The Role of the Gluten-Free Diet in the Management of Seronegative Enteropathy
Abstract
:1. The Definition of Seronegative Enteropathy
2. Classification of Seronegative Enteropathy
3. Seronegative Coeliac Disease (SNCD)
4. Non-Coeliac Seronegative Villous Atrophy (Non-CD SNVA)
5. Histopathological Evaluation of Seronegative Enteropathy
6. HLA Testing
7. Medical History in Seronegative Enteropathy
8. Blood and Stool Tests in SNVA
9. Treatment of Seronegative Enteropathy
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leonard, M.M.; Lebwohl, B.; Rubio-Tapia, A.; Biagi, F. AGA Clinical Practice Update on the Evaluation and Management of Seronegative Enteropathies: Expert Review. Gastroenterology 2021, 160, 437–444. [Google Scholar] [CrossRef]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.; Kurppa, K.; Mearin, M.L.; Ribes-Koninckx, C.; Shamir, R.; Troncone, R.; Auricchio, R.; Castillejo, G.; et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 141–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiepatti, A.; Sanders, D.S.; Biagi, F. Seronegative coeliac disease: Clearing the diagnostic dilemma. Curr. Opin. Gastroenterol. 2018, 34, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Schiepatti, A.; Sanders, D.S.; Zuffada, M.; Luinetti, O.; Iraqi, A.; Biagi, F. Overview in the clinical management of patients with seronegative villous atrophy. Eur. J. Gastroenterol. Hepatol. 2018, 31, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Aziz, I.; Peerally, M.F.; Barnes, J.-H.; Kandasamy, V.; Whiteley, J.C.; Partridge, D.; Vergani, P.; Cross, S.S.; Green, P.H.; Sanders, D.S. The clinical and phenotypical assessment of seronegative villous atrophy; a prospective UK centre experience evaluating 200 adult cases over a 15-year period (2000–2015). Gut 2017, 66, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.E.; Crowe, S.E.; Burgart, L.; Yantiss, R.K.; Lebwohl, B.; Greenson, J.K.; Guandalini, S.; Murray, J.A. Statement on Best Practices in the Use of Pathology as a Diagnostic Tool for Celiac Disease: A Guide for Clinicians and Pathologists. Practice Guideline. Am. J. Surg. Pathol. 2018, 42, e44–e58. [Google Scholar] [CrossRef] [PubMed]
- Oberhuber, G.; Granditsch, G.; Vogelsang, H. The histopathology of coeliac disease: Time for the standarized report scheme for pathologist. Eur. J. Gastroenterol. Hepatol. 1999, 11, 1185–1194. [Google Scholar] [CrossRef]
- Abrams, J.A.; Diamond, B.; Rotterdam, H.; Green, P.H. Seronegative celiac disease: Increased prevalence with lesser degrees of villous atrophy. Dig. Dis. Sci. 2004, 49, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Esteve, M.; Rosinach, M.; Fernández-Bañares, F.; Farré, C.; Salas, A.; Alsina, M.; Vilar, P.; Abad-Lacruz, A.; Forné, M.; Mariné, M.; et al. Spectrum of gluten-sensitive enteropathy in first-degree relatives of patients with coeliac disease: Clinical relevance of lymphocytic enteritis. Gut 2006, 55, 1739–1745. [Google Scholar] [CrossRef] [Green Version]
- Antiga, E.; Maglie, R.; Quintarelli, L.; Verdelli, A.; Bonciani, D.; Bonciolini, V.; Caproni, M. Dermatitis Herpetiformis: Novel Perspectives. Front. Immunol. 2019, 10, 1290. [Google Scholar] [CrossRef]
