Common Bean Baked Snack Consumption Reduces Apolipoprotein B-100 Levels: A Randomized Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Snack Preparation
2.2. Chemical Composition
2.3. Texture and Sensory Evaluation
2.4. Clinical Trial
2.4.1. Trial Design and Participants
2.4.2. Interventions
2.4.3. Primary and Secondary Outcomes
2.4.4. Outcome Measurements
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Sensory Evaluation
3.3. Clinical Trial
3.3.1. Anthropometric, Dietary and Physical Activity Records
3.3.2. Biochemical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Anderson, T.J.; Grégoire, J.; Pearson, G.J.; Barry, A.R.; Couture, P.; Dawes, M.; Francis, G.A.; Genest, J.; Grover, S.; Gupta, M.; et al. 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Can. J. Cardiol. 2016, 32, 1263–1282. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, H.; Vasconcelos, M.; Gil, A.M.; Pinto, E. Benefits of Pulse Consumption on Metabolism and Health: A Systematic Review of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2020, 61, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Padhi, E.M.T.; Ramdath, D.D. A Review of the Relationship between Pulse Consumption and Reduction of Cardiovascular Disease Risk Factors. J. Funct. Foods 2017, 38, 635–643. [Google Scholar] [CrossRef]
- Mullins, A.P.; Arjmandi, B.H. Health Benefits of Plant-Based Nutrition: Focus on Beans. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef]
- Celmeli, T.; Sari, H.; Canci, H.; Sari, D.; Adak, A.; Eker, T.; Toker, C. The Nutritional Content of Common Bean (Phaseolus vulgaris L.) Landraces in Comparison to Modern Varieties. Agronomy 2018, 8, 166. [Google Scholar] [CrossRef] [Green Version]
- Rawal, V.; Navarro, D.K. The Global Economy of Pulses; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Escobedo, A.; Mojica, L. Pulse-Based Snacks as Functional Foods: Processing Challenges and Biological Potential. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4678–4702. [Google Scholar] [CrossRef] [PubMed]
- Bogue, J.; Collins, O.; Troy, A.J. Market Analysis and Concept Development of Functional Foods. In Developing New Functional Food and Nutraceutical Products; Bagch, D., Nair, S., Eds.; Elsevier Inc.: London, UK, 2017; Volume 2, pp. 29–45. [Google Scholar] [CrossRef]
- Thirunathan, P.; Manickavasagan, A. Processing Methods for Reducing Alpha-Galactosides in Pulses. Crit. Rev. Food Sci. Nutr. 2018, 59, 3334–3348. [Google Scholar] [CrossRef]
- Birch, C.S.; Bonwick, G.A. Ensuring the Future of Functional Foods. Int. J. Food Sci. Technol. 2019, 54, 1467–1485. [Google Scholar] [CrossRef]
- Ralston, R.A.; Mackey, A.D.; Simons, C.T.; Schwartz, S.J. Overview of Functional Foods. In Functional Foods and Beverages; Bordenave, N., Ferruzzi, M.G., Eds.; John Wiley & Sons, Inc.: Chichester, UK, 2018; pp. 1–14. [Google Scholar] [CrossRef]
- Mojica, L.; Morales-Hernández, N.; Orozco-Avila, I.; Escobedo, A. Botana de Frijol Horneado; MX/a/2019/011048; Instituto Mexicano de la Propiedad Industrial: Mexico City, Mexico, 2019. [Google Scholar]
- Hsieh-Lo, M.; Castillo-Herrera, G.; Mojica, L. Black Bean Anthocyanin-Rich Extract from Supercritical and Pressurized Extraction Increased in Vitro Antidiabetic Potential, While Having Similar Storage Stability. Foods 2020, 9, 655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Duan, J.A.; Tang, Y.; Qian, Y.; Zhao, J.; Qian, D.; Su, S.; Shang, E. Simultaneous Qualitative and Quantitative Analysis of Triterpenic Acids, Saponins and Flavonoids in the Leaves of Two Ziziphus Species by HPLC-PDA-MS/ELSD. J. Pharm. Biomed. Anal. 2011, 56, 264–270. [Google Scholar] [CrossRef]
