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Abstract: The gut microbiota is a crucial factor in maintaining homeostasis. The presence of com-
mensal microorganisms leads to the stimulation of the immune system and its maturation. In turn,
dysbiosis with an impaired intestinal barrier leads to accelerated contact of microbiota with the
host’s immune cells. Microbial structural parts, i.e., pathogen-associated molecular patterns (PAMPs),
such as flagellin (FLG), peptidoglycan (PGN), lipoteichoic acid (LTA), and lipopolysaccharide (LPS),
induce inflammation via activation of pattern recognition receptors. Microbial metabolites can also
develop chronic low-grade inflammation, which is the cause of many metabolic diseases. This article
aims to systematize information on the influence of microbiota on chronic inflammation and the
benefits of microbiota modification through dietary changes, prebiotics, and probiotic intake. Scien-
tific research indicates that the modification of the microbiota in various disease states can reduce
inflammation and improve the metabolic profile. However, since there is no pattern for a healthy
microbiota, there is no optimal way to modify it. The methods of influencing microbiota should be
adapted to the type of dysbiosis. Although there are studies on the microbiota and its effects on
inflammation, this subject is still relatively unknown, and more research is needed in this area.
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1. Introduction

Berg’s publication was intended to systematize the definition of the microbiome. Based
on many definitions, the authors proposed an extended one, in which the microbiome
is presented as a combination of microbiota and their theater of activity. Microbiota are
living organisms and include bacteria, archaea, fungi, protists, and algae. Viruses, phages,
plasmids, viroids, prions, and free DNA or RNA are, by definition, not living organisms,
so they are not members of the microbiota, but they belong to the microbiome. The term
theater of activity refers to the structural elements of microorganisms, their metabolites,
and molecules produced by the host and modified by environmental conditions. The
microbiome also includes the given environmental conditions. All of these factors create a
complex micro-ecosystem on which the health and well-being of the host largely depend [1].

The gastrointestinal tract is inhabited by more than 1014 microorganisms, most of
which have not been identified [2]. The bacteria are classified into 12 different types, of
which 93.5% belong to 4 types: Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria [3].
The gut microbiota plays a major role in digestion, regulation of the immune system,
and production of compounds that might alter human metabolism. The microbiota also
performs many other functions, i.e., synthesizing vitamins, creating appropriate environ-
mental conditions influencing the oxygen level and pH in the intestines, competing with
pathogens (thus reducing their number), and stabilizing the intestinal barrier [4].

Nutrients 2021, 13, 3839. https://doi.org/10.3390/nu13113839 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-3037-1748
https://orcid.org/0000-0002-3470-0545
https://doi.org/10.3390/nu13113839
https://doi.org/10.3390/nu13113839
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13113839
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13113839?type=check_update&version=1


Nutrients 2021, 13, 3839 2 of 20

The scientific literature shows that the intestinal microbiota can stimulate the immune
system and, in the case of excessive stimuli, affect the formation of inflammation. Therefore,
the current study aimed at overviewing and summarizing the literature concerning the
association between microbiota and chronic inflammation. The main purpose of the
current study is to locate articles on a given topic and organize knowledge based on
already existing publications. It was necessary to review published evidence to establish
what is known about intestinal microbiota status, the mechanism of developing chronic
inflammation, and the benefits of dietary modifications and pre/probiotic supplementation.
For this purpose, the Pubmed and World Wide Science databases were searched. While
searching the databases, the keywords “microbiota”, “intestinal barrier”, “inflammation”,
“probiotics”, “prebiotics”, and “diets” were used, and by combining them into various
combinations, it was possible to search for articles that fit the topic of the manuscript.
In addition, articles included in the bibliography of the selected publications were also
searched. The timeframe for all publications was established from 2000 until 2021. The
exclusion criteria were articles published earlier than 2000 and articles written in a language
other than Polish or English.

2. Intestinal Barrier

The intestinal barrier is necessary to separate the external environment in the in-
testines from the interior of the host’s body. The gastrointestinal epithelium is the largest
surface that comes into direct contact with the external environment, which causes it to be
highly vulnerable to harmful factors. The intestinal barrier allows selective permeability;
it prevents the passage of antigens from the intestine into the bloodstream and allows
the absorption of water and nutrients [5]. Apart from a single layer of epithelial cells
interspersed with intraepithelial lymphocytes, the intestinal barrier consists of a layer of
mucus and the underlying mucosal immune system. The cells of the immune system are
abundantly distributed in the lamina propria, which makes it an important link between
the microbiome and the immune system [6].

The intestinal epithelial cells are not homogeneous; they consist of enterocytes, goblet
cells (GCs), Paneth cells (PCs), tuft cells, microfold (M) cells, and enteroendocrine cells,
each of which has different specialized functions [7]. Enterocytes are connected via tight
junctions (TJs), adherens junctions (AJs), gap junctions, and desmosomes, whose role is
to secure selective intestinal permeability and to regulate intracellular interactions among
epithelial cells [7]. Impaired functioning of intercellular junctions leads to increased
intestinal permeability, resulting in increased transport of inflammatory mediators, which
may contribute to chronic intestinal inflammation. Tight junctions are mainly responsible
for the permeability of the intestinal epithelium. They are composed of occludins, claudins,
adhesive proteins, tricellulins, and zonula occludens proteins [8,9]. Inflammation is a factor
that exacerbates TJ disorders, which leads to reduced gut tightness [7].

