Short-Term Pre-Operative Protein Caloric Restriction in Elective Vascular Surgery Patients: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Material and Methods
2.1. Trial Design and Setting
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Randomization and Intervention
2.4. Blinding
2.5. Dietary Compliance
2.6. Clinical Parameters
2.7. Blood Draws
2.8. Adipose Tissue Biopsy
2.9. Flow Cytometry Panel Creation & Validation
2.10. Isolation of Control Peripheral Blood Mononuclear Cells from Healthy Donors
2.11. Peripheral Blood Mononuclear Cell Cryopreservation
2.12. Peripheral Blood Mononuclear Cell Thawing
2.13. Processing of Patient Whole Blood for Flow Cytometry Analysis
2.14. Staining Procedure of WBC and PBMCs for Flow Cytometry
2.15. Flow Cytometer Data Acquirement and Gating Strategy
2.16. Luminex Assay
2.17. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumgartner, I.; Norgren, L.; Fowkes, F.G.R.; Mulder, H.; Patel, M.R.; Berger, J.S.; Jones, W.S.; Rockhold, F.W.; Katona, B.G.; Mahaffey, K.; et al. Cardiovascular Outcomes after Lower Extremity Endovascular or Surgical Revascularization: The EUCLID Trial. J. Am. College Cardiol. 2018, 72, 1563–1572. [Google Scholar] [CrossRef]
- Ozaki, C.K.; Hamdan, A.D.; Barshes, N.R.; Wyers, M.; Hevelone, N.D.; Belkin, M.; Nguyen, L.L. Prospective, randomized, multi-institutional clinical trial of a silver alginate dressing to reduce lower extremity vascular surgery wound complications. J. Vasc. Surg. 2015, 61, 419–427.e1. [Google Scholar] [CrossRef] [Green Version]
- Fowkes, F.; Aboyans, V.; McDermott, M.M.; Sampson, U.K.A.; Criqui, M.H. Peripheral artery disease: Epidemiology and global perspectives. Nat. Rev. Cardiol. 2017, 14, 156–170. [Google Scholar] [CrossRef]
- Goodney, P.P.; Beck, A.; Nagle, J.; Welch, H.G.; Zwolak, R.M. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J. Vasc. Surg. 2009, 50, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Almasri, J.; Adusumalli, J.; Asi, N.; Lakis, S.; Alsawas, M.; Prokop, L.J.; Bradbury, A.; Kolh, P.; Conte, M.S.; Murad, M.H. A systematic review and meta-analysis of revascularization outcomes of infrainguinal chronic limb-threatening ischemia. J. Vasc. Surg. 2018, 68, 624–633. [Google Scholar] [CrossRef]
- Darling, J.D.; Bodewes, T.C.; Deery, S.E.; Guzman, R.J.; Wyers, M.C.; Hamdan, A.D.; Verhagen, H.J.; Schermerhorn, M.L. Outcomes after first-time lower extremity revascularization for chronic limb-threatening ischemia between patients with and without diabetes. J. Vasc. Surg. 2018, 67, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Krafcik, B.M.; Komshian, S.; Lu, K.; Roberts, L.; Farber, A.; Kalish, J.A.; Rybin, D.; Siracuse, J.J. Short- and long-term readmission rates after infrainguinal bypass in a safety net hospital are higher than expected. J. Vasc. Surg. 2017, 66, 1786–1791. [Google Scholar] [CrossRef] [Green Version]
- Moriarty, J.; Murad, M.H.; Shah, N.D.; Prasad, C.; Montori, V.; Erwin, P.J.; Forbes, T.L.; Meissner, M.H.; Stoner, M.C. A systematic review of lower extremity arterial revascularization economic analyses. J. Vasc. Surg. 2011, 54, 1131–1144. [Google Scholar] [CrossRef] [Green Version]
- Kehlet, H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br. J. Anaesth. 1997, 78, 606–617. [Google Scholar] [CrossRef]
