Cytotoxic Lactalbumin-Oleic Acid Complexes in the Human Milk Diet of Preterm Infants
Abstract
:1. Introduction
2. Discovery of a Cytotoxic Milk Complex
2.1. Bioactivity of HAMLET
2.2. Prevalance and Digestion of HAMLET
3. Conditions for HAMLET Formation in Human Milk
3.1. Freezing and Pasteurization Releases Free Oleic Acid
3.2. Pasteurization Changes Alpha-Lactalbumin Protein
3.3. Calcium, Phosphorus and Alpha-Lactalbumin
4. Clinical Implications for Critically Ill and/or Preterm Infants
4.1. Inflammation and Necrotizing Enterocolitis
4.1.1. Relevant Animal Studies
4.1.2. Inflammation and HAMLET: In Vitro Evidence
4.1.3. Oleic Acid Content Is Modifiable
4.2. HAMLET, Donor Milk and Infant Somatic Growth
4.3. HAMLET and Potential Benefits for Premature Infants
5. Conclusions and Call for Neonatal Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Updegrove, K.F.J.; Hackney, R.; Jones, F.; Kelley, S.; Sakamoto, P.; Vickers, A. Human Milk Banking Association of North America (HMBANA) Standards for Donor Human Milk Banking: An Overview; Public Version 1.0. Available online: https://www.hmbana.org/file_download/inline/95a0362a-c9f4-4f15-b9ab-cf8cf7b7b866 (accessed on 29 November 2021).
- Rodriguez-Palmero, M.; Koletzko, B.; Kunz, C.; Jensen, R. Nutritional and Biochemical Properties of Human Milk: II: Lipids, Micronutrients, and Bioactive Factors. Clin. Perinatol. 1999, 26, 335–359. [Google Scholar] [CrossRef]
- Bitman, J.; Wood, L.; Hamosh, M.; Hamosh, P.; Mehta, N.R. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am. J. Clin. Nutr. 1983, 38, 300–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkow, S.E.; Freed, L.M.; Hamosh, M.; Bitman, J.; Wood, D.L.; Happ, B.; Hamosh, P. Lipases and Lipids in Human Milk: Effect of Freeze-Thawing and Storage. Pediatr. Res. 1984, 18, 1257–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koletzko, B.; Uauy, R.; Poindexter, B. Nutritional care of preterm infants: Scientific basis and practical guidelines. Nutr. Care Preterm Infants 2014, 110, 1–314. [Google Scholar] [CrossRef] [Green Version]
- Ahrabi, A.F.; Handa, D.; Codipilly, C.N.; Shah, S.; Williams, J.E.; McGuire, M.A.; Potak, D.; Aharon, G.G.; Schanler, R.J. Effects of Extended Freezer Storage on the Integrity of Human Milk. J. Pediatr. 2016, 177, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Lavine, M.; Clark, R.M. Changing Patterns of Free Fatty Acids in Breast Milk during Storage. J. Pediatr. Gastroenterol. Nutr. 1987, 6, 769–774. [Google Scholar] [CrossRef]
- Lepri, L.; Del Bubba, M.; Maggini, R.; Donzelli, G.P.; Galvan, P. Effect of pasteurization and storage on some components of pooled human milk. J. Chromatogr. B Biomed. Sci. Appl. 1997, 704, 1–10. [Google Scholar] [CrossRef]
- Bhargava, A.; Jelen, P. Freezing of whey protein concentrate solutions and its effect on protein functionality indicators. Int. Dairy J. 1995, 5, 533–541. [Google Scholar] [CrossRef]
- Caldeo, V.; Downey, E.; O’Shea, C.-A.; Affolter, M.; Volger, S.; Courtet-Compondu, M.-C.; De Castros, C.A.; O’Mahony, J.A.; Ryan, C.A.; Kelly, A.L. Protein levels and protease activity in milk from mothers of pre-term infants: A prospective longitudinal study of human milk macronutrient composition. Clin. Nutr. 2021, 40, 3567–3577. [Google Scholar] [CrossRef]
- Law, A.J.R.; Leaver, J. Effect of pH on the Thermal Denaturation of Whey Proteins in Milk. J. Agric. Food Chem. 2000, 48, 672–679. [Google Scholar] [CrossRef]
- Kinsella, J.; Whitehead, D. Proteins in Whey: Chemical, Physical, and Functional Properties. Adv. Food Nutr. Res. 1989, 33, 343–438. [Google Scholar] [CrossRef] [PubMed]
- Parris, N.; Baginski, M. A Rapid Method for the Determination of Whey Protein Denaturation. J. Dairy Sci. 1991, 74, 58–64. [Google Scholar] [CrossRef]
- Yousif, B.H.; Effects of Heat Treatment of Ultrafiltered Milk on its Rennet Coagulation Time and on Whey Protein Denaturation. All Graduate Theses and Dissertations 5379. Available online: https://digitalcommons.usu.edu/etd/5379 (accessed on 29 November 2021.).