Goblet cells secrete mucin, providing epithelial cells with a mucus lining, which
creates a physical barrier from microorganisms living in the lumen. Different types of
mucins are produced depending on the location of the goblet cell; in the intestines, mucin
2 (MUC2) is mainly secreted. Another factor produced by GCs that protects endothelial
cells against contact with microbes is the resistin-like molecule β (RELM-β). RELM-β
reduces the number of microorganisms in the mucus layer through bactericidal abilities
and limits the development of intestinal parasites. The goblet cells also secrete zymogen
granule protein 16 (ZG16), which aggregates bacteria and prevents their adherence to the
epithelium [10].

Other highly specialized endothelial cells are the Paneth cells, which are predom-
inantly located in the crypts of Lieberkun. PCs produce some substances with various
antimicrobial properties. Lysozyme acts against Gram-positive bacteria and activates the
innate and the acquired system. Defensins have a wider range of action and may eliminate
not only Gram-positive bacteria but also Gram-negative bacteria, as well as fungi and
viruses. The role of C-type antibacterial lectins, regenerating gene family protein III β and γ
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(RegIIIβ, RegIIIγ), is to prevent Gram-positive bacteria from attaching to the mucosa. Other
antimicrobial molecules produced by PCs are angiogenin-4, secretory phospholipase A2
(sPLA2), α1-antitrypsin, CRP-duktin, and RELM-β. The secretion of the above-mentioned
compounds depends on the presence of microorganisms and, more precisely, on their
number and type. PCs can recognize microbial molecules due to the presence of different
types of receptor pattern recognition receptors (PRRs): nucleotide-binding and oligomer-
ization domain (NOD)-like proteins and toll-like receptors (TLRs). Activation of NOD-like
receptor (NLR) contributes to the secretion of lysozyme and defensins, while the activation
of TLR releases other antimicrobial compounds [11].

Membranous or M cells overlay organized lymphoid follicles spread over the entire
length of the intestine. They transport microorganisms and other antigens to the lymphoid
tissue, playing a key role in the initiation of the immune response [12]. The contact of
antigen with dendritic cells, underlying the M cell, contributes to the production of antigen-
specific immunoglobulin A (IgA). IgA restricts potentially harmful antigens from entering
the gut epithelia [13]. Tuft cells have been proven to be important in the host’s response
to exposure to common eukaryotes, such as protists and helminths. A parasitic infection
triggers the secretion of interleukins, particularly interleukin 25 (IL-25), which, in turn,
causes the secretion of interleukin 13 (IL-13), which is responsible for goblet cell hyperplasia
and mucin production [14].

Enteroendocrine cells (EECs) can be divided into more than 10 types of cells based on
which hormones they secrete. EECs, through the production of hormones, take part in the
processes regulating the absorption of nutrients, the tightness of the intestinal barrier, the
response of the immune system, visceral hyperalgesia, and intestinal motility. EECs express
G protein-coupled receptors (GPCRs), whose ligands are microbiota-derived short-chain
fatty acids (SCFAs). By binding with the GPCRs, butyrate contributes to the secretion of
glucagon-like peptide 2 (GLP-2), which directly affects the intestinal endothelial cells and
causes their proliferation [15].

Another component that protects the body against the excessive development of
pathogens is the intestinal lumen environment. The lumen of the digestive tract is het-
erogeneous, and its conditions depend on the functions and localization of individual
segments. The pH values in the stomach fluctuate between pH 1.4 and 4.6. The acidity of
the environment depends on its distance from the stomach and the secretion of alkaline
pancreatic and liver juices. The antibacterial properties of gastric juice are based on the
content of hydrochloric acid as well as other compounds, e.g., enzymes, such as gastric
trypsin. Bile acids released in the proximal part of the duodenum are metabolized in
the colon by microorganisms to secondary bile acids, which have antibacterial properties
and may affect intestinal permeability. Other factors limiting the excessive growth of
microorganisms are the oxygen content and the availability of nutrients [16].

The gut microbiota is also a significant component of the gut barrier. On the one
hand, commensal microbes rival pathogenic microorganisms, competing with them for
a place of settlement and nutrients. On the other hand, they induce epithelial cells to
proliferate. Activation of TLRs is necessary for increased proliferation following intestinal
injury. Additionally, toll-like receptor 2 (TLR2) signaling contributes to enhancement of TJs
in the intestinal epithelium. Furthermore, activation of NOD-1 by peptidoglycan initiates
the formation of isolated lymphoid follicles in the gut [17]. The synthesis of antimicrobial
molecules in Paneths cells is also dependent on the TLR/myeloid differentiation factor 88
(MyD88) pathway [18]. The mere presence of microorganisms in the intestines initiates
mechanisms that limit the excessive development of microbiota. However, microbiota
influences the state of the intestinal barrier also indirectly through its metabolites. A crucial
metabolic activity of the microbiota is the production of SCFAs by fermenting carbohydrates
that are not digestible by humans. SCFAs activate G protein-coupled receptors 41 (GPR41)
and 43 (GPRs43), which affect the expression of TJ proteins and regulation of endocrine
cells. Butyrate nourishes the intestinal epithelial cells and increases the production of
mucin, which improves the function of the intestinal barrier [3]. Epithelial cells and cells
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lying above the mucus layer limit the contact of substances in the intestinal lumen with
the immune system but do not prevent it completely. The presence of microbiota in the
gut is essential for the proper maturation of the immune system. A moderate amount of
bacterial endotoxins contributes to the maturation of regulatory T cell lymphocytes and
facilitates the neutralization of pathogenic microbes. However, increased translocation of
microorganisms leads to inflammation [19].

