Correlation between Serum Zinc Levels and Levodopa in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Analysis
3. Results
3.1. Patient Background Information and Clinical Symptoms
3.2. Correlation between Patient Background and Serum Zinc Levels
3.3. Symptoms before and after Oral Zinc Administration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Eugenio, M.; Javier, R.; Marco, M.; Laura, C.; Robertina, G.; Ligia-Esperanza, D.; Ascension, M. Zinc: Dietary intake and impact of supplementation on immune function in elderly. Age Dordr. 2013, 35, 839–860. [Google Scholar] [CrossRef] [Green Version]
- Tapan, K.B.; David, D. Intestinal absorption in health and disease: Micronutrients. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 957–979. [Google Scholar] [CrossRef]
- Matsuyama, H.; Matsuura, K.; Ishikawa, H.; Hirata, Y.; Kato, N.; Niwa, A.; Narita, Y.; Tomimoto, H. Proposition of zinc supplementation during levodopa-carbidopa intestinal gel treatment. Brain Behav. 2018, 8, e01143. [Google Scholar] [CrossRef] [PubMed]
- Henkin, R.I.; Bradley, D.F. Hypogeusia corrected by Ni++ and Zn++. Life Sci. 1970, 9, 701–709. [Google Scholar] [CrossRef]
- Tomita, H.; Yoshikawa, T. Drug-related taste disturbances. Acta Oto-Laryngol. Suppl. 2002, 122, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Rink, L.; Gabriel, P. Zinc and the immune system. Proc. Nutr. Soc. 2000, 59, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Wojtunik, K.; Oniszczuk, A.; Waksmundzka, H.M. An attempt to elucidate the role of iron and zinc ions in development of Alzheimer’s and Parkinson’s diseases. Biomed Pharm. 2019, 111, 1277–1289. [Google Scholar] [CrossRef]
- Rahmati, M.; Safdarian, F.; Zakeri, M.; Zare, S. The prevalence of zinc deficiency in 6-month to 12-year-old children in Bandar Abbas in 2013. Electron. Physician 2017, 9, 5088–5091. [Google Scholar] [CrossRef]
- Cherasse, Y.; Urade, Y. Dietary Zinc Acts as a Sleep Modulator. Int. J. Mol. Sci. 2017, 18, 2334. [Google Scholar] [CrossRef] [Green Version]
- Anbari-Nogyni, Z.; Bidaki, R.; Madadizadeh, F.; Sangsefidi, Z.S.; Fallahzadeh, H.; Karimi-Nazari, E.; Nadjarzadeh, A. Relationship of zinc status with depression and anxiety among elderly population. Clin. Nutr. ESPEN 2020, 37, 233–239. [Google Scholar] [CrossRef]
- Nakamura, M.; Miura, A.; Nagahata, T.; Shibata, Y.; Okada, E.; Ojima, T. Low Zinc, Copper, and Manganese Intake is Associated with Depression and Anxiety Symptoms in the Japanese Working Population: Findings from the Eating Habit and Well-Being Study. Nutrients 2019, 11, 847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, A.B.; Bezerra, M.A.; Rocha, M.E.; Barreto, G.E.; Kohlmeier, K.A. Higher zinc concentrations in hair of Parkinson’s disease are associated with psychotic complications and depression. J. Neural Transm. 2019, 126, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Kodama, H.; Itakura, H.; Ohmori, H.; Sasaki, M.; Sando, K.; Takamura, T.; Fuse, Y.; Hosoi, T.; Yoshida, H. Practice Guideline for Zinc Deficiency. J. Jpn. Soc. Clin. Nutr. 2018, 40, 120–167. (In Japanese) [Google Scholar]