- McGinigle, K.L.; Eldrup-Jorgensen, J.; McCall, R.; Freeman, N.L.; Pascarella, L.; Farber, M.A.; Marston, W.A.; Crowner, J.R. A systematic review of enhanced recovery after surgery for vascular operations. J. Vasc. Surg. 2019, 70, 629–640. [Google Scholar] [CrossRef]
- Mitchell, J.R.; Beckman, J.A.; Nguyen, L.L.; Ozaki, C.K. Reducing elective vascular surgery perioperative risk with brief preoperative dietary restriction. Surgery 2013, 153, 594–598. [Google Scholar] [CrossRef] [Green Version]
- Hine, C.; Mitchell, J.R. Calorie restriction and methionine restriction in control of endogenous hydrogen sulfide production by the transsulfuration pathway. Exp. Gerontol. 2014, 68, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.R.; Verweij, M.; Brand, K.; van de Ven, M.; Goemaere, N.; van den Engel, S.; Chu, T.; Forrer, F.; Müller, C.; de Jong, M.; et al. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice. Aging Cell 2010, 9, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Mauro, C.R.; Tao, M.; Yu, P.; Treviño-Villerreal, J.H.; Longchamp, A.; Kristal, B.S.; Ozaki, C.K.; Mitchell, J.R. Preoperative dietary restriction reduces intimal hyperplasia and protects from ischemia-reperfusion injury. J. Vasc. Surg. 2014, 63, 500–509. [Google Scholar] [CrossRef] [Green Version]
- Hine, C.; Harputlugil, E.; Zhang, Y.; Ruckenstuhl, C.; Lee, B.C.; Brace, L.; Longchamp, A.; Treviño-Villarreal, J.H.; Mejia, P.; Ozaki, C.K.; et al. Endogenous Hydrogen Sulfide Production Is Essential for Dietary Restriction Benefits. Cell 2015, 160, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Verweij, M.; van Ginhoven, T.M.; Mitchell, J.R.; Sluiter, W.; van den Engel, S.; Roest, H.P.; Torabi, E.; Ijzermans, J.N.; Hoeijmakers, J.H.; de Bruin, R.W. Preoperative fasting protects mice against hepatic ischemia/reperfusion injury: Mechanisms and effects on liver regeneration. Off. Publ. Am. Assoc. Study Liver Dis. Int. Liver Transplant. Soc. 2011, 17, 695–704. [Google Scholar] [CrossRef]
- Harputlugil, E.; Hine, C.; Vargas, D.; Robertson, L.; Manning, B.D.; Mitchell, J.R. The TSC Complex Is Required for the Benefits of Dietary Protein Restriction on Stress Resistance In Vivo. Cell Rep. 2014, 8, 1160–1170. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.; Tao, M.; Yu, P.; Mauro, C.; Seidman, M.A.; Wang, Y.E.; Mitchell, J.; Ozaki, C.K. Pre-Operative Diet Impacts the Adipose Tissue Response to Surgical Trauma. Surgery 2013, 153, 584–593. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Robertson, L.; Gallinetti, J.; Mejia, P.; Vose, S.; Charlip, A.; Chu, T.; Mitchell, J.R. Surgical Stress Resistance Induced by Single Amino Acid Deprivation Requires Gcn2 in Mice. Sci. Transl. Med. 2012, in press. [Google Scholar] [CrossRef] [Green Version]
- Trocha, K.; Kip, P.; MacArthur, M.R.; Mitchell, S.J.; Longchamp, A.; Treviño-Villarreal, J.H.; Tao, M.; Bredella, M.A.; De Amorim Bernstein, K.; Mitchell, J.R.; et al. Preoperative Protein or Methionine Restriction Preserves Wound Healing and Reduces Hyperglycemia. J. Surg. Res. 2019, 235, 216–222. [Google Scholar] [CrossRef]
- Trocha, K.M.; Kip, P.; Tao, M.; MacArthur, M.R.; Trevino-Villarreal, H.; Longchamp, A.; Toussaint, W.; Lambrecht, B.N.; de Vries, M.R.; Quax, P.H.A.; et al. Short-Term Preoperative Protein Restriction Attenuates Vein Graft Disease via Induction of Cystathionine Upsilon-Lyase. Cardiovasc. Res. 2020, 116, 416–428. [Google Scholar] [CrossRef]
