The Prevalence of ‘‘Food Addiction’’ during the COVID-19 Pandemic Measured Using the Yale Food Addiction Scale 2.0 (YFAS 2.0) among the Adult Population of Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Exclusion Criteria
2.2. Study Documentation
2.3. Questionnaire and Principles for Determining the Degree of “Food Addiction”
2.4. Statistics Calculations
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Director. Generals Opening Remarks at the Mission Briefing on COVID-19; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Duerr, H.P.; Brockmann, S.O.; Piechotowski, I.; Schwehm, M.; Eichner, M. Influenza pandemic intervention planning using InfluSim: Pharmaceutical and non- pharmaceutical interventions. BMC Infect. Dis. 2007, 7, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, E.; Boyland, E.; Chisholm, A.; Harrold, J.; Maloney, N.G.; Marty, L.; Mead, B.R.; Noonan, R.; Hardman, C.A. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite 2021, 156, 104853. [Google Scholar] [CrossRef] [PubMed]
- Martínez-de-Quel, Ó.; Suárez-Iglesias, D.; López-Flores, M.; Pérez, C.A. Physical activity, dietary habits and sleep quality before and during COVID-19 lockdown: A longitudinal study. Appetite 2021, 158, 105019. [Google Scholar] [CrossRef] [PubMed]
- Flanagan., E.W.; Beyl, R.A.; Fearnbach, S.N.; Altazan, A.D.; Martin, C.K.; Redman, L.M. The Impact of COVID-19 Stay-At-Home Orders on Health Behaviors in Adults. Obesity 2021, 29, 438–445. [Google Scholar] [CrossRef]
- González-Sanguino, C.; Ausín, B.; Castellanos, M.Á.; Saiz, J.; López-Gómez, A.; Ugidos, C.; Muñoz, M. Mental health consequences during the initial stage of the 2020 Coronavirus pandemic (COVID-19) in Spain. Brain Behav. Immun. 2020, 87, 172–176. [Google Scholar] [CrossRef]
- Moccia, L.; Janiri, D.; Pepe, M.; Dattoli, L.; Molinaro, M.; De Martin, V.; Chieffo, D.; Janiri, L.; Fiorillo, A.; Sani, G.; et al. Affective temperament, attachment style, and the psychological impact of the COVID-19 outbreak: An early report on the Italian general population. Brain Behav. Immun. 2020, 87, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Ozamiz-Etxebarria, N.; Dosil-Santamaria, M.; Picaza-Gorrochategui, M.; Idoiaga-Mondragon, N. Stress, anxiety, and depression levels in the initial stage of the COVID-19 outbreak in a population sample in the northern Spain. Cad. Saude Publica 2020, 36, e00054020. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, R.P. COVID-19 and mental health: A review of the existing literature. Asian J. Psychiatry 2020, 52, 102066. [Google Scholar] [CrossRef]
- Temorshuizen, J.D.; Watson, H.J.; Thornton, L.M.; Borg, S.; Flatt, R.E.; MacDermod, C.M.; Bulik, C.M. Early impact of COVID-19 on individuals with eating disorders: A survey of ~1000 individuals in the United States and The Netherlands. Int. J. Eat. Disord. 2020, 53, 1780–1790. [Google Scholar] [CrossRef]
- Hao, F.; Tan, W.; Jiang, L.; Zhang, L.; Zhao, X.; Zou, Y.; Tam, W. Do psychiatric patients experience more psychiatric symptoms during COVID-19 pandemic and lockdown? A case-control study with service and research implications for immunopsychiatry. Brain Behav. Immun. 2020, 87, 100–106. [Google Scholar] [CrossRef]
