutr. 2008, 47, 17–40. [Google Scholar] [CrossRef]
- NIJZ. Referenčne Vrednosti za Energijski vnos ter vnos Hranil. Tabelarična Priporočila za Otroke (od 1. leta Starosti Naprej), Mladostnike, Odrasle, Starejše Odrasle, Nosečnice ter Doječe Matere. Dopolnjena Izdaja. 2020. Available online: https://www.nijz.si/sl/referencne-vrednosti-za-energijski-vnos-ter-vnos-hranil (accessed on 26 October 2021).
- Koch, V. Prehrambene Navade Odraslih Slovencev z Vidika Varovanja Zdravja. Doktorska Disertacija, Biotehnična fakulteta, Oddelek za živilstvo, Ljubljana, Slovenia. (In Slovene).
- Verena Koch, V.; Pokorn, P. Comparison of nutritional habits among various adult age groups in Slovenia. Nutr. Res. 1999, 19, 1153–1164. [Google Scholar] [CrossRef]
- Mis, N.F.; Kobe, H.; Štimec, M.; Mis, N.F.; Timec, M. Dietary Intake of Macro- and Micronutrients in Slovenian Adolescents: Comparison with Reference Values. Ann. Nutr. Metab. 2012, 61, 305–313. [Google Scholar] [CrossRef]
- EFSA. Guidance on the EU Menu methodology. EFSA J. 2014, 12, 3944. [Google Scholar]
- National Institute of Public Health (NIJZ); Gregorič, M.; Blaznik, U.; Delfar, N.; Zaletel, M.; Lavtar, D.; Seljak, B.K.; Golja, P.; Kotnik, K.Z.; Pravst, I.; et al. Slovenian national food consumption survey in adolescents, adults and elderly. EFSA Support. Publ. 2019, 16. [Google Scholar] [CrossRef] [Green Version]
- Zupanič, N.; Hristov, H.; Gregorič, M.; Blaznik, U.; Delfar, N.; Koroušić Seljak, B.; Ding, E.L.; Fidler Mis, N.; Pravst, I. Total and Free Sugars Consumption in a Slovenian Population Representative Sample. Nutrients 2020, 12, 1729. [Google Scholar] [CrossRef]
- Korošec, M.; Golob, T.; Bertoncelj, J.; Stibilj, V.; Seljak, B.K. The Slovenian food composition database. Food Chem. 2013, 140, 495–499. [Google Scholar] [CrossRef]
- de Onis, M.; Onyango, A.; Borghi, E.; Siyam, A.; Blössner, M.; Lutter, C. Worldwide implementation of the WHO Child Growth Standards. Public Health Nutr. 2012, 15, 1603–1610. [Google Scholar] [CrossRef] [Green Version]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Bodner-Montville, J.; Ahuja, J.K.; Ingwersen, L.A.; Haggerty, E.S.; Enns, C.W.; Perloff, B.P. USDA Food and Nutrient Database for Dietary Studies: Released on the web. J. Food Compos. Anal. 2006, 19, S100–S107. [Google Scholar] [CrossRef]
- Vásquez-Caicedo, A.L.; Bell, S.; Hartmann, B. Report on Collection of Rules on Use of Recipe Calculation Procedures Including the Use of Yield and Retention Factors for Imputing Nutrient Values for Composite Foods. EuroFIR Technical Report. Available online: https://www.eurofir.org/wp-content/uploads/2014/05/6.-Report-on-collection-of-rules-on-use-of-recipe-calculation-procedures-including-the-use-of-yield-and-retention-factors-for-imputing-nutrient-values-for-composite-foods.pdf (accessed on 26 October 2021).
- Fineli Food Composition Database. Available online: https://fineli.fi/fineli/en/avoin-data (accessed on 26 October 2021).
- Danish Food Composition Database. Available online: https://frida.fooddata.dk (accessed on 26 October 2021).