- Markowitz, M.E.; Rosen, J.F.; Mizruchi, M. Circadian variations in serum zinc (Zn) concentrations: Correlation with blood ionized calcium, serum total calcium and phosphate in humans. Am. J. Clin. Nutr. 1985, 41, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Veldkamp, K.L.; Tubergen, P.J.; Swartz, M.A.; DeVries, J.T.; Tatko, C.D. Zinc binding with L-dopa peptides. Inorg. Chim. Acta 2017, 461, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Penttilä, O.; Hurme, H.; Neuvonen, P.J. Effect of zinc sulphate on the absorption of tetracycline and doxycycline in man. Eur. J. Clin. Pharmacol. 1975, 9, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.; Tsutsui, T. Infants and elderlies are susceptible to zinc deficiency. Sci. Rep. 2016, 6, 21850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krüger, R.; Lingor, P.; Doskas, T.; Henselmans, J.; Danielsen, E.H.; de Fabregues, O.; Stefani, A.; Sensken, S.C.; Parra, J.C.; Onuk, K.; et al. An Observational Study of the Effect of Levodopa-Carbidopa Intestinal Gel on Activities of Daily Living and Quality of Life in Advanced Parkinson’s Disease Patients. Adv. Ther. 2017, 34, 1741–1752. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.S.; Santosh, W. Metallomic profiling and linkage map analysis of early Parkinson’s disease: A new insight to aluminum marker for the possible diagnosis. PLoS ONE 2010, 5, e11252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikam, S.; Nikam, P.; Ahaley, S.K.; Sontakke, A.V. Oxidative stress in Parkinson’s disease. Indian J. Clin. Biochem. IJCB 2009, 24, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.W.; Lin, J.; Wang, X.B.; Cheng, X.; Wang, J.Y.; Hu, B.L.; Zhang, Y.; Zhang, X.; Zhu, J.H. Assessing plasma levels of selenium, copper, iron and zinc in patients of Parkinson’s disease. PLoS ONE 2013, 8, e83060. [Google Scholar] [CrossRef]
- Kim, M.J.; Oh, S.B.; Kim, J.; Kim, K.; Ryu, H.S.; Kim, M.S.; Ayton, S.; Bush, A.I.; Lee, J.Y.; Chung, S.J. Association of metals with the risk and clinical characteristics of Parkinson’s disease. Parkinsonism Relat. Disord. 2018, 55, 117–121. [Google Scholar] [CrossRef]
- Swardfager, W.; Herrmann, N.; Mazereeuw, G.; Goldberger, K.; Harimoto, T.; Lanctôt, K.L. Zinc in depression: A meta-analysis. Biol. Psychiatry 2013, 74, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Lehto, S.M.; Tolmunen, T.; Ruusunen, A.; Voutilainen, S.; Tuomainen, T.P.; Kauhanen, J. Serum zinc and the risk of depression in men: Observations from a 20-year follow-up study. Biol. Psychiatry 2015, 77, e11–e12. [Google Scholar] [CrossRef] [PubMed]
- Petrilli, M.A.; Kranz, T.M.; Kleinhaus, K.; Joe, P.; Getz, M.; Johnson, P.; Chao, M.V.; Malaspina, D. The Emerging Role for Zinc in Depression and Psychosis. Front. Pharmacol. 2017, 8, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grønli, O.; Kvamme, J.M.; Friborg, O.; Wynn, R. Zinc deficiency is common in several psychiatric disorders. PLoS ONE 2013, 8, e82793. [Google Scholar] [CrossRef] [Green Version]
- Młyniec, K.; Davies, C.L.; de Agüero Sánchez, I.G.; Pytka, K.; Budziszewska, B.; Nowak, G. Essential elements in depression and anxiety. Part I. Pharmacol. Rep. PR 2014, 66, 534–544. [Google Scholar] [CrossRef]
- Thi Thu Nguyen, T.; Miyagi, S.; Tsujiguchi, H.; Kambayashi, Y.; Hara, A.; Nakamura, H.; Suzuki, K.; Yamada, Y.; Shimizu, Y.; Nakamura, H. Association between Lower Intake of Minerals and Depressive Symptoms among Elderly Japanese Women but Not Men: Findings from Shika Study. Nutrients 2019, 11, 389. [Google Scholar] [CrossRef] [Green Version]
PD Patients | |
---|---|
Characteristic | (N = 61) |
Age, years | 71.7 ± 8.9 |
Male (%) | 33 (54.1) |
Age at onset (years) | 61.2 ± 11.2 |
PD duration (years) | 10.5 ± 6.4 |
Modified H-Y stage | 2.6 ± 0.9 |
MDS-UPDRS Part I | 9.1 ± 6.1 |
Part II | 10.7 ± 7.4 |
Part III | 20.3 ± 12.0 |
Part IV | 1.8 ± 2.4 |
PDQ 39 | 115.1 ± 25.6 |
Serum zinc (μg/mL) | 60.5 ± 11.6 |