- Ilus, T.; Kaukinen, K.; Virta, L.J.; Huhtala, H.; Mäki, M.; Kurppa, K.; Heikkinen, M.; Heikura, M.; Hirsi, E.; Jantunen, K.; et al. Refractory coeliac disease in a country with a high prevalence of clinically-diagnosed coeliac disease. Aliment. Pharmacol. Ther. 2014, 39, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, I.; Repo, M.; Popp, A.; Kaukinen, K.; Hiltunen, P.; Arvola, T.; Taavela, J.; Vornanen, M.; Kivelä, L.; Kurppa, K. Prevalence and diagnostic outcomes of children with duodenal lesions and negative celiac serology. Dig. Liver Dis. 2020, 52, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volta, V.; Caio, G.; Boschetti, E.; Giancola, F.; Rhoden, K.J.; Ruggeri, E.; Paterini, P.; De Giorgio, R. Seronegative celiac disease: Shedding light on an obscura clinical entity. Dog. Liv. Dis. 2016, 48, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Dore, M.P.; Pes, G.M.; Dettori, I.; Villanacci, V.; Manca, A.; Realdi, G. Clinical and genetic profile of patients with seronegative coeliac disease: The natural history and response to gluten-free diet. BMJ Open Gastroenterol. 2017, 4, e000159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiepatti, A.; Rej, A.; Maimaris, S.; Cross, S.S.; Porta, P.; Aziz, I.; Key, T.; Goodwin, J.; Therrien, A.; Yoosuf, S.; et al. Clinical classification and long term outcomes of seronegative coeliac disease: A 20-year multicentre follow-up study. Aliment. Pharmacol. Ther. 2021, 54, 1278–1289. [Google Scholar] [CrossRef]
- Villanacci, V.; Lougaris, V.; Ravelli, A.; Buscarini, E.; Salviato, T.; Lionetti, P.; Salemme, M.; Martelossi, S.; De Giacomo, C.; Falchetti, D.; et al. Clinical manifestations and gastrointestinal pathology in 40 patients with autoimmune enteropathy. Clin. Immunol. 2019, 207, 10–17. [Google Scholar] [CrossRef]
- Mandile, R.; Maglio, M.; Pellino, N.; Russo, M.; Miele, E.; Spagnuole, M.I.; Troncone, R.; Auricchio, R. Seronegative Villous Atrophy in Children: Clinical and Immunohistochemical Features. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 282–287. [Google Scholar] [CrossRef]
- Maguire, A.A.; Greenson, J.K.; Lauwers, G.Y.; Ginsburg, R.E.; Williams, G.T.; Brown, I.S.; Riddell, R.H.; O’Donoghue, D.; Sheahan, K.D. Collagenous sprue: A clinicopathologic study of 12 cases. Am. J. Surg. Pathol. 2009, 33, 1440–1449. [Google Scholar] [CrossRef]
- Guevara-Hoyer, K.; Vasconcelos, J.; Marques, L.; Fernandes, A.A.; Ochoa-Grullón, J.; Marinho, A.; Sequeira, T.; Gil, C.; Rodríguez de la Peña, A.; García, I.S.; et al. Variable immunodeficiency study: Evaluation of two European cohorts within a variety of clinical phenotypes. Immunol. Lett. 2020, 223, 78–88. [Google Scholar] [CrossRef]
- Koot, B.G.P.; Ten Kate, F.J.W.; Juffrie, M.; Rosalina, I.; Taminiau, J.; Benninga, M.A. Does Giardia lamblia cause villous atrophy in children?: A retrospective cohort study of the histological abnormalities in giardiasis. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 304–308. [Google Scholar] [CrossRef]
- Brown, I.S.; Bettington, A.; Bettington, M.; Rosty, C. Self-limited coeliac-like enteropathy: A series of 18 cases highlighting another coeliac disease mimic. Histopathology 2016, 68, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Maity, P.; Kumar-M, P.; Jena, A.; Gupta, P.; Sharma, V. Gastroduodenal tuberculosis: A case series and a management focused systematic review. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Lappinga, P.J.; Abraham, S.C.; Murray, J.A.; Vetter, E.A.; Patel, R.; Wu, T.-T. Small Intestinal Bacterial Overgrowth: Histopathologic Features and Clinical Correlates in an Underrecognized Entity. Arch. Pathol. Lab. Med. 2010, 134, 264–270. [Google Scholar] [CrossRef]