- Longchamp, A.; Mirabella, T.; Arduini, A.; MacArthur, M.; Das, A.; Treviño-Villarreal, J.H.; Hine, C.; Ben-Sahra, I.; Knudsen, N.H.; Brace, L.E.; et al. Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell 2018, 173, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Robertson, L.T.; Treviño-Villarreal, J.H.; Mejia, P.; Grondin, Y.; Harputlugil, E.; Hine, C.; Vargas, D.; Zheng, H.; Ozaki, C.K.; Kristal, B.S.; et al. Protein and Calorie Restriction Contribute Additively to Protection from Renal Ischemia Reperfusion Injury Partly via Leptin Reduction in Male Mice. J. Nutr. 2015, 145, 1717–1727. [Google Scholar] [CrossRef] [Green Version]
- Wang, R. Physiological Implications of Hydrogen Sulfide: A Whiff Exploration That Blossomed. Physiol. Rev. 2012, 92, 791–896. [Google Scholar] [CrossRef] [Green Version]
- Kanagy, N.L.; Szabo, C.; Papapetropoulos, A. Vascular biology of hydrogen sulfide. Am. J. Physiol. Cell Physiol. 2017, 312, C537–C549. [Google Scholar] [CrossRef]
- Xie, L.; Feng, H.; Li, S.; Meng, G.; Liu, S.; Tang, X.; Ma, Y.; Han, Y.; Xiao, Y.; Gu, Y.; et al. SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells. Antioxid. Redox Signal. 2016, 24, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Gu, Y.; Wen, M.; Zhao, S.; Wang, W.; Ma, Y.; Meng, G.; Han, Y.; Wang, Y.; Liu, G.; et al. Hydrogen Sulfide Induces Keap1 S-sulfhydration and Suppresses Diabetes-Accelerated Atherosclerosis via Nrf2 Activation. Diabetes 2016, 65, 3171–3184. [Google Scholar] [CrossRef] [Green Version]
- Bibli, S.I.; Hu, J.; Sigala, F.; Wittig, I.; Heidler, J.; Zukunft, S.; Tsilimigras, D.I.; Randriamboavonjy, V.; Wittig, J.; Kojonazarov, B.; et al. Cystathionine gamma Lyase Sulfhydrates the RNA Binding Protein Human Antigen R to Preserve Endothelial Cell Function and Delay Atherogenesis. Circulation 2019, 139, 101–114. [Google Scholar] [CrossRef]
- Kip, P.; Trocha, K.M.; Tao, M.; O’Leary, J.J.; Ruske, J.; Giulietti, J.M.; Trevino-Villareal, J.H.; MacArthur, M.; Bolze, A.; Burak, M.F.; et al. Insights from a Short-Term Protein–Calorie Restriction Exploratory Trial in Elective Carotid Endarterectomy Patients. Vasc. Endovasc. Surg. 2019, 53, 470–476. [Google Scholar] [CrossRef]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef]
- Moncunill, G.; Han, H.; Dobaño, C.; McElrath, M.J.; De Rosa, S.C. OMIP-024: Pan-leukocyte immunophenotypic characterization of PBMC subsets in human samples. Cytom. A 2014, 85, 995–998. [Google Scholar] [CrossRef]
- Singha, S.; Kim, D.; Moon, H.; Wang, T.; Kim, K.H.; Shin, Y.H.; Jung, J.; Seo, E.; Lee, S.-J.; Ahn, K.H. Toward a Selective, Sensitive, Fast-Responsive, and Biocompatible Two-Photon Probe for Hydrogen Sulfide in Live Cells. Anal. Chem. 2015, 87, 1188–1195. [Google Scholar] [CrossRef]
- Shenkin, A. Serum Prealbumin: Is It a Marker of Nutritional Status or of Risk of Malnutrition? Clin. Chem. 2006, 52, 2177–2179. [Google Scholar] [CrossRef] [Green Version]
- Malmstedt, J.; Wahlberg, E.; Jörneskog, G.; Swedenborg, J. Influence of perioperative blood glucose levels on outcome after infrainguinal bypass surgery in patients with diabetes. Brit. J. Surg. 2006, 93, 1360–1367. [Google Scholar] [CrossRef]