3. Microbiota-Derived Inflammation

Inflammation is a natural response of the body that is triggered by harmful stimuli,
and its evolutionary purpose is to restore homeostasis. Inflammation can be triggered
by external and internal inducers. The external inducers are divided into microbial or
non-microbial factors. Non-microbial factors include allergens, irritants, and toxic com-
pounds. Two main microbial factors that trigger inflammation are pathogen-associated
molecular patterns (PAMPs) and virulence factors. Virulence factors are molecules that
occur in pathogens [20]. PAMPs, however, are small molecules with conserved patterns
that occur among various microorganisms. PAMPs include components that build cell
walls, including bacterial peptidoglycan, lipopolysaccharide (LPS), lipoteichoic acid (LTA),
and flagellin [21]. Other factors classified as PAMPs include intracellular pathogens like
viral RNA or DNA. PAMPs are recognized by pattern recognition receptors (PRRs), which
occur on the surface and in the cytosol of immune and epithelial cells [22]. The families
of receptors belonging to PRRs are TLR, NLR, C-type lectin receptor (CLR), retinoic acid-
inducible gene (RIG)-I-like receptor (RLR), and the absent in melanoma 2 (AIM2)-like
receptor (ALR). The bond of PAMPs with their respective specific receptors activates the
innate immune system, which plays a crucial role in first-line defense [23].

3.1. Pathogen-Associated Molecular Patterns

LPS is a component of the outer cell wall of Gram-negative bacteria and is the best-
known bacterial endotoxin. It protects bacteria against harmful factors, such as antibiotics
or immune cells, of the host from the external environment. The membrane receptor CD14
is on the surface of cells of the immune system and epithelial cells. It is also available in a
soluble form in serum. Lipopolysaccharide binds to a lipopolysaccharide-binding protein
(LBP) to increase the affinity for CD14 receptors. The LPS/LBP/CD14 complex, in turn,
binds to the myeloid differentiation factor 2 (MD-2) and, in this form, is recognized by
the toll-like receptor 4 (TLR4). Activation of this receptor leads to the release of mediators
including MyD88, which stimulates nuclear factor κB (NF-κB) to produce proinflammatory
cytokines, including tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) [19].
Paradoxically, inflammation enhances intestinal barrier disruption and causes increased
gut permeability, which exacerbates chronic low-grade inflammation [24]. This process
is shown in a simplified way in Figure 1. The increased plasma LPS levels associated
with chronic inflammation are called metabolic endotoxemia. This condition leads to
the development of cardiometabolic diseases. Endotoxemia is characterized by 2–3-fold
higher serum LPS levels (10–15-fold lower serum LPS levels than in sepsis), which is
a life-threatening condition [25]. Endotoxemia is associated with a variety of diseases,
including obesity, type 2 diabetes, non-alcoholic fatty liver disease, chronic kidney disease,
and cardiovascular disease [26].

The receptor that recognizes the bacterial protein of flagella (flagellin) is toll-like
receptor 5 (TLR5). Flagellum, a microbial component for locomotion, is mainly found in
Gram-negative bacteria [27]. TLR5 is produced in immune cells and epithelial cells of the
gastrointestinal tract, respiratory tract, and liver. It is mainly expressed on the basolateral
side of gut epithelial cells, and its role is to detect the translocation of bacteria across the
endothelial barrier [28]. The activation of TLR5 by flagellin results in the induction of
the synthesis of chemokines, nitric oxide (NO), hydrogen peroxide (H2O2), and proin-
flammatory cytokines [27]. Overactivation of TLR5 may contribute to impairment of the
intestinal barrier integrity and cause chronic inflammation [28]. The composition of the
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microbiota associated with inflammation is characterized by an increased number of motile
bacteria, including bacteria with flagella, which more easily penetrate the mucosa and
initiate an inflammatory response. A study using a mouse model showed that admin-
istration of anti-flagellin antibodies prevents interleukin 10 (IL-10) deficiency-induced
colitis and reduces diet-induced obesity [29]. Lodes et al. found that bacterial flagellin
was a dominant antigen in mice with Crohn’s disease, a disease characterized by chronic
intestinal inflammation [30].
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Peptidoglycan (PGN) is a significant cellular structure that protects bacteria from
environmental factors. It is also necessary for bacterial growth. Peptidoglycan is a complex
polymer consisting of a network of glycan strands that gives the cell mechanical strength.
PGN also consists of other compounds, such as lipoproteins, polysaccharides, and gly-
colipids, that give bacteria various physical and chemical properties. The Gram-negative
and Gram-positive bacteria have a differently organized peptidoglycan structure. In the
first group, peptidoglycan is thinner and is located between the outer and cytoplasmic
membranes. However, in Gram-positive bacteria, peptidoglycan is significantly thicker
and occurs on the outer side of the cytoplasmic membrane, creating the outermost barrier
separating the cell from the environment [31]. Mammals produce four peptidoglycan recog-
nition proteins (PGLYRPs), which are secreted by immune and epithelial cells and lead
to bacterial cell wall lysis [32]. The peptidoglycans found in the intestinal lumen activate
Paneth cells to synthesize defensins, which allows the regulation of the microbiota and pro-
tection against pathogens, such as Salmonella enterica. The recognition of peptidoglycan by
NOD1 and NOD2 receptors leads to activation of NF-κB and the mitogen-activated protein
kinase (MAPK). Both pathways contribute to the transcription of proinflammatory genes,
leading to the synthesis of cytokines, adhesion molecules, and inflammatory mediator
enzymes. Another signaling pathway involving the activation of cryopyrin, an NOD family
protein, also leads to the activation of NF-κB as well as caspase-1-dependent maturation
and secretion of the cytokines IL-1β and interleukin 18 (IL-18) [33]. In 2019, the journal
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Nature published an article in which researchers inhibited the development of autoimmune
encephalomyelitis and autoimmune arthritis in mice by neutralizing peptidoglycans in the
circulatory system. This suggests that peptidoglycans may participate in the pathogenesis
of autoimmune diseases [34].