- Lima, H.K.; Wagner-Gillespie, M.; Perrin, M.T.; Fogleman, A.D. Bacteria and Bioactivity in Holder Pasteurized and Shelf-Stable Human Milk Products. Curr. Dev. Nutr. 2017, 1, e001438. [Google Scholar] [CrossRef]
- Svensson, M.; Mossberg, A.-K.; Pettersson, J.; Linse, S.; Svanborg, C. Lipids as cofactors in protein folding: Stereo-specific lipid-protein interactions are required to form HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Sci. 2003, 12, 2805–2814. [Google Scholar] [CrossRef] [PubMed]
- Hakansson, A.; Zhivotovsky, B.; Orrenius, S.; Sabharwal, H.; Svanborg, C. Apoptosis induced by a human milk protein. Proc. Natl. Acad. Sci. 1995, 92, 8064–8068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rammer, P.; Groth-Pedersen, L.; Kirkegaard, T.; Daugaard, M.; Rytter, A.; Szyniarowski, P.; Høyer-Hansen, M.; Povlsen, L.K.; Nylandsted, J.; Larsen, J.E.; et al. BAMLET Activates a Lysosomal Cell Death Program in Cancer Cells. Mol. Cancer Ther. 2010, 9, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Aizawa, T.; Kariya, R.; Okada, S.; Demura, M.; Kawano, K.; Makabe, K.; Kuwajima, K. Molecular Mechanisms of the Cytotoxicity of Human α-Lactalbumin Made Lethal to Tumor Cells (HAMLET) and Other Protein-Oleic Acid Complexes. J. Biol. Chem. 2013, 288, 14408–14416. [Google Scholar] [CrossRef] [Green Version]
- Fakharany, E.E.; Abu-Serie, M.M.; Litus, E.A.; Permyakov, S.E.; Permyakov, E.A.; Uversky, V.N.; Redwan, E.M. The Use of Human, Bovine, and Camel Milk Albumins in Anticancer Complexes with Oleic Acid. Protein J. 2018, 37, 203–215. [Google Scholar] [CrossRef]
- Svensson, M.; Hakansson, A.; Mossberg, A.-K.; Linse, S.; Svanborg, C. Conversion of alpha -lactalbumin to a protein inducing apoptosis. Proc. Natl. Acad. Sci. USA 2000, 97, 4221–4226. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, C.R.; Heegaard, C.W.; Petersen, T.E.; Jensenius, J.C.; Thiel, S. The toxicity of bovine α-lactalbumin made lethal to tumor cells is highly dependent on oleic acid and induces killing in cancer cell lines and noncancer-derived primary cells. FEBS J. 2011, 278, 1955–1967. [Google Scholar] [CrossRef]
- Knyazeva, E.L.; Grishchenko, V.M.; Fadeev, R.S.; Akatov, V.S.; Permyakov, S.E.; Permyakov, E.A. Who Is Mr. HAMLET? Interaction of Human α-Lactalbumin with Monomeric Oleic Acid. Biochemistry 2008, 47, 13127–13137. [Google Scholar] [CrossRef] [PubMed]
- Ewbank, J.J.; Creighton, T.E. Pathway of disulfide-coupled unfolding and refolding of bovine.alpha.-lactalbumin. Biochemistry 1993, 32, 3677–3693. [Google Scholar] [CrossRef] [PubMed]
- Kaspersen, J.D.; Pedersen, J.; Hansted, J.G.; Nielsen, S.B.; Sakthivel, S.; Wilhelm, K.; Nemashkalova, E.L.; Permyakov, S.; Oliveira, C.; Morozova-Roche, L.A.; et al. Generic Structures of Cytotoxic Liprotides: Nano-Sized Complexes with Oleic Acid Cores and Shells of Disordered Proteins. ChemBioChem 2014, 15, 2693–2702. [Google Scholar] [CrossRef] [PubMed]
- Cs, J.H.; Rydström, A.; Manimekalai, M.S.S.; Svanborg, C.; Grüber, G. Low Resolution Solution Structure of HAMLET and the Importance of Its Alpha-Domains in Tumoricidal Activity. PLoS ONE 2012, 7, e53051. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, K.; Darinskas, A.; Noppe, W.; Duchardt, E.; Mok, K.H.; Vukojević, V.; Schleucher, J.; Morozova-Roche, L.A. Protein oligomerization induced by oleic acid at the solid-liquid interface—Equine lysozyme cytotoxic complexes. FEBS J. 2009, 276, 3975–3989. [Google Scholar] [CrossRef] [PubMed]