- Endara, M.; Masden, D.; Goldstein, J.; Gondek, S.; Steinberg, J.; Attinger, C. The role of chronic and perioperative glucose management in high-risk surgical closures: A case for tighter glycemic control. Plast. Reconstr. Surg. 2013, 132, 996–1004. [Google Scholar] [CrossRef]
- Altalhi, R.; Pechlivani, N.; Ajjan, R. PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 3170. [Google Scholar] [CrossRef]
- Aso, Y.; Matsumoto, S.; Fujiwara, Y.; Tayama, K.; Inukai, T.; Takemura, Y. Impaired fibrinolytic compensation for hypercoagulability in obese patients with type 2 diabetes: Association with increased plasminogen activator inhibitor-1. Metabolism 2002, 51, 471–476. [Google Scholar] [CrossRef]
- Aso, Y. Plasminogen activator inhibitor (PAI)-1 in vascular inflammation and thrombosis. Front. Biosci. 2007, 12, 2957–2966. [Google Scholar] [CrossRef] [Green Version]
- Dilek, N.; Papapetropoulos, A.; Toliver-Kinsky, T.; Szabo, C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol. Res. 2020, 161, 105119. [Google Scholar] [CrossRef]
- Grundmann, F.; Müller, R.; Reppenhorst, A.; Hülswitt, L.; Späth, M.R.; Kubacki, T.; Scherner, M.; Faust, M.; Becker, I.; Wahlers, T.; et al. Preoperative Short-Term Calorie Restriction for Prevention of Acute Kidney Injury After Cardiac Surgery: A Randomized, Controlled, Open-Label, Pilot Trial. J. Am. Heart Assoc. 2018, 7, e008181. [Google Scholar] [CrossRef]
- Reeves, J.G.; Suriawinata, A.A.; Ng, D.P.; Holubar, S.D.; Mills, J.B.; Barth, R.J., Jr. Short-term preoperative diet modification reduces steatosis and blood loss in patients undergoing liver resection. Surgery 2013, 154, 1031–1037. [Google Scholar] [CrossRef]
- Jongbloed, F.; de Bruin, R.W.; Klaassen, R.A.; Beekhof, P.; van Steeg, H.; Dor, F.J.; van der Harst, E.; Dolle, M.E.; Ijzermans, J.N. Short-Term Preoperative Calorie and Protein Restriction Is Feasible in Healthy Kidney Donors and Morbidly Obese Patients Scheduled for Surgery. Nutrients 2016, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- Jongbloed, F.; De Bruin, R.W.; Van Steeg, H.; Beekhof, P.; Wackers, P.; Hesselink, D.A.; Hoeijmakers, J.H.; Dollé, M.E.; Ijzermans, J.N. Protein and calorie restriction may improve outcomes in living kidney donors and kidney transplant recipients. Aging 2020, 12, 12441–12467. [Google Scholar] [CrossRef]
Macronutrients | Kcal | % |
---|---|---|
Protein | 19.64 | 4 |
Carbohydrates | 255.32 | 42 |
Fat | 216.04 | 44 |
Total | 491 | 100 |
Antibody (Mouse α Human) | Important Marker for | Fluorophore | Clone | Manufacturer | Catalog Number | Final Volume (in 100 µL) |
---|---|---|---|---|---|---|
CD3 | T cells | AF-700 | UCHT1 | Invitrogen | 56-0038-42 | 5 µL |
CD4 | CD4 T cells | PercP-Cy5.5 | RPA-T4 | BD Biosciences | 560650 | 1.25 µL |
CD8a | CD8 T cells | BV785 | RPA-T8 | Biolegend | 301046 | 5 µL |
CD14 | Monocytes | PE-Cy7 | M5E2 | BD Biosciences | 560919 | 5 µL |
CD16 | Monocytes | PE-CF594 | 3G8 | Biolegend | 302054 | 2.5 µL |
CD19 | B cells | BV650 | HIB19 | Biolegend | 302238 | 10 µL |
CD25 | Treg cells | APC | M-A251 | BD Biosciences | 590987 | 20 µL |
CD38 | T cell/B cell | AF 488 | HIT2 | Biolegend | 303512 | 2.5 µL |
CD56 | B cells | BV605 | HCD56 | Biolegend | 318334 | 5 µL |
CD127 | Treg cells | BV711 | A019D5 | Biolegend | 351328 | 5 µL |