LTA, a component of a Gram-positive bacteria’s cell wall, is recognized by TRL2 and
leads to immune system activation and the development of adaptive immunity. Similar
to the other PAMPs, in the case of an excessive immune response, inflammation also
develops [35]. LTA is recognized by TLR-2 and, thus, activates the signaling pathway,
leading to the expression of cyclooxygenase, which contributes to prostaglandin E2 (PGE2)
synthesis [36]. PGE2, via activation of mast cells, elicits edema formation and vascular
permeability, two main symptoms of inflammation. It is also involved in gene regulation
leading to cytokine signaling [37]. In macrophages, LTA has been established to stimulate
the release of interleukin 1 (IL-1), interleukin 6 (IL-6), and TNF-α [36]. The origin of PAMPs
and their recognizing receptors are presented graphically in Figure 2.
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3.2. Metabolites

Microorganisms can interfere with the host’s immune system and contribute to in-
flammation not only through their structural elements but also through the products of
their metabolism. Short-chain fatty acids are related to several processes that positively
influence the metabolism of the host. Butyrate nourishes intestinal endothelial cells and
increases the thickness of mucin, which improves the tightness of the intestinal barrier [4].
Propionate stimulates L-enteroendocrine cells to release glucagon-like peptide 1 (GLP-1)
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and peptide tyrosine-tyrosine (PYY), which leads to inhibition of appetite. In the liver, it
inhibits the synthesis of cholesterol and fatty acids, which reduces the chances of develop-
ing obesity and associated diseases. However, not all SCFAs have a beneficial effect on the
host. Acetate is attributed to properties that worsen the metabolic state and contribute to
the formation of obesity. In the liver, acetate contributes to the synthesis of lipids, which
can lead to dyslipidemia. This compound also increases the appetite by increasing the
production of gastric ghrelin [38].

Trimethylamine N-oxide (TMAO), a bacterial metabolite produced during choline,
betaine, and L-carnitine refinement, is associated with an increased risk of cardiovascular
disease. It has been established that elevated levels of TMAO induce NLR family pyrin
domain-containing 3 (NLRP3) activation. NLRP3 belongs to the inflammasomes, which
are intracellular protein complexes responsible for initiating inflammatory processes. Their
function is to regulate the maturation and secretion of the proinflammatory cytokines IL-1β
and IL-18 through the activation of caspase-1. In addition, TMAO, by activating NF-κB,
causes the synthesis of proinflammatory proteins with pro-atherosclerotic properties, such
as cyclooxygenase 2 (COX2), E-selectin, IL-6, and intracellular adhesion molecule 1 [39].

The intestinal microbiota cause the deconjugation of bile acids in the intestine, result-
ing in the formation of secondary bile acids, including deoxycholic acid (DCA). It has been
shown that a high-fat diet can increase DCA levels up to 10 times. Increased DCA levels
are associated with impaired intestinal epithelial integrity along with gut inflammation. It
has been indicated that the development of intestinal inflammation is due to the activation
of the NLRP3 inflammasome [40]. In addition, high levels of secondary bile acids (BAs)
contribute to the formation of reactive oxygen and nitrogen species. BAs also damage cell
membranes, mitochondria, and DNA, which may result in an increased risk of colon cancer.
Bacterial endotoxins and metabolites can synergistically increase their harmful properties.
The accumulation of DCA and LTA amplifies signals caused by TLR2 activation, leading to
overproduction of COX2, which is associated with the suppression of natural killer T and
dendritic cells and may lead to cancer and inflammatory diseases [41].

The preferred energy source for most gut microbiota is carbohydrates, but if car-
bohydrates are insufficient in the colon, proteins are fermented. The products of these
transformations are numerous toxic bacterial metabolites, including p-cresol sulfate (pCS)
and indoxyl sulfate (IS) [42]. An increase in IS and pCS levels in serum is characteristic
of patients with chronic kidney disease. In these patients, a positive correlation has been
found between circulating IS and pCS and vascular stiffness and calcification, which means
a greater risk of cardiovascular disease and the progression of chronic kidney disease.
In turn, TMAO, IS, and pCS (as compounds with uremic toxicity) lead to dysbiosis and
increased intestinal permeability, which intensifies the inflammation that is already taking
place in the host organism [43].

4. Modifications of Microbiota and Its Impact on the Inflammatory Profile

Dysbiosis and the accompanying increased intestinal permeability lead to the de-
velopment of low-grade chronic inflammation, which is a key contributor to metabolic
disorders and obesity. Therefore, modification of the microbiota may reduce inflammation
and improve metabolic status.