- Lai, L.R.; Hsieh, S.C.; Huang, H.Y.; Chou, C.C. Effect of Lactic Fermentation on the Total Phenolic, Saponin and Phytic Acid Contents as Well as Anti-Colon Cancer Cell Proliferation Activity of Soymilk. J. Biosci. Bioeng. 2013, 115, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Saptarini, N.M.; Indriyati, W.; Shalihat, A. Colorimetric Method for Total Phytosterols Content Analysis in Soybean (Glycine Max), Soymilk, and Soy Yoghurt. J. Chem. Pharm. Res. 2016, 8, 1458–1464. [Google Scholar]
- Saptarini, N.M.; Herawati, I.E. Total Phytosterol Content in Red Beans (Phaseolus vulgaris L.) and Peas (Pisum sativum L.) from Bandung, Indonesia. Drug Invent. Today 2018, 10, 1505–1507. [Google Scholar]
- Spayd, R.W.; Bruschi, B.; Burdick, B.A.; Dappen, G.M.; Eikenberry, J.N.; Esders, T.W.; Figueras, J.; Goodhue, C.T.; LaRossa, D.D.; Nelson, R.W.; et al. Multilayer Film Elements for Clinical Analysis: Applications to Representative Chemical Determinations. Clin. Chem. 1978, 24, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Allain, C.C.; Poon, L.S.; Chan, C.S.G.; Richmond, W.; Fu, P.C. Enzymatic Determination of Total Serum Cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef]
- Trinder, P. Determination of Glucose in Blood Using Glucose Oxidase with an Alternative Oxygen Acceptor. Ann. Clin. Biochem. Int. J. Lab. Med. 1969, 6, 24–27. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Ai, Y.; Cichy, K.A.; Harte, J.B.; Kelly, J.D.; Ng, P.K.W. Effects of Extrusion Cooking on the Chemical Composition and Functional Properties of Dry Common Bean Powders. Food Chem. 2016, 211, 538–545. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.B.; Vijaykrishnaraj, M.; Prabhasankar, P. Organoleptic and Shelf Stability Analysis of Legume Based Gluten Free Snacks: Its Biochemical and Immunochemical Validation. J. Food Meas. Charact. 2018, 12, 94–104. [Google Scholar] [CrossRef]
- Flores-Silva, P.C.; Rodriguez-Ambriz, S.L.; Bello-Pérez, L.A. Gluten-Free Snacks Using Plantain-Chickpea and Maize Blend: Chemical Composition, Starch Digestibility, and Predicted Glycemic Index. J. Food Sci. 2015, 80, C961–C966. [Google Scholar] [CrossRef]
- Bozdemir, S.; Güneşer, O.; Yilmaz, E. Properties and Stability of Deep-Fat Fried Chickpea Products. Grasas Aceites 2015, 66, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Gan, R.; Ge, Y.; Zhang, D.; Corke, H. Polyphenols in Common Beans (Phaseolus vulgaris L.): Chemistry, Analysis, and Factors Affecting Composition. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1518–1539. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, J.P.; Singh, N.; Kaur, A. Saponins in Pulses and Their Health Promoting Activities: A Review. Food Chem. 2017, 233, 540–549. [Google Scholar] [CrossRef]
- Kaloustian, J.; Alhanout, K.; Amiot-Carlin, M.J.; Lairon, D.; Portugal, H.; Nicolay, A. Effect of Water Cooking on Free Phytosterol Levels in Beans and Vegetables. Food Chem. 2008, 107, 1379–1386. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.K.; Gaytán-Martínez, M.; Morales-Sánchez, E.; Loarca-Piña, G. Functional Properties and Sensory Value of Snack Bars Added with Common Bean Flour as a Source of Bioactive Compounds. LWT—Food Sci. Technol. 2018, 89, 674–680. [Google Scholar] [CrossRef]
- López-Martínez, A.; Azuara-Pugliese, V.; Sánchez-Macias, A.; Sosa-Mendoza, G.; Dibildox-Alvarado, E.; Grajales-Lagunes, A. High Protein and Low-Fat Chips (Snack) Made out of a Legume Mixture. CYTA—J. Food 2019, 17, 661–668. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; O’Connell, J.F.; Carlson, O.D.; González-Mariscal, I.; Kim, Y.; Moaddel, R.; Ghosh, P.; Egan, J.M. Linoleic Acid in Diets of Mice Increases Total Endocannabinoid Levels in Bowel and Liver: Modification by Dietary Glucose. Obes. Sci. Pract. 