- Shah, K.; Kamrai, D.; Mekala, H.; Mann, B.; Desai, K.; Patel, R.S. Focus on mental health during the coronavirus (COVID-19) pandemic: Applying learnings from the past outbreaks. Cureus 2020, 12, 7405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anton, S.D.; Miller, P.M. Do negative emotions predict alcohol consumption, saturated fat intake, and physical activity in older adults? Behav. Modif. 2005, 29, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Macht, M. How emotions affect eating: A five-way model. Appetite 2008, 50, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Naja, F.; Hamadeh, R. Nutrition amid the COVID-19 pandemic: A multi-level framework for action. Eur. J. Clin. Nutr. 2020, 74, 1117–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohn, S.; Eaton, J.L.; Feroz, S.; Bainbridge, A.A.; Hoolachan, J.; Barnett, D.J. Personal disaster preparedness: An integrative review of the literature. Disaster Med. Public Health Prep. 2012, 6, 217–231. [Google Scholar] [CrossRef]
- Đogaš, Z.; Lušić Kalcina, L.; Pavlinac Dodig, I.; Demirović, S.; Madirazza, K.; Valić, M.; Pecotić, R. The effect of COVID-19 lockdown on lifestyle and mood in Croatian general population: A cross-sectional study. Croat. Med. J. 2020, 61, 309–318. [Google Scholar] [CrossRef]
- Randolph, T.G. The descriptive features of food addiction; addictive eating and drinking. Q. J. Stud. Alcohol 1956, 17, 198–224. [Google Scholar] [CrossRef]
- Gordon, E.L.; Ariel-Donges, A.H.; Bauman, V.; Merlo, L.J. What Is the Evidence for “Food Addiction?” A Systematic Review. Nutrients 2018, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Piccinni, A.; Bucchi, R.; Fini, C.; Vanelli, F.; Mauri, M.; Stallone, T.; Cavallo, E.D.; Claudio, C. Food addiction and psychiatric comorbidities: A review of current evidence. Eat. Weight. Disord. 2021, 26, 1049–1056. [Google Scholar] [CrossRef]
- Hauck, C.; Cook, B.; Ellrott, T. Food addiction, eating addiction and eating disorders. Proc. Nutr. Soc. 2020, 79, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Volkow, N.D.; Wang, G.J.; Tomasi, D.; Baler, R.D. Obesity and addiction: Neurobiological overlaps. Obes. Rev. 2013, 14, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedram, P.; Wadden, D.; Amini, P.; Gulliver, W.; Randell, E.; Cahill, F.; Vasdev, S.; Goodridge, A.; Carter, J.C.; Zhai, G.; et al. Food addiction: Its prevalence and significant association with obesity in the general population. PLoS ONE 2013, 8, e74832. [Google Scholar] [CrossRef] [Green Version]
- Avena, N.M. Food and addiction: Implications and relevance to eating disorders and obesity. Curr. Drug Abus. Rev. 2011, 4, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Curtis, C.; Levitan, R.D.; Carter, J.C.; Kaplan, A.S.; Kennedy, J.L. Evidence that ‘food addiction’ is a valid phenotype of obesity. Appetite 2011, 57, 711–717. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; Corbin, W.R.; Brownell, K.D. Food addiction: An examination of the diagnostic criteria for dependence. J. Addict. Med. 2009, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, D.M.; Gold, M.S. Neurobiology of food addiction. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 359–365. [Google Scholar] [CrossRef]
- Fortuna, J.L. The obesity epidemic and food addiction: Clinical similarities to drug dependence. J. Psychoact. Drugs 2012, 44, 56–63. [Google Scholar] [CrossRef]
- American Society of Addition Medicine Definition of Addiction. Available online: https://www.asam.org/quality-practice/definition-of-addiction (accessed on 27 September 2021).