4.1. Diets and Nutrients
4.1.1. Mediterranean Diet

The Mediterranean diet (MD) is considered a healthy eating style that reduces the
risk of cardiovascular and metabolic diseases and cancer. The diet model includes the
consumption of whole grains, legumes, fresh vegetables and fruits, olive oil, nuts, seeds, a
moderate amount of fish, and a small amount of dairy products and meat [44]. The MD’s
pro-health nature consists of lipid-lowering, anti-inflammatory, antioxidant, and anticancer
properties. Recent studies indicate that the MD also influences metabolism by influencing
the gut microbiota [45,46]. MD modulates the composition of the gut microbiota and
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reduces endotoxemia [47]. In a study by Haro et al., it was observed that adherence to the
MD for two years by obese men with metabolic syndrome increased the number of bacteria
of the genus Bacteroides and Prevotella, and saccharolytic bacteria of the genus Roseburia,
Ruminococcus, Parabacteroides distasonis, and Faecalibacterium prausnitzii [48]. An 8-week
dietary intervention based on MD in overweight and obese people led to an increase in
the number of Faecalibacterium prausnitzii and reduction of Ruthenibacterium lactatiformans,
Flavonifractor plautii, Parabacteroides merdae, Ruminococcus torques, and Ruminococcus gnavus.
Following the Mediterranean diet was associated with an increased concentration of SCFA
in the feces. Significantly lower levels of high-sensitivity C-reactive protein (hsCRP) were
reported in people with a greater variety of bacterial genomes [49]. Tagliamonte et al.
compared the effects of the Mediterranean and Western diets on the gut microbiome. After
eight weeks, there was a significant increase in the amount of Roseburia faecis and R. hominis
in the MD compared to the Western diet. Moreover, the amount of Akkermansia muciniphila
increased in the MD group. The MD lowered plasma arachidonoylethanolamide (AEA). In
this mechanism, MD may show anti-inflammatory effects by increasing the tightness of
the intestinal barrier [50]. Adherence to the Mediterranean diet was negatively correlated
with serum lipopolysaccharide concentration in patients with atrial fibrillation. The single
nutrients correlated with decreased endotoxemia were fruit and legumes [51]. The factors
responsible for the effect of MD on the intestinal microbiota are dietary fiber, the advantage
of plant vs. animal proteins, unsaturated fatty acids, and polyphenols [47].

4.1.2. Vegetarian/Vegan Diets

Several studies have proved that vegetarian and vegan diets have a positive effect
on human health. The elimination of meat or all animal products reduces the risk of
developing cardiovascular diseases, diabetes, cancer, and metabolic syndrome. Plant-based
diets also affect the composition of the intestinal microbiota; however, the research results
are inconclusive. In people on a plant-based diet, the amounts of Bifidobacteria, Escherichia
coli, and Enterobacteria were lower than in omnivores [52,53]. It was observed that the ratio
of Prevotella-to-Bacteroides (P/B) was lower in those who consumed more fiber and starch
than in those following the Western diet [54–56]. Plant-based diets increased the number of
Bacteroidetes and reduced Firmicutes. This ratio is beneficial in the prevention and treatment
of obesity. In addition, increases in the levels of Faecalibacterium prausnitzii and Clostridium
clostridioforme were noted [57]. In a study by Trefflich et al., SCFA concentrations did not
differ significantly between vegans and omnivores. Fecal pH and ammonia levels were
lower in vegans compared to omnivores [58]. Vegans had a higher number of Roseburia and
Faecalibacterium, which produce butyrate, the main source of energy for the colonocytes,
which may result in improved intestinal barrier integrity. This shift in microbiota was
associated with lower serum levels of LPS and parameters of inflammation (CRP, TNF-α)
in vegans compared to omnivores [59,60].

4.1.3. Gluten-Free Diet

In recent years, the use of a gluten-free diet (GFD) has become very popular, but the
medical indications for its use are only celiac disease (CD) and non-celiac gluten sensitivity.
Intestinal dysbiosis develops in people with CD who do not use GFD. The levels of
pathogenic Gram-negative bacteria, such as Klebsiella, Prevotella, and Serratia, are increased
and the levels of Bifidocteria and Firmicutes are lower than in healthy people [61,62]. CD
patients using GFD have lower species diversity of bacteria and less variety of Lactobacillus
and Bifidobacterium species. However, the concentration of SCFA in this group is similar
to those in healthy people [63,64]. Differences in the composition of the gut microbiota
were observed in people with and without CD-related gastrointestinal symptoms despite
GFD use. In the group with gastrointestinal symptoms, the amount of Prevotella was higher
along with the lower number of Bacteroidetes and Firmicutes compared to microbiota in
people without symptoms [65]. The use of GFD by healthy people reduced the amounts of
Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii, and increased the amounts of
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Escherichia coli and Enterobacteriaceae [66,67]. The cause of these disorders is not yet known,
but it has been hypothesized that gluten has prebiotic properties, and its elimination
impairs the growth of health-promoting bacteria [68].

4.1.4. Fiber

Many of the health-promoting properties of plant-based diets are due to the higher
content of dietary fiber compared to the Western diet. Fiber is mainly cellulose, pectins,
dextrins, waxes, and lignans. Some fractions of fiber are classified as prebiotics [69]. Fiber is
mainly found in whole grains, legumes, fruits, and vegetables. Fiber is not digested in the
digestive tract. In the large intestine, it is fermented by intestinal bacteria. It stimulates the
growth of many types of bacteria and is the main substrate for the synthesis of postbiotics,
such as SCFA [70]. In a systematic review and meta-analysis by So et al., a significant
increase in the number of Bifidobacterium spp. was observed on the basis of 59 studies
involving nearly 1900 people. An increase in the number of Lactobacillus spp. was noticed
on the basis of 28 studies involving approximately 850 people [71]. In a study carried out
among the elderly, it was demonstrated that in the group consuming a diet with a higher
fiber content, the diversity of microbiota was significantly higher compared to people
whose diets were high in fat and low in fiber. Inflammatory parameters, such as CRP, IL-6,
and TNF-α, were significantly higher in the group consuming the low-fiber diet [72].

4.2. Prebiotics

A prebiotic is defined as ‘a substrate that is selectively utilized by host microorganisms
conferring a health benefit’. Prebiotics must meet the following criteria: they must be
resistant to gastric pH, they cannot be hydrolyzed by mammalian enzymes and absorbed
in the gastrointestinal tract, they can be fermented by gut microbiota, and they must
selectively stimulate the growth of intestinal bacteria. Prebiotics decrease the intestinal
pH and maintain water’s retention in the intestine [73]. The main group of prebiotics is
carbohydrates, including oligosaccharides and polysaccharides. The most popular of them
are fructooligosaccharides (FOS) and galactooligosaccharides (GOS). Prebiotics also include
polyols, phenolic compounds, unsaturated fatty acids-conjugated linoleic acid (CLA), and
polyunsaturated fatty acids (PUFAs). Fiber is considered a good source of prebiotics, but
only some of its compounds meet the criteria of a prebiotic. A term for carbohydrates
that are the main source of energy for the intestinal microbiota is microbiota-accessible
carbohydrates (MACs) [74].