CD183 (CXCR3) | Th1 cells | PE | 11A9 | BD Biosciences | 743356 | 10 µL |
CD196 (CCR6) | Th1, Th2, Th17 | BUV395 | 1C6/CXCR3 | BD Biosciences | 560928 | 1.25 µL |
HLA-DR | Dendritic cells | PE | LN3 | Invitrogen | 47-9956-42 | 0.625 µL |
Antibody (Mouse α Human) | Fluorophore | Clone | Manufacturer | Catalog Number | Final Volume (in 100 µL) |
---|---|---|---|---|---|
CD4 | APC | RPA-T4 | BD Biosciences | 561840 | 20 µL |
CD4 | BUV395 | RPA-T4 | BD Biosciences | 564724 | 1.25 µL |
CD4 | PE | RPA-T4 | BD Biosciences | 561843 | 20 µL |
CD4 | BV605 | RPA-T4 | Biolegend | 300556 | 2.5 µL |
CD4 | AF488 | RPA-T4 | Biolegend | 300519 | 5 µL |
CD4 | BV711 | RPA-T4 | Biolegend | 300558 | 2.5 µL |
Baseline Characteristics | AL (4) | PCR (12) | Statistical Difference |
---|---|---|---|
Age in years (SD) | 66.5 (11.3) | 64.3 (12.8) | p = 0.75 |
Gender Male (total) | 2 (4) | 8 (12) | |
Female (total) | 2 (4) | 4 (12) | p = 0.54 |
Smoking (total) | 1 (4) | 4 (12) | p = 0.83 |
Diabetes (total) | 2 (4) | 4 (12) | p = 0.54 |
Hypertension (total) | 4 (4) | 9 (12) | p = 0.51 |
Hypercholesterolemia (total) | 1 (4) | 4 (12) | p > 0.99 |
History of Malignancy (total) | 0 (4) | 2 (12) | p > 0.99 |
Transient ischemic attack/Stroke (total) | 1 (4) | 2 (12) | p > 0.99 |
Cardiovascular disease | 2 (4) | 2 (12) | p = 0.22 |
Peripheral vascular disease | 2 (4) | 7 (12) | p > 0.99 |
Renal insufficiency | 1 (4) | 2 (12) | p = 0.53 |
Reasons for Non-Completion of the Study | AL (7) | PCR (12) |
---|---|---|
| 1 | |
| 1 | |
| 1 | |
1 | ||
| 1 | |
| 1 | 1 |
| 1 | |
| 1 | |
Remaining study participants who completed the trial | 3 | 8 |
PCR | AL | |
---|---|---|
Baseline energy intake | 23.04 Kcal/kg/day | 11.97 Kcal/kg/day |
Intervention energy intake | 15.4 Kcal/kg/day | 20.08 Kcal/kg/day |
Baseline protein intake | 1.06 g/kg/day | 0.34 g/kg/day |
Intervention protein intake | 0.16 g/kg/day | 0.76 g/kg/day |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kip, P.; Sluiter, T.J.; Moore, J.K.; Hart, A.; Ruske, J.; O’Leary, J.; Jung, J.; Tao, M.; MacArthur, M.R.; Heindel, P.; et al. Short-Term Pre-Operative Protein Caloric Restriction in Elective Vascular Surgery Patients: A Randomized Clinical Trial. Nutrients 2021, 13, 4024. https://doi.org/10.3390/nu13114024
Kip P, Sluiter TJ, Moore JK, Hart A, Ruske J, O’Leary J, Jung J, Tao M, MacArthur MR, Heindel P, et al. Short-Term Pre-Operative Protein Caloric Restriction in Elective Vascular Surgery Patients: A Randomized Clinical Trial. Nutrients. 2021; 13(11):4024. https://doi.org/10.3390/nu13114024
Chicago/Turabian StyleKip, Peter, Thijs J. Sluiter, Jodene K. Moore, Abby Hart, Jack Ruske, James O’Leary, Jonathan Jung, Ming Tao, Michael R. MacArthur, Patrick Heindel, and et al. 2021. "Short-Term Pre-Operative Protein Caloric Restriction in Elective Vascular Surgery Patients: A Randomized Clinical Trial" Nutrients 13, no. 11: 4024. https://doi.org/10.3390/nu13114024
APA StyleKip, P., Sluiter, T. J., Moore, J. K., Hart, A., Ruske, J., O’Leary, J., Jung, J., Tao, M., MacArthur, M. R., Heindel, P., de Jong, A., de Vries, M. R., Burak, M. F., Mitchell, S. J., Mitchell, J. R., & Ozaki, C. K. (2021). Short-Term Pre-Operative Protein Caloric Restriction in Elective Vascular Surgery Patients: A Randomized Clinical Trial. Nutrients, 13(11), 4024. https://doi.org/10.3390/nu13114024