- Davis, C. Evolutionary and neuropsychological perspectives on addictive behaviors and addictive substances: Relevance to the “food addiction” construct. Subst. Abus. Rehabil. 2014, 5, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.H.; Guillem, K.; Vandaele, Y. Sugar addiction: Pushing the drug-sugar analogy to the limit. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 434–439. [Google Scholar] [CrossRef]
- Colantuoni, C.; Rada, P.; McCarthy, J.; Patten, C.; Avena, N.M.; Chadeayne, A.; Hoebel, B.G. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes. Res. 2002, 10, 478–488. [Google Scholar] [CrossRef]
- Westwater, M.L.; Fletcher, P.C.; Ziauddeen, H. Sugar addiction: The state of the science. Eur. J. Nutr. 2016, 55, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Di Feliceantonio, A.G.; Coppin, G.; Rigoux, L.; Thanarajah, S.E.; Dagher, A.; Tittgemeyer, M.; Small, D.M. Supra-additive effects of combining fat and carbohydrate on food reward. Cell Metab. 2018, 28, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Schulte, E.M.; Avena, N.M.; Gearhardt, A.N. Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS ONE 2015, 10, e0117959. [Google Scholar] [CrossRef]
- Lippi, G.; Henry, B.M.; Bovo, C.; Sanchis-Gomar, F. Health risks and potential remedies during prolonged lockdowns for coronavirus disease 2019 (COVID-19). Diagnosis 2020, 7, 85–90. [Google Scholar] [CrossRef]
- Pearl, R.L. Weight Stigma and the “Quarantine-15”. Obesity 2020, 28, 1180–1181. [Google Scholar] [CrossRef]
- Gordon, E.L.; Lent, M.R.; Merlo, L.J. The Effect of Food Composition and Behavior on Neurobiological Response to Food: A Review of Recent Research. Curr. Nutr. Rep. 2020, 9, 75–82. [Google Scholar] [CrossRef]
- Meule, A.; Heckel, D.; Kubler, A. Factor structure and item analysis of the Yale Food Addiction Scale in obese candidates for bariatric surgery. Eur. Eat. Disord. Rev. 2012, 20, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Gearhardt, A.N.; Corbin, W.R.; Brownell, K.D. Development of the yale food addiction scale version 2.0. Psychol Addict. Behav. 2016, 30, 113–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gearhardt, A.N.; Corbin, W.R.; Brownell, K.D. Preliminary validation of the Yale food addiction scale. Appetite 2009, 52, 430–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buczny, J.; Matyjanka, C.; Baranowska, C. Polska adaptacja Full Yale Food Addiction Scale Version (YFAS) 2.0. SWPS Uniwersytet Humanistycznospołeczny, Wydział Zamiejscowy w Sopocie. 2017. Available online: https://www.researchgate.net/publication/324890291_Polska_adaptacja_Full_Yale_Food_Addiction_Scale_Version_YFAS_20 (accessed on 19 November 2020).
- Poprawa, R.W.; Lewandowska, B.; Włodarczyk, M.; Tutka, K. A polish adaptation and validation of the Yale Food Addiction Scale 2.0, Institute of Psychology. Alcohol Drug Addict. 2020, 33, 283–312. [Google Scholar] [CrossRef]
- Sidor, A.; Rzymski, P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef]
- Burrows, T.; Kay-Lambkin, F.; Pursey, K.; Skinner, J.; Dayas, C. Food addiction and associations with mental health symptoms: A systematic review with meta-analysis. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2018, 31, 544–572. [Google Scholar] [CrossRef]
- Schulte, E.M.; Gearhardt, A.N. Associations of Food Addiction in a Sample Recruited to Be Nationally Representative of the United States. Eur. Eat. Disord. Rev. J. Eat. Disord. Assoc. 2018, 26, 112–119. [Google Scholar] [CrossRef]