4.2.1. Fructooligosaccharides

FOS are short-chain fructans constructed of 2-10 fructofuranose residues, which are
connected byβ bonds. Natural sources of FOS include artichokes, onions, asparagus, wheat,
bananas, potatoes, and honey [75]. FOS supplementation mainly stimulates the growth
of Bifidobacteria sp. and Lactobacillus sp. [76,77]. Supplementation of FOS in patients with
Crohn’s disease led to a significant increase in the concentration of fecal bifidobacteria [78].
Gu et al. conducted a study evaluating the effect of FOS use on the composition of the
gut microbiota in mice. It was observed that the relative abundance of Actinobacteria
increased significantly, especially Bifidobacterium and Coprococcus, while Bacteroidetes and
Proteobacteria decreased [79]. Another study carried out on mice models showed that FOS
leads to a reduction of inflammatory parameters, such as IL-6 and TNF-α. A significantly
higher concentration of SCFA in the serum and the feces was reported in the group using
this prebiotic [80].

4.2.2. Galactooligosaccharides

GOS are composed of galactopyranosyl molecules and are naturally found in lentils,
chickpeas, and beans. This prebiotic is synthesized from soybeans and lactose (cow’s
milk) [81]. The positive effect of GOS on the gut microbiota is especially visible in the
group of newborns and infants. GOS (along with FOS) is an ingredient added to milk
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mixtures due to its beneficial effect on the number of lactic acid bacteria—Lactobacillus
and Bifidobacterium [82–84]. However, a beneficial effect of GOS on these bacteria was
demonstrated in all age groups. This probiotic contributed to the reduction of pathogenic
Clostridium. The intake of the GOS mixture increased the concentration of IL-10 and IL-8
and decreased IL-1β [85]. The consumption of GOS in a group of elderly people for 10
weeks at a dose of 5.5 g/day caused a change in their intestinal microbiota composition.
An increase in the number of Lactobacillus-Enterococcus spp., Bifidobacterium spp., and C.
cocoides-E was noticed in the GOS group compared to the placebo. In addition, the number
of E. coli, Bacteroides spp., Desulfovibrio spp., and the C. histolyticum group was decreased. It
was observed that the intake of GOS caused an increase in NK cell activity and an increase
in IL-10 production. In contrast, the concentration of IL-1β, IL-6, and TNF-αwas decreased,
indicating an anti-inflammatory effect of GOS [86]. The most beneficial are prebiotics
containing both FOS and GOS due to their positive effect on the intestinal microbiota.

4.2.3. Inulin

Inulin is a fructan, a polysaccharide composed of fructose molecules linked by a
β-1,2-glycosidic bond. It occurs in artichoke, garlic, onion, shallot, leek, salsify, scorzonera,
asparagus, chicory, and banana. Inulin is used as a sugar and fat replacer. It is an ingredient
of functional food due to its positive effect on gastric health [87]. In a 2-week study,
the effect of eating a diet rich in vegetables containing large amounts of inulin (average
consumption of inulin 15 g/day) on the intestinal microbiome was assessed. A three-fold
increase in the number of bacteria from the Bifidobacterium genus and a downward trend in
the number of Oxalobacteraceae family were reported. After three weeks from the end of the
intervention, the bacterial content in the feces returned to the initial values [88]. In other
studies, an increase in the quantity of Bifidobacterium was also noticed after consuming
inulin-rich foods. Ramnani et al. assessed the effect of consuming 5 g of inulin per day in
shots with Jerusalem artichoke. Bifidobacteria levels were significantly higher in a group
with inulin. They also noted an increase in the Lactobacillus/Enterococcus ratio [89]. Kleessen
et al. carried out a randomized, double-blind, placebo-controlled study with snack bars
that included chicory inulin (CH), Jerusalem artichoke (JA) inulin, and without inulin. The
total number of bacteria after consuming the inulin bars and the placebo bars was the same.
People consuming CH or JA had a lower ratio of Bacteroides/Prevotella than the placebo
group. Potential pathogenic bacteria Clostridium histolyticum and C. lituseburense were less
frequently isolated in the inulin group [90]. The consumption of 12 g/day of inulin derived
from chicory for four weeks in healthy adults with constipation led to an increase in the
amount of Anaerostipes spp. and Bifidobacterium. There was a decline in the population of
Bilophila, which was associated with a reduction in the incidence of constipation [91]. A
study on animal models showed that inulin consumption was associated with a reduction
in the expression of genes encoding proinflammatory factors, such as IL-1β, IL-6, TLR4, a
dendritic cell marker (CD11c), and Ikk kinase ε (IKKε) [92]. In a study by Li et al., 6-week
intake of inulin in mice with type 2 diabetes decreased LPS, IL-6, and TNF-α levels. An
increase in the concentration of anti-inflammatory IL-10 was observed. There was an
increase in the relative abundance of Cyanobacteria and Bacteroides and a decrease in the
abundance of Ruminiclostridium. Cyanobacteria and Bacteroides were positively correlated
with IL-10. The amount of Deferribacteres, Tenericutes, Mucispirillum, and Ruminiclostridium
bacteria was correlated with IL-6 and TNF-α [93].