2019, 5, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Marinangeli, C.P.F.; Jones, P.J.H. Whole and Fractionated Yellow Pea Flours Reduce Fasting Insulin and Insulin Resistance in Hypercholesterolaemic and Overweight Human Subjects. Br. J. Nutr. 2011, 105, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Cryne, C.N.; Veenstra, J.M.; Deschambault, B.R.; Benali, M.; Marcotte, M.; Boye, J.I.; Tosh, S.M.; Farnworth, E.R.; Wright, A.J.; Duncan, A.M. Spray-Dried Pulse Consumption Does Not Affect Cardiovascular Disease Risk or Glycemic Control in Healthy Males. Food Res. Int. 2012, 48, 131–139. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.; Luzardo, I.; Cuellar-Nuñez, L.; Loarca-Pina, G. Common Beans and Oat Snack Bars Attenuated Hypertriglyceridemia Markers in a Randomized Clinical Trial of Mexican Women. Curr. Dev. Nutr. 2021, 5 (Suppl. 2), 606. [Google Scholar] [CrossRef]
- HHS. 2015–2020 Dietary Guidelines for Americans; US Department of Agriculture: Washington, DC, USA, 2015; Volume 8.
- Tovar, J.; Nilsson, A.; Johansson, M.; Björck, I. Combining Functional Features of Whole-Grain Barley and Legumes for Dietary Reduction of Cardiometabolic Risk: A Randomised Cross-over Intervention in Mature Women. Br. J. Nutr. 2014, 111, 706–714. [Google Scholar] [CrossRef] [Green Version]
- Gravel, K.; Lemieux, S.; Asselin, G.; Dufresne, A.; Lemay, A.; Forest, J.C.; Dodin, S. Effects of Pulse Consumption in Women Presenting Components of the Metabolic Syndrome: A Randomized Controlled Trial. Med. J. Nutr. Metab. 2010, 3, 143–151. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Gaubatz, J.W.; Sun, W.; Dodge, R.C.; Crosby, J.R.; Jiang, J.; Couper, D.; Virani, S.S.; Kathiresan, S.; Boerwinkle, E.; et al. Small Dense Low-Density Lipoprotein-Cholesterol Concentrations Predict Risk for Coronary Heart Disease: The Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Zaki Khalil, R.M.A.; Al-Azab, D.A.M.; Akl, O.A. Is SdLDL a Valuable Screening Tool for Cardiovascular Disease in Patients with Metabolic Syndrome? Alexandria J. Med. 2017, 53, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, W.M.; Jenkins, A.E.; Jenkins, A.L.; Brydson, C. How It Works: Mechanisms of Action. In The Portfolio Diet for Cardiovascular Disease Risk Reduction; Academic Press: London, UK, 2019; pp. 29–46. [Google Scholar] [CrossRef]
- Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunness, P.; Gidley, M.J. Mechanisms Underlying the Cholesterol-Lowering Properties of Soluble Dietary Fibre Polysaccharides. Food Funct. 2010, 1, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Sánchez, M.; Pérez-Ramírez, I.F.; Wall-Medrano, A.; Martinez-Gonzalez, A.I.; Gallegos-Corona, M.A.; Reynoso-Camacho, R. Chemically Induced Common Bean (Phaseolus vulgaris L.) Sprouts Ameliorate Dyslipidemia by Lipid Intestinal Absorption Inhibition. J. Funct. Foods 2019, 52, 54–62. [Google Scholar] [CrossRef]
- Brown, A.W.; Hang, J.; Dussault, P.H.; Carr, T.P. Phytosterol Ester Constituents Affect Micellar Cholesterol Solubility in Model Bile. Lipids 2010, 45, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Santoscoy, R.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Effect of Flavonoids and Saponins Extracted from Black Bean (Phaseolus vulgaris L.) Seed Coats as Cholesterol Micelle Disruptors. Plant Foods Hum. Nutr. 2013, 68, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Talebi, S.; Bagherniya, M.; Atkin, S.L.; Askari, G.; Orafai, H.M.; Sahebkar, A. The Beneficial Effects of Nutraceuticals and Natural Products on Small Dense LDL Levels, LDL Particle Number and LDL Particle Size: A Clinical Review. Lipids Health Dis. 2020, 19, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Guidance for the Scientific Requirements for Health Claims Related to Antioxidants, Oxidative Damage and Cardiovascular Health: (Revision 1). EFSA J. 2018, 16, e05136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health Canada. Guidelines Concerning the Safety and Physiological Effects of Novel Fibre Sources and Food Products Containing Them; Food Directorate: Ottawa, ON, Canada, 1997.