- Pursey, K.M.; Stanwell, P.; Gearhardt, A.N.; Collins, C.E.; Burrows, T.L. The prevalence of food addiction as assessed by the Yale Food Addiction Scale: A systematic review. Nutrients 2014, 6, 4552–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyici, S.; Koca, N.; Sigirli, D.; Aslan, B.B.; Guclu, M.; Kisakol, G. Food Addiction Correlates with Psychosocial Functioning More Than Metabolic Parameters in Patients with Obesity. Metab. Syndr. Relat. Disord. 2020, 18, 161–167. [Google Scholar] [CrossRef]
- Penzenstadler, L.; Soares, C.; Karila, L.; Khazaal, Y. Systematic Review of Food Addiction as Measured with the Yale Food Addiction Scale: Implications for the Food Addiction Construct. Curr. Neuropharmacol. 2019, 17, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Guo, L.; Yu, M.; Jiang, W.; Wang, H. The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public—A systematic review and meta-analysis. Psychiatry Res. 2020, 291, 113190. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Shen, B.; Zhao, M.; Wang, Z.; Xie, B.; Xu, Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen. Psychiatry 2020, 33, e100213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berenson, A.B.; Laz, T.H.; Pohlmeier, A.M.; Rahman, M.; Cunningham, K.A. Prevalence of Food Addiction among Low-Income Reproductive-Aged Women. J. Womens Health 2015, 24, 740–744. [Google Scholar] [CrossRef] [Green Version]
- Imperatori, C.; Fabbricatore, M.; Vumbaca, V.; Innamorati, M.; Contardi, A.; Farina, B. Food Addiction: Definition, measurement and prevalence in healthy subjects and in patients with eating disorders. Riv. Psichiatr. 2016, 51, 60–65. [Google Scholar] [CrossRef]
- Baenas, I.; Caravaca-Sanz, E.; Granero, R.; Sánchez, I.; Riesco, N.; Testa, G.; Vintró-Alcaraz, C.; Treasure, J.; Jiménez-Murcia, S.; Fernández-Aranda, F. COVID-19 and eating disorders during confinement: Analysis of factors associated with resilience and aggravation of symptoms. Eur. Eat. Disord. Rev. 2020, 28, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Mengin, A.; Allé, M.C.; Rolling, J.; Ligier, F.; Schroder, C.; Lalanne, L.; Berna, F.; Jardri, R.; Vaiva, G.; Geoffroy, P.A.; et al. Conséquences psychopathologiques du confinement [Psychopathological consequences of confinement]. Encephale 2020, 46, S43–S52. [Google Scholar] [CrossRef] [PubMed]
- De Pasquale, C.; Sciacca, F.; Conti, D.; Pistorio, M.L.; Hichy, Z.; Cardullo, R.L.; Di Nuovo, S. Relations Between Mood States and Eating Behavior During COVID-19 Pandemic in a Sample of Italian College Students. Front. Psychol. 2021, 12, 684195. [Google Scholar] [CrossRef]
- Mills, J.G.; Thomas, S.J.; Larkin, T.A.; Deng, C. Overeating and food addiction in Major Depressive Disorder: Links to peripheral dopamine. Appetite 2020, 148, 104586. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, C.; Molina-Montes, E.; Verardo, V.; Artacho, R.; García-Villanova, B.; Guerra-Hernández, E.J.; Ruíz-López, M.D. Changes in Dietary Behaviours during the COVID-19 Outbreak Confinement in the Spanish COVIDiet Study. Nutrients 2020, 12, 1730. [Google Scholar] [CrossRef] [PubMed]
- Li, J.T.E.; Pursey, K.M.; Duncan, M.J.; Burrows, T. Addictive Eating and Its Relation to Physical Activity and Sleep Behavior. Nutrients 2018, 10, 1428. [Google Scholar] [CrossRef] [Green Version]
- Wiklund, P. The role of physical activity and exercise in obesity and weight management: Time for critical appraisal. J. Sport Health Sci. 2016, 5, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Lesser, I.A.; Nienhuis, C.P. The Impact of COVID-19 on Physical Activity Behavior and Well-Being of Canadians. Int. J. Environ. Res. Public Health 2020, 17, 3899. [Google Scholar] [CrossRef]
- Ravalli, S.; Musumeci, G. Coronavirus Outbreak in Italy: Physiological Benefits of Home-Based Exercise during Pandemic. J. Funct. Morphol. Kinesiol. 2020, 5, 31. [Google Scholar] [CrossRef]