- Souci, S.W.; Fachmann, W.; Kraut, H. Food Composition and Nutrition Tables=Die Zusammensetzung der Lebensmittel Nährwert-Tabellen = La Composition des Aliments TABLEAUX des valeurs Nutritives; 8th rev. and Completed ed; an Imprint of Wissenschaftliche Verlagsgesellschaft; Andersen, G., Ed.; MedPharmScientific Publishers: Stuttgart, Germany, 2016. [Google Scholar]
- Dunford, E.; Neal, B.; Macgregor, G.; Czernichow, S.; Ni Mhurchu, C.; Food Monitoring Group. International collaborative project to compare and track the nutritional composition of fast foods. BMC Public Health 2012, 12, 559. [Google Scholar]
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar] [PubMed]
- Black, A.E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake: Basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Roza, A.M.; Shizgal, H.M. The Harris Benedict equation reevaluated: Resting energy requirements and the body cell mass. Am. J. Clin. Nutr. 1984, 40, 168–182. [Google Scholar] [CrossRef]
- Harttig, U.; Haubrock, J.; Knüppel, S.; Boeing, H. The MSM program: Web-based statistics package for estimating usual die-tary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65, S87–S91. [Google Scholar] [CrossRef] [Green Version]
- Kolenikov, S. Calibrating Survey Data using Iterative Proportional Fitting (Raking). Stata J. 2014, 14, 22–59. [Google Scholar] [CrossRef] [Green Version]
- Fayet-Moore, F.; Cassettari, T.; Tuck, K.; McConnell, A.; Petocz, P. Dietary Fibre Intake in Australia. Paper I: Associations with Demographic, Socio-Economic, and Anthropometric Factors. Nutrients 2018, 10, 599. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Rodriguez, L.G.; Perea-Sanchez, J.M.; Aranceta-Bartrina, J.; Gil, A.; Gonzalez-Gross, M.; Serra-Majem, L.; Varela-Moreiras, G.; Ortega, R.M. Intake and Dietary Food Sources of Fibre in Spain: Differences with Regard to the Prevalence of Excess Body Weight and Abdominal Obesity in Adults of the ANIBES Study. Nutrients 2017, 9, 326. [Google Scholar] [CrossRef]
- Kehoe, L.; Walton, J.; McNulty, B.; Nugent, A.; Flynn, A. Energy, Macronutrients, Dietary Fibre and Salt Intakes in Older Adults in Ireland: Key Sources and Compliance with Recommendations. Nutrients 2021, 13, 876. [Google Scholar] [CrossRef]
- Gibson, R.; Eriksen, R.; Chambers, E.; Gao, H.; Aresu, M.; Heard, A.; Chan, Q.; Elliott, P.; Frost, G. Intakes and Food Sources of Dietary Fibre and Their Associations with Measures of Body Composition and Inflammation in UK Adults: Cross-Sectional Analysis of the Airwave Health Monitoring Study. Nutrients 2019, 11, 1839. [Google Scholar] [CrossRef] [Green Version]
- Gregorič, M.; Blaznik, U.; Turk, V.F.; Hočevar-Grom, A.; Delfar, N.; Korošec, A.; Lavtar, D.; Zaletel, M.; Koroušić-Seljak, B.; Golja, P.; et al. Različni Vidiki Prehranjevanja Prebivalcev Slovenije: V Starosti od 3 Mesecev do 74 let; Nacionalni Inštitut za Javno Zdravje: Ljubljana, Slovenia, 2019; ISBN 978-961-6945-01-1. (In Slovene) [Google Scholar]
- Dinnissen, C.; Ocké, M.; Buurma-Rethans, E.; van Rossum, C. Dietary Changes among Adults in The Netherlands in the Period 2007–2010 and 2012–2016. Results from Two Cross-Sectional National Food Consumption Surveys. Nutrients 2021, 13, 1520. [Google Scholar] [CrossRef]