- Sakai, E.; Higurashi, T.; Ohkubo, H.; Hosono, K.; Ueda, A.; Matsuhashi, N.; Nakajima, A. Investigation of Small Bowel Abnormalities in HIV-Infected Patients Using Capsule Endoscopy. Gastroenterol. Res. Pract. 2017, 2017, 1932647. [Google Scholar] [CrossRef]
- Branquinho, D.F.; Pinto-Gouveia, M.; Mendes, S.; Carlos, S. From past sailors’ eras to the present day: Scurvy as a surprising manifestation of an uncommon gastrointestinal disease. Case Rep. BMJ Case Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Baloda, V.; Ps Gahlot, G.; Singh, A.; Mehta, R.; Vishnubathla, S.; Kapoor, K.; Ahuja, V.; Datta Gupta, S.; Makharia, G.K.; et al. Clinical, endoscopic, and histological differentiation between celiac disease and tropical sprue: A systematic review. J. Gastroenterol. Hepatol. 2019, 34, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costetti, M.; Schiepatti, A.; Fraticelli, S.; Costa, S.; Maimaris, S.; Lenti, M.V.; Villani, L.; Bianchi, P.I.; Di Sabatino, A.; Corazza, G.R.; et al. Clinical and gastro-duodenal histopathological features of enteropathy due to angiotensin II receptor blokers. Dig. Liv. Dis. 2021, 53, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Kaosombatwattana, U.; Limsrivilai, J.; Pongpaibul, A.; Maneerattanaporn, M.; Charatcharoenwitthaya, P. Severe enteropathy with villous atrophy in prolonged mefenamic acid users—A currently under-recognized in previously well-recognized complication: Case report and review of literature. Medicine 2017, 96, e8445. [Google Scholar] [CrossRef]
- Ziegler, T.R.; Fernández-Estivariz, C.; Gu, L.H.; Fried, M.W.; Leader, L.M. Severe villus atrophy and chronic malabsorption induced by azathioprine. Gastroenterology 2003, 124, 1950–1957. [Google Scholar] [CrossRef]
- Boscá, M.M.; Añón, A.; Mayordomo, E.; Villagrasa, R.; Balza, N.; Amorós, C.; Corts, J.R.; Benages, A. Methotrexate induced sprue-like syndrome. Case Rep. World J. Gastroenterol. 2008, 14, 7009–7011. [Google Scholar] [CrossRef]
- Weclawiak, H.; Ould-Mohamed, A.; Bournet, B.; Guilbeau-Frugier, C.; Fortenfant, F.; Muscari, F.; Sallusto, F.; Dambrin, C.; Esposito, L.; Guitard, J.; et al. Duodenal villous atrophy: A cause of chronic diarrhea after solid-organ transplantation. Am. J. Transplant. 2011, 11, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Keefe, D.; Brealey, J.; Goland, G.; Cummins, A. Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut 2000, 47, 632–637. [Google Scholar] [CrossRef] [Green Version]
- Hauer-Jensen, M.; Denham, J.W.; Andreyev, H.J.N. Radiation enteropathy—Pathogenesis, treatment and prevention. Rev. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 470–479. [Google Scholar] [CrossRef]
- Matsuda, K.; Ono, S.; Tanaka, I.; Inoue, M.; Kinowaki, S.; Ishikawa, M.; Tsuda, M.; Yamamoto, K.; Shimizu, Y.; Takahashi, S.; et al. Histological and magnified endoscopic evaluation of villous atrophy in gastrointestinal graft-versus-host disease. Ann. Hematol. 2020, 99, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Stoven, S.A.; Choung, R.S.; Rubio-Tapia, A.; Absah, I.; Lam-Himlin, D.M.; Harris, L.A.; Ngamruengphong, S.; Vazquez Roque, M.I.; Wu, T.-T.; Murray, J.A. Analysis of biopsies from duodenal bulbs of all endoscopy patients increases detection of abnormalities but has a minimal effect on diagnosis of coeliac disease. Clin. Gastroenterol. Hepatol. 2016, 14, 1582–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesek, R.D.; Reed, C.C.; Collins, M.H.; Muir, A.B.; Fulkerson, P.C.; Menard-Katcher, C.; Falk, G.W.; Kuhl, J.; Magier, A.Z.; Ahmed, F.N.; et al. Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). Multicenter Study. Association Between Endoscopic and Histologic Findings in a Multicenter Retrospective Cohort of Patients with Non-esophageal Eosinophilic Gastrointestinal Disorders. Dig. Dis. Sci. 2020, 65, 2024–2035. [Google Scholar] [CrossRef] [PubMed]