4.2.4. Resistant Starch

Resistant starch (RS) is composed of α-linked glucose molecules that are resistant
to hydrolysis in the small intestine due to resistance to digestive amylases. There are
several types of resistant starch and the best known are found in whole grains and legumes,
starch with high amylose content, and retrograded starch (e.g., starch in cooked and
then cooled potatoes) [94]. Guy et al. compared the effects of a diet high in non-starch
polysaccharides (NSPs) with a diet high in NSPs and rich in resistant starch. In that study,
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46 healthy people participated in a 14-week dietary intervention. A significant increase
in the number of Ruminococcus bromii in the RS group was observed [95]. A placebo-
controlled study assessed the effect of supplementation with resistant starch derived from
potatoes on the composition of the gut microbiota in the elderly (over 70 years) and in
people aged 30–50 years. After 12 weeks of prebiotic therapy, a significant increase in the
number of Bifidobacterium was demonstrated in both age groups. In addition, an increase
in the concentration of butyrate in the stool was noted in the group of elderly people
compared to a placebo [96]. Studies conducted among patients with chronic kidney disease
indicated a positive effect of the consumption of resistant starch on the composition of the
intestinal microbiota. An increase in the amount of Bacteroides, Bifidobacteria, Lactobacilli,
and Ruminococcus bromii was noticed [97,98]. Zhang et al. carried out a study on mice
models. Mice were on a high-fat diet with RS supplementation. The results showed a
reduction in the number of some bacteria (Helicobacter, Ruminiclostridium 9, Tyzzerella,
Oscillibacter, Coprococcus 1, Lachnoclostridium, Desulfovibrio). In the RS group, a decrease
in the parameter assessing the tightness of the intestinal barrier, LPS, in serum and feces
was observed. Inflammation parameters were also decreased (decreased IL-2 expression
in the colon and IL-4 and TNF-α in the liver). The intake of resistant starch increased the
concentration of SCFA in the colon [99].

4.2.5. CLA, PUFA

Conjugated linoleic acid and polyunsaturated fatty acids are also classified as pro-
biotics. CLA is found in milk, dairy products, and meat and PUFAs in oil plants, oils,
and fish. The effect of the intake of CLA on the gut microbiota of mice was assessed.
Significant growth in Bacteroides/Prevotella and mucin-degrading A. muciniphila was demon-
strated [100]. Supplementation with eicosapentaenoic acid (EPA), docosahexaenoic acid
(DHA), and the consumption of vegetable oils or fish contributes to an increase in the num-
bers of Bifidobacterium, Oscillospira, and Akkermansiaceae. In some studies, there was a lower
amount of Enterobacteria, and some pathogenic bacteria, such as Escherichia, Streptococcus,
and Clostridium, were observed [101,102]. Younge et al. assessed the effect of enteral sup-
plementation with fish oil and safflower oil on the composition of the intestinal microbiome
in premature infants with an enterostomy. Greater bacterial diversity was reported after
PUFA supplementation. At the same time, the levels of Streptococcus, Clostridium, and many
pathogenic bacteria from the Enterobacteriaceae family decreased [103]. The consumption of
n-3 PUFAs also influences the tightness of the intestinal barrier. It was noted that higher
consumption of EPA and DHA by pregnant women was associated with lower serum
zonulin concentration [104]. Consumption of n-3 PUFAs inhibits the production of proin-
flammatory cytokines induced by LPS and the NF-κB pathways. These PUFAs promote the
release of anti-inflammatory agents, such as IL-10, and may reduce intestinal inflammation
by promoting the induction of regulatory T cells (Tregs) and reducing interleukin 17 (IL-17)
production [105,106]. Unbalanced consumption of n-3/n-6 PUFAs may lead to dysbiosis
of the gut microbes, especially a significant increase in the Firmicutes to Bacteroidetes ratio
(F/B ratio), leading to overweight and obesity [107]. A high intake of omega-6 fatty acids
may increase the proportion of LPS-producing and proinflammatory bacteria [108].

4.2.6. Polyphenols

The group of prebiotics also includes polyphenols, such as phenolic acids, flavonoids,
stilbenes, and lignans. These compounds are found in vegetables, fruits, tea, coffee,
and wine and have antioxidant, anti-inflammatory, and anticancer properties [109,110].
Research indicates that polyphenols also have a positive effect on the composition of the
gut microbiota. They promote the growth of Lactobacillus and Bifidobacteria and inhibit the
growth of potentially pathogenic bacteria, such as Staphylococcus sp. [111]. Moreno-Indias
et al. conducted a 30-day study evaluating the effect of consuming red wine polyphenols on
the microbiota of obese people with metabolic syndrome. Red wine polyphenols decreased
the number of Escherichia coli and Enterobacter cloacae and increased fecal bifidobacteria,
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Lactobacillus, Faecalibacterium prausnitzii, and Roseburia. In addition, Bifidobacterium growth,
caused by red wine intake, was associated with a reduction in plasma LPS levels [112]. The
administration of polyphenol-rich oolong tea by mice for four weeks allowed an increase
in the diversity of intestinal bacteria and a large increase in Bacteroidetes with a decrease in
Firmicutes [113]. A schematic summary of the effect of nutritional interventions on selected
bacteria and inflammation is presented in Figure 3.
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4.3. Probiotics

Probiotics are living microorganisms that, when administered in defined amounts,
provide health benefits to the host. They must be characterized at the genus, species,
and strain level in the scientific nomenclature. In addition, the strains contained in the
preparation must be registered in the international culture collection. The properties of the
probiotics must be demonstrated in health benefits in at least one human trial and its safety
must be proven in its intended use. It is also required that probiotics contain an adequate
amount of living organisms for a beneficial effect on health throughout their shelf life [114].