- Gregorič, M.; Kotnik, K.Z.; Pigac, I.; Blenkuš, M.G. A Web-Based 24-H Dietary Recall Could Be a Valid Tool for the Indicative Assessment of Dietary Intake in Older Adults Living in Slovenia. Nutrients 2019, 11, 2234. [Google Scholar] [CrossRef] [Green Version]
- King, D.E.; Mainous, A.G.; Lambourne, C.A. Trends in dietary fibre intake in the United States, 1999–2008. J. Acad. Nutr. Diet. 2012, 112, 642–648. [Google Scholar] [CrossRef]
- Aggett, P.J.; Agostoni, C.; Axelsson, I.; Edwards, C.A.; Goulet, O.; Hernell, O.; Koletzko, B.; Lafeber, H.N.; Micheli, J.L.; Michaelsen, K.F.; et al. Nondigestible Carbohydrates in the Diets of Infants and Young Children: A Commentary by the ES-PGHAN Committee on Nutrition. J. Pediatric Gastroenterol. Nutr. 2003, 36, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Gherasim, A.; Arhire, L.I.; Niță, O.; Popa, A.D.; Graur, M.; Mihalache, L. The relationship between lifestyle components and dietary patterns. Proc. Nutr. Soc. 2020, 79, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Zaragoza, E.; Sánchez-Zapata, E.; Sendra, E.; Sayas-Barberá, E.; Navarro, C.; Fernández-López, J.; Pérez-Alvarez, J.A. Resistant starch as prebiotic: A review. Starch-Stärke 2011, 63, 406–415. [Google Scholar] [CrossRef]
- Bozzetto, L.; Costabile, G.; Della Pepa, G.; Ciciola, P.; Vetrani, C.; Vitale, M.; Rivellese, A.A.; Annuzzi, G. Dietary Fibre as a Unifying Remedy for the Whole Spectrum of Obesity-Associated Cardiovascular Risk. Nutrients 2018, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- Kendall, C.W.; Esfahani, A.; Jenkins, D.J. The link between dietary fibre and human health. Food Hydrocoll. 2010, 24, 42–48. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Liu, J. Fiber consumption and all-cause, cardiovascular, and cancer mortalities: A systematic review and meta-analysis of cohort studies. Mol. Nutr. Food Res. 2014, 59, 139–146. [Google Scholar] [CrossRef]
- National Institute of Public Health. Prehrambene Navade Odraslih Prebivalcev Slovenije. Available online: https://www.nijz.si/sl/publikacije/prehrambene-navade-odraslih-prebivalcev-slovenije (accessed on 26 September 2021). (In Slovene).
- Hafner, E.; Pravst, I. Evaluation of the Ability of Nutri-Score to Discriminate the Nutritional Quality of Prepacked Foods Using a Sale-Weighting Approach. Foods 2021, 10, 1689. [Google Scholar] [CrossRef] [PubMed]
Age Cohorts | ||||
---|---|---|---|---|
Adolescents | Adults | Elderly | ||
(10–17 Years) | (18–64 Years) | (65–74 Years) | ||
n = 468 | n = 364 | n = 416 | ||
Age; years—mean (SD) | 13.4 (2.37) | 43.6 (13.81) | 68.7 (2.7) | |
Place of living—n (%) | Rural | 270 (57.7) | 202 (55.5) | 229 (55.1) |
Intermediate | 76 (16.2) | 56 (15.4) | 71 (17.1) | |
Urban | 122 (26.1) | 106 (29.1) | 116 (27.9) | |
Sex—n (%) | Male | 238 (50.9) | 173 (47.5) | 213 (51.2) |
Female | 230 (49.1) | 191 (52.5) | 203 (48.8) | |
Education—n (%) | No university degree | n.a. | 249 (68.4) | 342 (82.2) |
University degree | n.a. | 115 (31.6) | 74 (17.8) | |