- Malamut, G.; Meresse, B.; Kaltenbach, S.; Derrieux, C.; Verkarre, V.; Macintyre, E.; Ruskone-Fourmestraux, A.; Fabiani, B.; Radford-Weiss, I.; Brousse, N.; et al. Small intestinal CD4+ T-cell lymphoma is a heterogenous entity with common pathology features. Clin. Gastroenterol. Hepatol. 2014, 12, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Jansson-Knodell, C.L.; Murray, J.A.; Rubio-Tapia, A. Management of small bowel villous atrophy in patients seronegative for coeliac disease. Am. J. Gastroenterol. 2020, 115, 492–497. [Google Scholar] [CrossRef]
- Shiner, M.; Redmond, A.O.; Hansen, J.D. The jejunal mucosa in protein-energy malnutrition. A clinical, histological, and ultrastructural study. Exp. Mol. Pathol. 1973, 19, 61–78. [Google Scholar] [CrossRef]
- De Gaetani, M.; Tennyson, C.A.; Lebwohl, B.; Lewis, S.K.; Abu Daya, H.; Arguelles-Grande, C.; Bhagat, G.; Green, P.H. Villous atrophy and negative celiac serology: A diagnostic and therapeutic dilemma. Am. J. Gastroenterol. 2013, 108, 647–653. [Google Scholar] [CrossRef]
- Pallav, K.; Leffler, D.A.; Tariq, S.; Kabbani, T.; Hansen, J.; Peer, A.; Bhansali, A.; Najarian, R.; Kelly, C.P. Noncoeliac enteropathy: The differential diagnosis of villous atrophy in contemporary clinical practice. Aliment. Pharmacol. Ther. 2012, 35, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Doyev, R.; Cohen, S.; Ben-Tov, A.; Weintraub, Y.; Amir, A.; Galai, T.; Moran-Lev, H.; Yerushalmy-Feler, A. Ultra-short celiac disease is a distinct a milder phenotype of the disease in children. Dig. Dis. Sci. 2019, 64, 167–172. [Google Scholar] [CrossRef]
- Taavela, J.; Popp, A.; Korponay-Szabo, I.R.; Ene, A.; Vornanen, M.; Saavalainen, P.; Lähdeaho, M.L.; Ruuska, T.; Laurila, K.; Parvan, A.; et al. A prospective study on the usefulness of duodenal bulb biopsies in celiac disease diagnosis in children: Urging caution. Am. J. Gastroenterol. 2016, 111, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhang, Q.; Olofson, A.; Nirag, J.; Liu, X. Celiac Disease: Updates on Pathology and Differential Diagnosis. Adv. Anatom. Pathol. 2019, 26, 292–312. [Google Scholar] [CrossRef] [PubMed]
- Arguelles-Grande, C.; Tennyson, C.A.; Lewis, S.K.; Green, P.H.R.; Bhagat, G. Variability in small bowel histopathology reporting between different pathology practice settings: Impact on the diagnosis of coeliac disease. J. Clin. Pathol. 2012, 65, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Rish, K.P.; Vipul, J. What is the role of histopathology in the evaluation of disease activity in Crohn’s disease? Rev. Best Pract. Res. Clin. Gastroenterol. 2019, 38–39, 101601. [Google Scholar] [CrossRef]
- Greenson, J.K. The biopsy pathology of non-coeliac enteropathy. Histopathology 2015, 66, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Lenti, M.V.; Savioli, J.; Achilli, G.; Di Sabatino, A. Autoimmune disease associated with common variable immune deficiency. Pediatr. Allergy Immunol. 2020, 31 (Suppl. 26), 60–62. [Google Scholar] [CrossRef]