- AbuMweis, S.S.; Jew, S.; Jones, P.J.H. Optimizing Clinical Trial Design for Assessing the Efficacy of Functional Foods. Nutr. Rev. 2010, 68, 485–499. [Google Scholar] [CrossRef] [PubMed]
Compound | Portion Size | |
---|---|---|
100 g | 32 g | |
Moisture (g) | 2.8 ± 0.5 | 0.9 ± 0.2 |
Energy (kcal) | 316 | 101 |
Proteins (g) | 26.9 ± 0.2 | 8.6 ± 0.1 |
Available carbohydrates (g) | 48.4 ± 1.7 | 15.5 ± 0.5 |
Total dietary fiber (g) | 16.1 ± 0.6 | 5.2 ± 0.2 |
Soluble fiber (g) | 3.5 ± 0.6 | 1.1 ± 0.2 |
α-GOS (g) | 1.34 ± 0.04 | 0.43 ± 0.01 |
Insoluble fiber (g) | 12.6 ± 0.7 | 4.0 ± 0.2 |
Resistant starch (g) | 2.13 ± 0.1 | 0.68 ± 0.03 |
Total fat (g) | 1.6 ± 0.2 | 0.5 ± 0.1 |
Saturated fat (g) | 0.3 ± 0.1 | 0.1 ± 0.03 |
Sodium (mg) | 654.7 ± 12.2 | 209.5 ± 3.9 |
Total polyphenols (mg GAE) | 112.9 ± 0.7 | 36.1 ± 0.2 |
Saponins (mg SBE) | 472.0 ± 13.9 | 151.1 ± 4.4 |
Phytosterols (mg β-SE) | 33.6 ± 3.5 | 10.7 ± 1.1 |
Variables | Total (n = 20) |
---|---|
Age (y) | 26.0 ± 4.9 |
Female/male (n) | 9/11 |
BMI (kg/m2) | 27.2 ± 1.2 |
Triglycerides (mg/dL) | 178.7 ± 73.7 |
Total cholesterol (mg/dL) | 160.8 ± 22.9 |
HDL-c (mg/dL) | 43.2 ± 9.8 |
LDL-c (mg/dL) | 81.9 ± 24.7 |
Variables | CBBS | Control | p2 | |
---|---|---|---|---|
Carryover (Sequence) 3 | Treatment Effect | |||
Energy intake (kcal) | 2084 ± 626 | 1900 ± 759 | 0.35 | 0.29 |
Carbohydrates (g) | 228 ± 82 | 221 ± 95 | 0.29 | 0.52 |
Total sugars (g) | 83 ± 55 | 87 ± 59 | 0.36 | 0.66 |
Total dietary fiber (g) | 22.9 (18.8–30.9) | 18.8 (12.4–26.5) | 0.66 | 0.04 * |
Proteins (g) | 103 ± 37 | 88 ± 41 | 0.71 | 0.25 |
Total fat (g) | 81 ± 35 | 71 ± 35 | 0.50 | 0.50 |
Saturated fat (g) | 26 ± 14 | 22 ± 11 | 0.51 | 0.49 |
Monounsaturated fat (g) | 26 ± 14 | 22 ± 13 | 0.37 | 0.65 |
Polyunsaturated fat (g) | 17 ± 10 | 15 ± 9 | 0.12 | 0.66 |
Cholesterol (mg) | 360 ± 235 | 345 ± 257 | 0.88 | 0.79 |
Sodium (mg) | 2308 ± 957 | 2167 ± 979 | 0.58 | 0.68 |
Physical activity (MET-h/wk) | 17.8 ± 25.3 | 26.3 ± 27.4 | 0.17 | 0.10 |
Variables | CBBS | Control | p2 | ||||
---|---|---|---|---|---|---|---|
Baseline | 4-Week | Baseline | 4-Week | Carryover (Baseline) 3 | Carryover (Sequence) 4 | Treatment Effect | |