- Tolin, S.; De Franceschi, G.; Spolaore, B.; Frare, E.; Canton, M.; de Laureto, P.P.; Fontana, A. The oleic acid complexes of proteolytic fragments of α-lactalbumin display apoptotic activity. FEBS J. 2010, 277, 163–173. [Google Scholar] [CrossRef]
- Brinkmann, C.; Thiel, S.; Larsen, M.; Petersen, T.; Jensenius, J.; Heegaard, C. Preparation and comparison of cytotoxic complexes formed between oleic acid and either bovine or human α-lactalbumin. J. Dairy Sci. 2011, 94, 2159–2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Håkansson, A.; Andréassona, J.; Zhivotovsky, B.; Karpman, D.; Orreniusb, S.; Svanborga, C. Multimeric α-Lactalbumin from Human Milk Induces Apoptosis through a Direct Effect on Cell Nuclei. Exp. Cell Res. 1999, 246, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.C.; Nadeem, A.; Rydstrom, A.; Puthia, M.; Svanborg, C. Targeting of nucleotide-binding proteins by HAMLET—A conserved tumor cell death mechanism. Oncogene 2016, 35, 897–907. [Google Scholar] [CrossRef]
- Kronman, M.J.; Cerankowski, L.; Holmes, L.G. Inter- and Intramolecular Interactions of α-Lactalbumin. III. Spectral Changes at Acid pH*. Biochemistry 1965, 4, 518–525. [Google Scholar] [CrossRef]
- Omari, T.I. Multipoint measurement of intragastric pH in healthy preterm infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2003, 88, F517–F520. [Google Scholar] [CrossRef] [Green Version]
- Rath, E.M.; Duff, A.P.; Håkansson, A.P.; Knott, R.B.; Church, W.B. Small-angle X-ray scattering of BAMLET at pH 12: A complex of α-lactalbumin and oleic acid. Proteins Struct. Funct. Bioinform. 2014, 82, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Fuciños, C.; Miguez, M.; Fuciños, P.; Pastrana, L.; Rúa, M.L.; Vicente, A. Creating functional nanostructures: Encapsulation of caffeine into α-lactalbumin nanotubes. Innov. Food Sci. Emerg. Technol. 2017, 40, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Kneebone, G.M.; Kneebone, R.; Gibson, R.A. Fatty acid composition of breast milk from three racial groups from Penang, Malaysia. Am. J. Clin. Nutr. 1985, 41, 765–769. [Google Scholar] [CrossRef] [Green Version]
- Prentice, A.; Jarjou, L.M.A.; Drury, P.J.; Dewit, O.; Crawford, M.A. Breast-Milk Fatty Acids of Rural Gambian Mothers: Effects of diet and maternal parity. J. Pediatr. Gastroenterol. Nutr. 1989, 8, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Van Der Westhuyzen, J.; Chetty, N.; Atkinson, P.M. Fatty acid composition of human milk from South African black mothers consuming a traditional maize diet. Eur. J. Clin. Nutr. 1988, 42, 213–220. [Google Scholar]
- Freed, L.M.; Berkow, S.E.; Hamosh, P.; York, C.M.; Mehta, N.R.; Hamosh, M. Lipases in human milk: Effect of gestational age and length of lactation on enzyme activity. J. Am. Coll. Nutr. 1989, 8, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Kamijima, T.; Ohmura, A.; Sato, T.; Akimoto, K.; Itabashi, M.; Mizuguchi, M.; Kamiya, M.; Kikukawa, T.; Aizawa, T.; Takahashi, M.; et al. Heat-treatment method for producing fatty acid-bound alpha-lactalbumin that induces tumor cell death. Biochem. Biophys. Res. Commun. 2008, 376, 211–214. [Google Scholar] [CrossRef]
- Lišková, K.; Kelly, A.; O’Brien, N.; Brodkorb, A. Effect of Denaturation of α-Lactalbumin on the Formation of BAMLET (Bovine α-Lactalbumin Made Lethal to Tumor Cells). J. Agric. Food Chem. 2010, 58, 4421–4427. [Google Scholar] [CrossRef]