- Lan, N.; Shen, B.; Yuan, L.; Liu, X. Comparison of clinical features, treatment, and outcomes of collagenous sprue, celiac disease, and collagenous colitis. J. Gastroenterol. Hepatol. 2017, 32, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Melas, N.; Amin, R.; Gyllemark, P.; Younes, A.H.; Almer, S. Whipple’s disease: The great masdguerader—A high level of suspicion in the key to diagnosis. BMC Gastroenterol. 2021, 21, 128. [Google Scholar] [CrossRef]
- Owen, D.R.; Owen, D.A. Celiac disease and other causes of duodenitis. Arch. Pathol. Lab. Med. 2018, 142, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.; Guandalini, S.; Semrad, C.; Kupfer, S.S. A Clinician’s Guide to Celiac Disease HLA Genetics. Am. J. Gastroenterol. 2019, 114, 1587–1592. [Google Scholar] [CrossRef] [PubMed]
- Megiorni, F.; Mora, B.; Bonamico, M.; Barbato, M.; Nenna, R.; Maiella, G.; Lulli, P.; Mazzilli, M.C. HLA-DQ and risk gradient for celiac disease. Hum. Immunol. 2009, 70, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, M.; Saad, J.R.; Long, M.D.; Rao, S.S.C. ACG Clinical Guideline: Small Intestinal Bacterial Overgrowth. Am. J. Gastroenterol. 2020, 115, 165–178. [Google Scholar] [CrossRef]
- Moniuszko, A.; Wiśniewska, A.; Rydzewska, G. Biomarkers in management of inflammatory bowel disease. Prz. Gastroenterol. 2013, 8, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Malamut, G.; Cellier, C. Refractory celiac disease. Gastroenterol. Clin. N. Am. 2019, 48, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Naymagon, S.; Naymagon, L.; Wong, S.-Y.; Ko, H.M.; Renteria, A.; Levine, J.; Colombel, J.-F.; Ferrara, J. Acute graft-versus-host disease of the gut: Considerations for the gastroenterologist. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 711–726. [Google Scholar] [CrossRef]
Number of Intraepithelial Lymphocytes per 100 Enterocytes | Crypt Hyperplasia | Villous Atrophy | |
---|---|---|---|
Marsh 0 | <30/100 | − | - |
Marsh 1 | >30/100 | − | - |
Marsh 2 | >30/100 | + | - |
Marsh 3a | >30/100 | + | mild (partial) |
Marsh 3b | >30/100 | + | moderate (subtotal) |
Marsh 3c | >30/100 | + | total |
Marsh 4 | <30/100 | − | total |
Aetiology of Non-Coeliac Seronegative Villous Atrophy |
---|
Autoimmune and immune-mediated diseases |
Autoimmune enteropathy [16] |
Crohn’s disease [17] |
Collagenous sprue [18] |
Common variable immune deficiency (CVID) [19] |
Infectious or probably infectious diseases |
Giardia lamblia infection [20] |
Helicobacter pylori infection [17] |
Post-viral enteropathy [21] |
Tuberculosis [22] |
Small intestinal bacterial overgrowth [23] |
HIV-enteropathy [24] |
Whipple disease [25] |
Tropical sprue [26] |
Iatrogenic causes |
Medication (angiotensin II receptor blockers [27], mefenamic acid [28], azathioprine [29], methotrexate [30], mycophenolate mofetil [31]) |
Chemotherapy [32] |
Radiotherapy [33] |
Graft versus host disease [34] |
Inflammatory disease |
Peptic duodenitis [35] |
Eosinophilic gastroenteritis [36] |
Neoplastic |
Small intestinal lymphoma [37] |
Other |
Amyloidosis [38] |
Malnutrition [39] |
Food allergy (cow’s milk, soy) [20] |
First Author and Publication Date | Study Population | Causes of Enteropathy (%) | Limitations |
---|---|---|---|
Pallav K, 2012 [40] | 30 non-coeliac adults, 20–76 years (median age 54.5 years) | Peptic duodenitis (16.6%) Collagenous sprue (10%) Eosinophilic gastroenteritis (6.7%) Bacterial overgrowth (10%) Viral gastroenteritis (6.7%) Crohn’s disease (6.7%) Tropical sprue (3.3%) Food allergy (3.3%) Common variable immunodeficiency (3.3%) Unclassified sprue (33.3%) | Seronegative coeliac disease excluded, medication-related enteropathy not represented |