- Duncan, G.E.; Avery, A.R.; Seto, E.; Tsang, S. Perceived change in physical activity levels and mental health during COVID-19: Findings among adult twin pairs. PLoS ONE 2020, 15, e0237695. [Google Scholar] [CrossRef]
- López-Bueno, R.; Calatayud, J.; Ezzatvar, Y.; Casajús, J.A.; Smith, L.; Andersen, L.L.; López-Sánchez, G.F. Association Between Current Physical Activity and Current Perceived Anxiety and Mood in the Initial Phase of COVID-19 Confinement. Front. Psychiatry 2020, 11, 729. [Google Scholar] [CrossRef]
- Pieh, C.; Budimir, S.; Probst, T. The effect of age, gender, income, work, and physical activity on mental health during coronavirus disease (COVID-19) lockdown in Austria. J. Psychosom. Res. 2020, 136, 110186. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef]
- Borisenkov, M.F.; Popov, S.V.; Pecherkina, A.A.; Dorogina, O.I.; Martinson, E.A.; Vetosheva, V.I.; Gubin, D.G.; Solovieva, S.V.; Turovinina, E.F.; Symaniuk, E.E. Food addiction in young adult residents of Russia: Associations with emotional and anthropometric characteristics. Eur. Eat. Disord. Rev. 2020, 28, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Bourdier, L.; Orri, M.; Carre, A.; Gearhardt, A.N.; Romo, L.; Dantzer, C.; Berthoz, S. Are emotionally driven and addictive-like eating behaviors the missing links between psychological distress and greater body weight? Appetite 2018, 120, 536–546. [Google Scholar] [CrossRef]
- Lin, Y.S.; Tung, Y.T.; Yen, Y.C.; Chien, Y.W. Food Addiction Mediates the Relationship between Perceived Stress and Body Mass Index in Taiwan Young Adults. Nutrients 2020, 12, 1951. [Google Scholar] [CrossRef]
- Sanlier, N.; Turkozu, D.; Toka, O. Body image, food addiction, depression, and body mass index in university students. Ecol. Food Nutr. 2016, 55, 491–507. [Google Scholar] [CrossRef]
- Flint, A.J.; Gearhardt, A.; Corbin, W.; Brownell, K.; Field, A.; Rimm, E. Food addiction scale measurement in two cohorts of middleaged and older women. Am. J. Clin. Nutr. 2014, 99, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Gearhardt, A.N.; White, M.A.; Masheb, R.M.; Morgan, P.T.; Crosby, R.D.; Grilo, C.M. An examination of the food addiction construct in obese patients with binge eating disorder. Int. J. Eat. Disord. 2012, 45, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Gearhardt, A.N.; White, M.A.; Masheb, R.M.; Grilo, C.M. An examination of food addiction in a racially diverse sample of obese patients with binge eating disorder in primary care settings. Compr. Psychiatry 2013, 54, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Gearhardt, A.N.; Boswell, R.G.; White, M.A. The association of “food addiction” with disordered eating and body mass index. Eat. Behav. 2014, 15, 427–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meule, A.; von Rezori, V.; Blechert, J. Food addiction and bulimia nervosa. Eur. Eat. Disord. Rev. 2014, 5, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Striegel-Moore, R.H.; Rosselli, F.; Perrin, N.; DeBar, L.; Wilson, G.T.; May, A.; Kraemer, H.C. Gender difference in the prevalence of eating disorder symptoms. Int. J. Eat. Disord. 2009, 42, 471–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Indelicato, N.A.; Fuglestad, P.; Tan, M.; Bane, L.; Stice, C. Sex differences in disordered eating and food addiction among college students. Appetite 2018, 129, 12–18. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, J.R. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, E.A.; Khavjou, O.A.; Thompson, H.; Trogdon, J.G.; Pan, L.; Sherry, B.; Dietz, W. Obesity and severe obesity forecasts through 2030. Am. J. Prev. Med. 2012, 42, 563–570. [Google Scholar] [CrossRef]