Wang et al. proved that a 12-week supplementation with each of the probiotic strains
of Bifidobacterium animalis subsp. lactis I-2494 and Lactobacillus paracasei CNCM I-4270
and L. rhamnosus I-3690 in an animal model reduced the effects of a high-fat diet, i.e.,
reduced body weight gain, improved glucose metabolism, and reduced fatty liver. It
also significantly reduced the infiltration of proinflammatory macrophages into adipose
tissue, which is a subcutaneous cause of chronic adipose tissue inflammation and thus
obesity-related complications. Additionally, Bifidobacterium animalis subsp. lactis I-2494
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significantly reduced TNF-α expression in the liver and adipose tissue as well as lowering
the serum LBP concentration [115].

Just as in the animal model, in humans, probiotics can modulate chronic low-grade
inflammation, particularly by inhibiting the NF-κB pathway and reducing cytokines [116].
Lactobacillus plantarum 299v administration led to an improvement in the inflammatory
profile by decreasing IL-6 along with a reduction in risk factors of cardiovascular disease in
smokers [117]. Fermented milk containing Lactobacillus helveticus R389 reduced the secretion
of IL-6 while inducing the secretion of interleukin 10, which has anti-inflammatory proper-
ties [118]. Supplementation with the Akkermancia muciniphila, a mucin-degrading bacterium,
increased the thickness of the mucus and decreased the concentration of lipopolysaccha-
ride in the serum. In the group with probiotics, fasting glucose concentration and glucose
tolerance improved [119]. A meta-analysis describing 42 randomized placebo-controlled
clinical trials showed that the intake of probiotics significantly reduces serum hs-CRP, TNF-
α, IL-6, IL-12, and IL-4 with a simultaneous increase in the anti-inflammatory cytokine
IL-10 [120]. Additionally, the benefits of taking probiotics have been noted in studies on
various conditions, including metabolic syndrome, liver diseases, coronary heart disease,
rheumatoid arthritis, and major depressive disorder, which are mentioned in Table 1.
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Table 1. Literature review on probiotics’ effects in various health conditions.

Reference Health Condition Sample Size Probiotics Duration Effect in
Inflammation Other Effects

Bernini et al.
2015 [121] metabolic syndrome 26 probiotic group

25 control group
fermented milk with 2.72 × 1010 CFU

Bifidobacterium lactis HN019
45 days ↓ TNF-α

↓ IL-6

↓ BMI
↓ total cholesterol

↓ LDL

Akkasheh et al.
2016 [122]

major depressive
disorder

20 probiotic group
20 control group

Lactobacillus acidophilus (2 × 109 CFU/g),
Lactobacillus casei (2 × 109 CFU/g),

Bifidobacterium bifidum (2 × 109 CFU/g)
8 weeks ↓ hs-CRP

↓ BDI total scores
↓ insulin
↓ HOMA-IR
↑ glutathione

Zamani et al. 2016 [123] rheumatoid arthritis 30 probiotic group
30 control group

Lactobacillus acidophilus (2 × 109 [CFU]/g),
Lactobacillus casei (2 × 109 CFU/g),

Bifidobacterium bifidum (2 × 109 CFU/g)
8 weeks ↓ hs-CRP

↑ DAS28
↓ insulin
↓ HOMA-B

↓ total cholesterol
↓ LDL

Moludi et al. 2021 [124] coronary artery disease

22 probiotic group +
caloric restriction
22 control group +
caloric restriction

Lactobacillus rhamnosus GG (1.6× 109 CFU) 12 weeks ↓ IL-1ß ↓ LPS

Han et al.
2015 [125] alcoholic hepatitis

60 probiotic group +
alcohol abstinence
57 control group +
alcohol abstinence

Lactobacillus subtilis/Streptococcus faecium
(1500 mg/day) 7 days ↓ TNF-α ↓ LPS

Kobyliak et al. 2018 [126] Non-alcoholic fatty liver
disease

30 probiotic group
28 control group

Lactobacillus + Lactococcus (6 × 1010 CFU/g),
Bifidobacterium (1 × 1010 CFU/g),

Propionibacterium (3 × 1010 CFU/g),
Acetobacter (1 × 106 CFU/g)

8 weeks ↓ TNF-α
↓ IL-6

↓ liver fat
↓ AST
↓ GGT

Aberrations: UCF—colony-forming unit; TNF-α—tumor necrosis factor α; IL-6—interleukin 6; BMI—body mass index; LDL—low-density lipoprotein; hs-CRP—high-sensitivity C-reactive protein; BDI—Beck
Depression Inventory; HOMA-IR—homeostasis model assessment of insulin resistance; DAS—Disease Activity Score of 28 joints; HOMA-B—homeostatic model assessment-B cell function; IL-1ß—interleukin 1ß;
LPS—lipopolysaccharide; AST—aspartate aminotransferase; GGT—gamma-glutamyl transferase; ↑—significantly increased; ↓—significantly decreased.
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5. Conclusions

An unhealthy diet, diseases, lack of exercise, sleep disorders, exposure to nicotine,
drugs, and many other factors can lead to an imbalance in the gut microbiota [127]. Dys-
biosis and increased intestinal permeability may contribute to inflammation and lead to
metabolic disorders or exacerbate existing conditions. Inflammation can be caused by
the presence of microorganisms and their structural elements and the products of their
metabolism. Low-grade chronic inflammation and dysbiosis intensify each other, creating
a vicious circle. Modifying the microbiota by changing the diet and using prebiotics and
probiotics might restore microbiome balance and reduce inflammation along with improv-
ing metabolic status. However, the composition of the intestinal microbiota is unique for
every human being. As a result, there is no universal method of microbiota modification
that would bring health benefits. Attempts to modify the microbiota should be based on
the type of dysbiosis [128]. However, the current state of knowledge on the subject is not
sufficient and more research is required on many levels to understand how to modify the
microbiota to improve the inflammatory profile.
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