Triglycerides (mg/dL) | 143.4 ± 84.1 | 147.9 ± 101.5 | 139.6 ± 82.0 | 148.0 ± 74.3 | 0.75 | 0.36 | 0.87 |
Total cholesterol (mg/dL) | 148.8 ± 31.5 | 153.3 ± 34.0 | 154.4 ± 27.6 | 154.2 ± 32.4 | 0.46 | 0.26 | 0.79 |
HDL-c (mg/dL) | 41.1 ± 14.1 | 41.1 ± 11.6 | 41.2 ± 9.4 | 42.0 ± 14.4 | 0.95 | 0.48 | 0.51 |
Non-HDL-c (mg/dL) | 107.7 ± 25.8 | 112.3 ± 34.2 | 113.2 ± 27.8 | 112.2 ± 26.7 | 0.31 | 0.13 | 0.90 |
LDL-c (mg/dL) | 78.9 ± 24.7 | 82.7 ± 28.3 | 85.2 ± 23.7 | 82.6 ± 25.3 | 0.29 | 0.26 | 0.81 |
ApoB-100 (mg/dL) | 77.2 ± 22.1 | 56.6 ± 12.7 | 68.1 ± 27.9 | 74.2 ± 26.4 | 0.17 | 0.07 | 0.0084 |
Glucose (mg/dL) | 88.9 ± 11.0 | 91.1 ± 9.6 | 90.2 ± 9.4 | 90.5 ± 8.1 | 0.68 | 0.70 | 0.93 |
Insulin (mU/L) | 10.9 ± 5.3 | 12.8 ± 6.7 | 11.7 ± 5.8 | 11.3 ± 5.7 | 0.38 | 0.34 | 0.18 |
HOMA-IR | 2.4 ± 1.4 | 2.9 ± 1.6 | 2.6 ± 1.3 | 2.6 ± 1.3 | 0.50 | 0.33 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobedo, A.; Rivera-León, E.A.; Luévano-Contreras, C.; Urías-Silvas, J.E.; Luna-Vital, D.A.; Morales-Hernández, N.; Mojica, L. Common Bean Baked Snack Consumption Reduces Apolipoprotein B-100 Levels: A Randomized Crossover Trial. Nutrients 2021, 13, 3898. https://doi.org/10.3390/nu13113898
Escobedo A, Rivera-León EA, Luévano-Contreras C, Urías-Silvas JE, Luna-Vital DA, Morales-Hernández N, Mojica L. Common Bean Baked Snack Consumption Reduces Apolipoprotein B-100 Levels: A Randomized Crossover Trial. Nutrients. 2021; 13(11):3898. https://doi.org/10.3390/nu13113898
Chicago/Turabian StyleEscobedo, Alejandro, Edgar A. Rivera-León, Claudia Luévano-Contreras, Judith E. Urías-Silvas, Diego A. Luna-Vital, Norma Morales-Hernández, and Luis Mojica. 2021. "Common Bean Baked Snack Consumption Reduces Apolipoprotein B-100 Levels: A Randomized Crossover Trial" Nutrients 13, no. 11: 3898. https://doi.org/10.3390/nu13113898
APA StyleEscobedo, A., Rivera-León, E. A., Luévano-Contreras, C., Urías-Silvas, J. E., Luna-Vital, D. A., Morales-Hernández, N., & Mojica, L. (2021). Common Bean Baked Snack Consumption Reduces Apolipoprotein B-100 Levels: A Randomized Crossover Trial. Nutrients, 13(11), 3898. https://doi.org/10.3390/nu13113898