- Khan, M.A.; Moverley Smith, J.E. “Covibesity”, a new pandemic. Obes. Med. 2020, 19, 100282. [Google Scholar] [CrossRef] [PubMed]
- Lennerz, B.; Lennerz, J.K. Food Addiction, High-Glycemic-Index Carbohydrates, and Obesity. Clin. Chem. 2018, 64, 64–71. [Google Scholar] [CrossRef]
- Marsden, J.; Darke, S.; Hall, W.; Hickman, M.; Holmes, J.; Humphreys, K.; Neale, J.; Tucker, J.; West, R. Mitigating and learning from the impact of COVID-19 infection on addictive disorders. Addiction 2020, 115, 1007–1010. [Google Scholar] [CrossRef] [Green Version]
- Wright, K.B. Researching Internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. J. Comput. Mediat. Commun. 2005, 10, JCMC1034. [Google Scholar] [CrossRef]
- Remillard, M.L.; Mazor, K.M.; Cutrona, S.L.; Gurwitz, J.H.; Tjia, J. Systematic review of the use of online questionnaires of older adults. J. Am. Geriatr. Soc. 2014, 62, 696–705. [Google Scholar] [CrossRef]
- Van Mol, C. Improving web survey efficiency: The impact of an extra reminder and reminder content on web survey response. Int. J. Sci. Res. 2017, 20, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Muscanell, N.L.; Guadagno, R.E. Make new friends or keep the old: Gender and personality differences in social networking use. Comput. Hum. Behav. 2012, 28, 107–112. [Google Scholar] [CrossRef]
- Kimbrough, A.M.; Guadagno, R.E.; Muscanell, N.L.; Dill, J. Gender differences in mediated communication: Women connect more than do men. Comput. Hum. Behav. 2013, 29, 896–900. [Google Scholar] [CrossRef]
- Dufour, M.; Brunelle, N.; Tremblay, J.; Leclerc, D.; Cousineau, M.M.; Khazaal, Y.; Légaré, A.A.; Rousseau, M.; Berbiche, D. Gender Difference in Internet Use and Internet Problems among Quebec High School Students. Can. J. Psychiatry 2016, 61, 663–668. [Google Scholar] [CrossRef] [Green Version]
Body mass index (BMI) | Frequency | Percent |
Underweight | 65 | 6.40% |
Normal weight | 549 | 53.70% |
Overweight | 204 | 20.00% |
Obesity | 204 | 20.00% |
The occupational situation during the pandemic | Frequency | Percent |
No change | 374 | 36.60% |
Remote system | 393 | 38.50% |
Taking a job | 4 | 0.40% |
Change of a job | 29 | 2.80% |
Losing a job | 81 | 7.90% |
More work | 2 | 0.20% |
Less work | 10 | 1.00% |
A leave, e.g., childcare leave | 17 | 1.70% |
Non-working person | 102 | 10.00% |
Another | 10 | 1.00% |
Smoking | Frequency | Percent |
Yes | 134 | 13.10% |
No | 825 | 80.70% |
I stopped smoking before the pandemic | 43 | 4.20% |
I started smoking during the pandemic | 20 | 2.00% |
Comorbidities | Frequency | Percent |
Thyroid disease | 187 | 18.30% |
Type 2 diabetes | 28 | 2.74% |
Depression | 117 | 11.45% |
Hypercholesterolaemia | 47 | 4.60% |
Hypertension | 85 | 8.32% |
Elevated triglycerides | 31 | 3.03% |
Another | 107 | 10.47% |
Not applicable | 617 | 60.37% |
Sex | Frequency | Percent |
Woman | 958 | 93.70% |
Man | 64 | 6.30% |
Education | Frequency | Percent |
Primary education | 6 | 0.60% |
Lower secondary education | 13 | 1.30% |
Vocational education | 41 | 4.00% |
Secondary education | 432 | 42.30% |
Higher education | 530 | 51.90% |
Place of residence | Frequency | Percent |
Village | 274 | 26.80% |
City up to 50,000 | 206 | 20.20% |
City 50–100,000 | 99 | 9.70% |
City 100–250,000 | 107 | 10.50% |
City over 250,000 | 336 | 32.90% |
Physical activity during a pandemic | Frequency | Percent |
Increased | 267 | 26.10% |
Has not changed | 265 | 25.90% |
Decreased | 490 | 47.90% |
Change in body weight before the pandemic and now | Frequency | Percent |
Increased | 399 | 39.00% |
Has not changed | 378 | 37.00% |
Decreased | 245 | 24.00% |
N | M | SD | Min | Maks | Me | |
---|---|---|---|---|---|---|
Age | 1022 | 33.18 | 11.86 | 18.00 | 75.00 | 30.00 |