DeGaetani, M, 2013 [39] | 72 adults, 29–85 years (mean 59 years) | Seronegative coeliac disease (28%) Medication-related enteropathy (26%) Unclassified sprue (14%) Common variable immunodeficiency (6%) Autoimmune enteropathy (4%) Giardiasis (4%) CD4+ T cell lymphoma (4%) Tropical sprue (4%) Bacterial overgrowth (3%) Collagenous sprue (3%) Enteropathy-associated T cell lymphoma (1%) Crohn’s disease (1%) Extensive gastric metaplasia (1%) | Different patterns of testing for the workup of seronegative enteropathy cases, poor HIV testing |
Volta U, 2016 [13] | 31 adults | Seronegative coeliac disease (45.2%) Giardiasis (19.4%) Common variable immunodeficiency (16.1%) Autoimmune enteropathy (9.7%) Small intestinal bacterial overgrowth (3.2%) Olmesartan enteropathy (3.2%) Eosinophilic enteritis (3.2%) | Serology based only on anti-TG2 and EMA testing in IgA-non-deficient patients, and on anti-TG2 in IgA-deficient patients |
Aziz I, 2017 [5] | 200 adults, mean age 51.2 ± 17.6 years | Seronegative coeliac disease (31%) Infectious enteropathy (27%) Idiopathic enteropathy (18%) Peptic duodenitis (11.5%) Drug-related enteropathy (6%) Crohn’s disease (3%) Systemic immune-mediated (2%) Radiation enteritis (0.5%) Eosinophilic enteritis (0.5%) | No anti-DGP testing, IgG-seropositive coeliac disease patients included |
Gustafsson I, 2020 [12] | 40 children from two cohorts (Finnish and Romanian) | Giardiasis (25%) Helicobacter pylori infection (15%) Inflammatory bowel disease (17.5%) Cow’s milk allergy (15%) Malnutrition (7.5%) Autoimmune enteropathy (2.5%) Rotavirus infection (2.5%) No diagnosis (15%) | Non-systemic use of serology in the older series |
Mandile R, 2021 [16] | 64 children, mean age 5.9 years | Inflammatory bowel disease (32.8%) Gastro-oesophageal reflux disease (18.8%) Food allergy (12.5%) Infectious enteropathy (10.9%) Immunodeficiency (4.7%) Short bowel syndrome (4.7%) Congenital diarrhoea (3.1%) Other/inconclusive diagnosis (12.5%) | Samples reviewed by different pathologist; immunohistochemistry staining was not performed for all patients |
Schiepatti A, 2021 [15] | 227 adults previously diagnosed with seronegative villous atrophy | Seronegative coeliac disease (37%) IgG-seropositive coeliac disease (21.1%) Coeliac disease not confirmed/excluded (lack of a follow up biopsy) (17.6%) Poor orientation or histological misinterpretation of biopsies (17.6%) Gluten-free diet or immunosupressive therapy at time of diagnosis (7.9%) Idiopathic enteropathy (4%) Collagenous sprue (0.9%) Crohn’s disease (0.4%) Autoimmune enteropathy (4%) Tropical sprue (0.4%) | IgG-seropositive coeliac disease included |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szaflarska-Popławska, A. The Role of the Gluten-Free Diet in the Management of Seronegative Enteropathy. Nutrients 2021, 13, 4027. https://doi.org/10.3390/nu13114027
Szaflarska-Popławska A. The Role of the Gluten-Free Diet in the Management of Seronegative Enteropathy. Nutrients. 2021; 13(11):4027. https://doi.org/10.3390/nu13114027
Chicago/Turabian StyleSzaflarska-Popławska, Anna. 2021. "The Role of the Gluten-Free Diet in the Management of Seronegative Enteropathy" Nutrients 13, no. 11: 4027. https://doi.org/10.3390/nu13114027
APA StyleSzaflarska-Popławska, A. (2021). The Role of the Gluten-Free Diet in the Management of Seronegative Enteropathy. Nutrients, 13(11), 4027. https://doi.org/10.3390/nu13114027