L-dopa dosage (mg) | 420.6 ± 237.1 |
L-dopa dosing frequency (times) | 3.4 ± 0.9 |
L-dopa period (years) | 8.0 ± 5.5 |
Zinc deficiency (%) | |
taste disorder, N | 14 (22.3) |
dermatitis, N | 16 (26.2) |
sexual debility, N | 3 (4.9) |
anorexia, N | 8 (13.1) |
stomatitis, N | 7 (11.5) |
Data are presented as mean ± SD, or number (percentage). |
Symptom of Zinc Deficiency | with Symptom | No Symptom | p Value |
---|---|---|---|
N (Zinc Levels, ug/mL) | N (Zinc Levels, ug/mL) | ||
taste disorder | 14 (57.3 ± 9.9) | 47 (61.4 ± 12.0) | 0.425 |
anorexia | 8 (55.3 ± 8.9) | 53 (61.2 ± 11.9) | 0.111 |
dermatitis | 16 (54.0 ± 6.3) | 45 (62.8 ± 12.3) | 0.01 * |
sexual debility | 3 (77.3 ± 16.7) | 58 (59.6 ± 10.8) | 0.036 * |
stomatitis | 7 (56.6 ± 8.6) | 54 (61.0 ± 11.9) | 0.417 |
Total | 36 (57.6 ± 10.5) | 25 (64.6 ± 12.0) | 0.018 * |
Explanatory Variable | β |
---|---|
levodopa dosage | −0.21 |
age | −0.30 * |
PD duration | −0.09 |
H–Y stage | 0.01 |
R2 | 0.16 |
Explanatory variable | β |
levodopa frequency | −0.36 ** |
age | −0.26 |
PD duration | −0.08 |
H–Y stage | 0.01 |
R2 | 0.25 |
Explanatory variable | β |
levodopa duration | −0.2 |
age | −0.35 * |
PD duration | −0.02 |
H–Y stage | 0.01 |
R2 | 0.13 |
N = 27 | Before Supplement | After Supplement | p Value |
---|---|---|---|
serum zinc (μg/mL) | 55.9 ± 7.8 | 79.5 ± 12.1 | |
taste disorder, N | 10 (37.0%) | 4 (14.8%) | 0.011 * |
dermatitis, N | 12 (44.4%) | 6 (22.2%) | 0.016 * |
sexual debility, N | 2 (7.4%) | 2 (7.4%) | 1.000 |
anorexia, N | 6 (22.2%) | 3 (11.1%) | 0.125 |
stomatitis, N | 7 (25.9%) | 6 (22.2%) | 0.423 |
MDS-UPDRS Part I | 10.3 ± 6.1 | 8.7 ± 4.9 | 0.335 |
Part II | 9.7 ± 6.6 | 10.3 ± 8.9 | 0.796 |
Part III | 20.5 ± 10.7 | 20.5 ± 11.4 | 1.000 |
Part IV | 1.7 ± 2.4 | 1.7 ± 2.3 | 0.937 |
PDQ39 | 115.0 ± 22.8 | 117.6 ± 24.2 | 0.715 |
Questions in Part I | Before Supplement | After Supplement | p Value |
---|---|---|---|
1.1 | 0.52 ± 1.01 | 0.54 ± 0.95 | 0.895 |
1.2 | 0.85 ± 1.23 | 0.69 ± 1.19 | 0.519 |
1.3 | 0.93 ± 1.04 | 0.58 ± 0.86 | 0.198 |
1.4 | 1.00 ± 0.96 | 0.54 ± 0.76 | 0.052 |
1.5 | 0.52 ± 0.94 | 0.50 ± 0.81 | 0.821 |
1.6 | 0.26 ± 0.45 | 0.23 ± 0.43 | 0.811 |
1.7 | 1.04 ± 0.90 | 1.00 ± 1.10 | 0.643 |
1.8 | 1.04 ± 0.90 | 1.15 ± 0.67 | 0.543 |
1.9 | 0.81 ± 0.88 | 0.65 ± 0.69 | 0.602 |
1.1 | 1.26 ± 1.20 | 0.85 ± 0.73 | 0.314 |
1.11 | 0.93 ± 0.73 | 0.85 ± 0.83 | 0.662 |
1.12 | 0.41 ± 0.64 | 0.50 ± 0.81 | 0.831 |
1.13 | 0.70 ± 0.72 | 0.58 ± 0.64 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuyama, H.; Matsuura, K.; Ishikawa, H.; Hirata, Y.; Kato, N.; Niwa, A.; Narita, Y.; Tomimoto, H. Correlation between Serum Zinc Levels and Levodopa in Parkinson’s Disease. Nutrients 2021, 13, 4114. https://doi.org/10.3390/nu13114114
Matsuyama H, Matsuura K, Ishikawa H, Hirata Y, Kato N, Niwa A, Narita Y, Tomimoto H. Correlation between Serum Zinc Levels and Levodopa in Parkinson’s Disease. Nutrients. 2021; 13(11):4114. https://doi.org/10.3390/nu13114114
Chicago/Turabian StyleMatsuyama, Hirofumi, Keita Matsuura, Hidehiro Ishikawa, Yoshinori Hirata, Natsuko Kato, Atsushi Niwa, Yugo Narita, and Hidekazu Tomimoto. 2021. "Correlation between Serum Zinc Levels and Levodopa in Parkinson’s Disease" Nutrients 13, no. 11: 4114. https://doi.org/10.3390/nu13114114
APA StyleMatsuyama, H., Matsuura, K., Ishikawa, H., Hirata, Y., Kato, N., Niwa, A., Narita, Y., & Tomimoto, H. (2021). Correlation between Serum Zinc Levels and Levodopa in Parkinson’s Disease. Nutrients, 13(11), 4114. https://doi.org/10.3390/nu13114114