Body weight | 1022 | 70.38 | 17.85 | 33.00 | 164.00 | 66.00 |
Height | 1022 | 166.88 | 7.11 | 143.00 | 193.00 | 166.00 |
BMI | 1022 | 25.20 | 5.90 | 12.27 | 54.17 | 23.74 |
Weight gain | 399 | 6.53 | 4.21 | 1.00 | 30.00 | 5.00 |
“Food addiction” | 1022 | 4.74 | 3.53 | 1.00 | 11.00 | 4.00 |
Variable Level | Values | N | Proportion | The Rest | Test Result |
---|---|---|---|---|---|
Lack | Observed | 878.00 | 0.859 | −622.50 | χ2 = 2063.67 df = 3 p = 0.001 |
Expected | 255.50 | 0.250 | |||
Mild | Observed | 4.00 | 0.004 | 251.50 | |
Expected | 255.50 | 0.250 | |||
Moderate | Observed | 8.00 | 0.008 | 247.50 | |
Expected | 255.50 | 0.250 | |||
Heavy | Observed | 132.00 | 0.129 | 123.50 | |
Expected | 255.50 | 0.250 |
“Food Addiction” | |||
---|---|---|---|
BMI | rho | 0.351 | *** |
p | <0.001 |
Descriptive Statistics | |||||||
---|---|---|---|---|---|---|---|
Age range | χ2 | df | p | Min | Maks | Me | |
“Food addiction” | up to 25 years | 14.83 | 2 | 0.001 | 1.00 | 11.00 | 3.00 |
26–35 years old | 1.00 | 11.00 | 4.00 | ||||
over 35 years old | 1.00 | 11.00 | 4.00 | ||||
Place of residence | χ2 | df | p | Min | Maks | Me | |
“Food addiction” | village | 14.06 | 3 | 0.003 | 1.00 | 11.00 | 3.00 |
city up to 50.000 | 1.00 | 11.00 | 3.00 | ||||
city 50–250 thousand | 1.00 | 11.00 | 4.00 | ||||
a city with over 250.000 | 1.00 | 11.00 | 5.00 | ||||
Professional situation | χ2 | df | p | Min | Maks | Me | |
“Food addiction” | no change | 17.18 | 3 | 0.001 | 1.00 | 11.00 | 4.00 |
remote system | 1.00 | 11.00 | 3.00 | ||||
loss/change/reduction | 1.00 | 11.00 | 5.50 | ||||
the remaining | 1.00 | 11.00 | 4.00 | ||||
Physical activity | χ2 | df | p | Min | Maks | Me | |
“Food addiction” | has increased | 55.73 | 2 | <0.001 | 1.00 | 11.00 | 3.00 |
has not changed | 1.00 | 11.00 | 2.00 | ||||
decreased | 1.00 | 11.00 | 5.00 | ||||
Weight change | χ2 | df | p | Min | Maks | Me | |
“Food addiction” | has increased | 152.96 | 2 | <0.001 | 1.00 | 11.00 | 7.00 |
has not changed | 1.00 | 11.00 | 2.00 | ||||
decreased | 1.00 | 11.00 | 3.00 | ||||
Education | χ2 | df | p | Min | Maks | Me | |
“Food addiction” | medium or lower | 121,627.50 | 0.060 | 1.00 | 11.00 | 3.00 | |
higher | 1.00 | 11.00 | 4.00 |
Descriptive Statistics | ||||||
---|---|---|---|---|---|---|
U | p | Min | Maks | Me | ||
Depression | “Food addiction” | 36,488.50 | <0.001 | |||
appeared | 1.00 | 11.00 | 7.00 | |||
did not occur | 1.00 | 11.00 | 3.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, M.; Łuszczki, E.; Bartosiewicz, A.; Wyszyńska, J.; Dereń, K. The Prevalence of ‘‘Food Addiction’’ during the COVID-19 Pandemic Measured Using the Yale Food Addiction Scale 2.0 (YFAS 2.0) among the Adult Population of Poland. Nutrients 2021, 13, 4115. https://doi.org/10.3390/nu13114115
Zielińska M, Łuszczki E, Bartosiewicz A, Wyszyńska J, Dereń K. The Prevalence of ‘‘Food Addiction’’ during the COVID-19 Pandemic Measured Using the Yale Food Addiction Scale 2.0 (YFAS 2.0) among the Adult Population of Poland. Nutrients. 2021; 13(11):4115. https://doi.org/10.3390/nu13114115
Chicago/Turabian StyleZielińska, Magdalena, Edyta Łuszczki, Anna Bartosiewicz, Justyna Wyszyńska, and Katarzyna Dereń. 2021. "The Prevalence of ‘‘Food Addiction’’ during the COVID-19 Pandemic Measured Using the Yale Food Addiction Scale 2.0 (YFAS 2.0) among the Adult Population of Poland" Nutrients 13, no. 11: 4115. https://doi.org/10.3390/nu13114115
APA StyleZielińska, M., Łuszczki, E., Bartosiewicz, A., Wyszyńska, J., & Dereń, K. (2021). The Prevalence of ‘‘Food Addiction’’ during the COVID-19 Pandemic Measured Using the Yale Food Addiction Scale 2.0 (YFAS 2.0) among the Adult Population of Poland. Nutrients, 13(11), 4115. https://doi.org/10.3390/nu13114115