Family monthly net income—n (%) | Below average | n.a. | 118 (38.4) | 269 (71.5) |
Above average | n.a. | 189 (61.6) | 107 (28.5) | |
BMI—mean (SD) | 21.0 (4.2) | 26.7 (5.2) | 28.4 (5.0) | |
n (%) | Normal | 301 (64.6) | 148 (40.7) | 108 (26.0) |
Overweight and obese | 167 (35.7) | 216 (59.3) | 308 (74.0) | |
IPAQ—n (%) | Low intensity | 108 (23.3) | 127 (35.3) | 137 (33.4) |
Moderate | 141 (30.5) | 108 (30.0) | 133 (32.4) | |
High intensity | 214 (46.2) | 125 (34.7) | 140 (34.2) | |
Employment status—n (%) | Employed | n.a. | 226 (62.1) | n.a. |
Unemployed | n.a. | 42 (11.5) | n.a. | |
Student | n.a. | 32 (8.8) | n.a. | |
Retired | n.a. | 64 (17.6) | n.a. |
Adolescents (10–17) | Adults (18–64) | Elderly (65–74) | |||||||
---|---|---|---|---|---|---|---|---|---|
All | Male | Female | All | Male | Female | All | Male | Female | |
Weighted * N (%) | 150,674 (78.2) | 75,580 (50.2) | 73,094 (49.8) | 1,302,132 (78.2) | 670,464 (51.5) | 631,668 (48.5) | 212,793 (12.8) | 100,247.5 (47.1) | 112,545.5 (52.9) |
Sample N (%) | 468 (100) | 238 (50.9) | 230 (49.2) | 364 (100) | 173 (47.5) | 191(52.5) | 416 (100) | 213 (51.2) | 203 (48.8) |
Intake of total dietary fibre | |||||||||
Mean (95%CI) [g/day] | 19.5 (18.8–20.2) | 20.5 (19.6–21.5) | 18.3 (17.3–19.3) | 20.9 (20.1–21.7) | 21.1 (19.9–22.3) | 20.7 (19.6–21.8) | 22.4 (20.5–24.3) | 20.9 (19.6–22.1) | 23.9 (20.7–27.0) |
Median [g/day] | 18.8 | 19.6 | 17.5 | 19.7 | 20.1 | 19.2 | 20.6 | 18.8 | 21.8 |
Mean (95%CI) [g per 1000 Kcal/day] ** | 11.2 (10.8–11.7) | 10.6 (10.0–11.9) | 11.9 (11.3–12.5) | 12.2 (11.7–12.7) | 10.7 (10.1–11.3) | 13.7 (13.0–14.3) | 13.2 (12.3–14.0) | 11.8 (10.8–12.8) | 14.4 (13.5–15.3) |
Prevalence for inadequate daily intake of total dietary fibre *** | |||||||||
<25 g/day | 83.0 (78.4–86.7) | 79.1 (71.6–85.0) | 87.2 (81.6–91.3 | 75.5 (69.9–80.3) | 74.2 (66.1–80.9) | 76.8 (68.7–83.4) | 70.8 (61.5–78.7) | 77.6 (67.6–85.2) | 64.6 (51.2–76.1) |
<30 g/day | 90.6 (87.1–93.1) | 88.1 (82.4–92.2) | 93.2 (88.9–95.9) | 89.6 (85.6–92.6) | 88.6 (82.5–92.7) | 90.7 (84.7–94.6) | 83.9 (74.0–90.5) | 91.0 (85.1–94.7) | 77.4 (61.0–88.2) |
Share of insoluble dietary fibre intake as % of total daily fibre intake **** | |||||||||
Mean (95%CI) | 63.9 (63.3–64.5) | 63.9 (63.0–64.7) | 63.9 (63.1–64.6) | 64.9 (64.4–65.4) | 64.9 (64.1–65.7) | 64.9 (64.2–65.5) | 65.2 (63.9–66.4) | 64.6 (62.3–66.9) | 65.7 (65.0–66.4) |
Median | 63.9 | 63.7 | 64.2 | 65.3 | 65.4 | 65.3 | 65.3 | 64.6 | 65.6 |
Variable | Adolescents (10–17 Years old) | Adults (18–64 Years old) | Elderly (65–74 Years old) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Prevalence (%) | Crude OR | Adjusted OR | Prevalence (%) | Crude OR | Adjusted OR | Prevalence (%) | Crude OR | Adjusted OR | ||
Overall | 422 (90.2) | 329 (90.4) | 367 (88.2) | |||||||
Sex | Male | 208 (87.4) | 1 | 1 | 152 (87.9) | 1 | 1 | 191 (89.7) | 1 | 1 |
Female | 214 (93.0) | 1.93 (0.98–3.90) | 2.00 (1.05–3.81) | 177 (92.7) | 1.75 (0.81–3.85) | 2.78 (1.21–6.38) | 176 (86.7) | 0.75 (0.39–1.43) | 0.68 (0.36–1.29) | |
Place of living | Village | 240 (88.9) | 1 | 1 | 184 (91.1) | 1 | 1 | 200 (87.3) | 1 | 1 |
Town | 70 (92.1) | 1.46 (0.57–4.46) | 1.45 (0.57–3.67) | 51 (91.1) | 1.00 (0.34–3.61) | 0.68 (0.22–2.09) | 65 (91.6) | 1.57 (0.60–4.83) | 1.89 (0.74–4.89) | |
City | 112 (91.8) | 1.40 (0.64–3.23) | 1.35 (0.63–2.89) | 94 (88.7) | 0.77 (0.33–1.82) | 0.80 (0.33–1.90) | 102 (87.9) | 1.06 (0.51–2.26) | 1.34 (0.64–2.82) | |
Education | No university degree | n.a. | n.a. | 228 (91.6) | 1 | 1 | 306 (89.5) | 1 | 1 | |
University degree | 101 (87.8) | 0.66 (0.31–1.48) | 0.76 (0.31–1.74) | 61 (82.4) | 0.55 (0.27–1.21) | 0.48 (0.22–1.04) | ||||
Family net income | Below average | n.a. | n.a. | 105 (89.0) | 1 | 1 | 237 (88.1) | 1 | 1 | |
Above average | 170 (90.0) | 1.10 (0.48–2.48) | 2.07 (0.85–5.05) | 91 (85.1) | 0.77 (0.39–1.58) | 0.87 (0.43–1.76) | ||||
BMI | Normal | 267 (88.7) | 1 | 1 | 130 (87.8) | 1 | 1 | 99 (91.7) | 1 | 1 |
Overweight and obese | 155 (92.8) | 1.64 (0.80–3.59) | 1.75 (0.87–3.51) | 199 (92.1) | 1.62 (0.76–3.48) | 2.86 (1.24–6.59) | 268 (87.0) | 0.61 (0.25–1.33) | 0.61 (0.27–1.35) | |
IPAQ | Low intensity | 95 (88.0) | 1 | 1 | 113 (89.0) | 1 | 1 | 118 (86.1) | 1 | 1 |
Moderate | 127 (90.1) | 1.24 (0.51–2.99) | 1.14 (0.50–2.58) | 96 (88.9) | 0.99 (0.40–2.47) | 0.96 (0.38–2.45) | 119 (89.5) | 1.36 (0.62–3.10) | 1.53 (0.72–3.25) | |
High intensity | 195 (91.1) | 1.40 (0.61–3.14) | 1.39 (0.65–2.97) | 117 (93.6) | 1.81 (0.68–5.18) | 2.00 (0.72–5.58) | 124 (88.6) | 1.25 (0.58–2.73) | 1.33 (0.63–2.79) | |
Employment | Employed | n.a. | n.a. | 198 (87.6) | 1 | 1 | n.a. | n.a. | ||
Unemployed | 39 (92.9) | 1.84 (0.53–9.89) | 3.49 (0.71–17.10) | |||||||
Student | 30 (93.8) | 2.12 (0.49–19.25) | 1.81 (0.37–8.94) | |||||||
Retired | 62 (98.9) | 4.38 (1.05–38.89) | 5.52 (1.13–27.07) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seljak, B.K.; Valenčič, E.; Hristov, H.; Hribar, M.; Lavriša, Ž.; Kušar, A.; Žmitek, K.; Krušič, S.; Gregorič, M.; Blaznik, U.; et al. Inadequate Intake of Dietary Fibre in Adolescents, Adults, and Elderlies: Results of Slovenian Representative SI. Menu Study. Nutrients 2021, 13, 3826. https://doi.org/10.3390/nu13113826
Seljak BK, Valenčič E, Hristov H, Hribar M, Lavriša Ž, Kušar A, Žmitek K, Krušič S, Gregorič M, Blaznik U, et al. Inadequate Intake of Dietary Fibre in Adolescents, Adults, and Elderlies: Results of Slovenian Representative SI. Menu Study. Nutrients. 2021; 13(11):3826. https://doi.org/10.3390/nu13113826
Chicago/Turabian StyleSeljak, Barbara Koroušić, Eva Valenčič, Hristo Hristov, Maša Hribar, Živa Lavriša, Anita Kušar, Katja Žmitek, Sanja Krušič, Matej Gregorič, Urška Blaznik, and et al. 2021. "Inadequate Intake of Dietary Fibre in Adolescents, Adults, and Elderlies: Results of Slovenian Representative SI. Menu Study" Nutrients 13, no. 11: 3826. https://doi.org/10.3390/nu13113826
APA StyleSeljak, B. K., Valenčič, E., Hristov, H., Hribar, M., Lavriša, Ž., Kušar, A., Žmitek, K., Krušič, S., Gregorič, M., Blaznik, U., Ferjančič, B., Bertoncelj, J., Korošec, M., & Pravst, I. (2021). Inadequate Intake of Dietary Fibre in Adolescents, Adults, and Elderlies: Results of Slovenian Representative SI. Menu Study. Nutrients, 13(11), 3826. https://doi.org/10.3390/nu13113826