- Chan, G.M. Human Milk Calcium and Phosphate Levels of Mothers Delivering Term and Preterm Infants. J. Pediatr. Gastroenterol. Nutr. 1982, 1, 201–206. [Google Scholar] [CrossRef]
- Casbarra, A.; Birolo, L.; Infusini, G.; Piaz, F.D.; Svensson, M.; Pucci, P.; Svanborg, C.; Marino, G. Conformational analysis of HAMLET, the folding variant of human α-lactalbumin associated with apoptosis. Protein Sci. 2004, 13, 1322–1330. [Google Scholar] [CrossRef]
- Svanborg, C.; Ågerstam, H.; Aronson, A.; Bjerkvig, R.; Düringer, C.; Fischer, W.; Gustafsson, L.; Hallgren, O.; Leijonhuvud, I.; Linse, S.; et al. HAMLET kills tumor cells by an apoptosis-like mechanism—cellular, molecular, and therapeutic aspects. Adv. Cancer Res. 2003, 88, 1–29. [Google Scholar] [CrossRef]
- Schanler, R.J.; Lau, C.; Hurst, N.M.; Smith, E.O. Randomized Trial of Donor Human Milk Versus Preterm Formula as Substitutes for Mothers’ Own Milk in the Feeding of Extremely Premature Infants. Pediatrics 2005, 116, 400–406. [Google Scholar] [CrossRef]
- Parker, M.G.; Burnham, L.A.; Kerr, S.; Belfort, M.B.; Perrin, M.; Corwin, M.; Heeren, T. Prevalence and predictors of donor milk programs among U.S. advanced neonatal care facilities. J. Perinatol. 2020, 40, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Han, S.M.; Hong, C.R.; Knell, J.; Edwards, E.M.; Morrow, K.A.; Soll, R.F.; Modi, B.P.; Horbar, J.D.; Jaksic, T. Trends in incidence and outcomes of necrotizing enterocolitis over the last 12 years: A multicenter cohort analysis. J. Pediatr. Surg. 2020, 55, 998–1001. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.A.; Meinzen-Derr, J.; Gratton, T.; Steichen, J.; Donovan, E.F.; Yolton, K.; Alexander, B.; Narendran, V.; Schibler, K.R. Hospital and neurodevelopmental outcomes of extremely low-birth-weight infants with necrotizing enterocolitis and spontaneous intestinal perforation. J. Perinatol. 2011, 32, 552–558. [Google Scholar] [CrossRef]
- Maheshwari, A.; Schelonka, R.L.; Dimmitt, R.A.; Carlo, W.A.; Munoz-Hernandez, B.; Das, A.; McDonald, S.; Thorsen, P.; Skogstrand, K.; Hougaard, D.M.; et al. Cytokines associated with necrotizing enterocolitis in extremely-low-birth-weight infants. Pediatr. Res. 2014, 76, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Hackam, D.J.; Good, M.; Sodhi, C.P. Mechanisms of gut barrier failure in the pathogenesis of necrotizing enterocolitis: Toll-like receptors throw the switch. Semin. Pediatr. Surg. 2013, 22, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Neu, J. Necrotizing Enterocolitis: The Search for a Unifying Pathogenic Theory Leading to Prevention. Pediatr. Clin. N. Am. 1996, 43, 409–432. [Google Scholar] [CrossRef]
- Minekawa, R.; Takeda, T.; Sakata, M.; Hayashi, M.; Isobe, A.; Yamamoto, T.; Tasaka, K.; Murata, Y. Human breast milk suppresses the transcriptional regulation of IL-1β-induced NF-κB signaling in human intestinal cells. Am. J. Physiol. Physiol. 2004, 287, C1404–C1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantorowska, A.; Wei, J.C.; Cohen, R.S.; Lawrence, R.A.; Gould, J.B.; Lee, H.C. Impact of Donor Milk Availability on Breast Milk Use and Necrotizing Enterocolitis Rates. Pediatrics 2016, 137, e20153123. [Google Scholar] [CrossRef] [Green Version]
- Crissinger, K.D.; Burney, D.L.; Velasquez, O.R.; Gonzalez, E. An animal model of necrotizing enterocolitis induced by infant formula and ischemia in developing piglets. Gastroenterology 1994, 106, 1215–1222. [Google Scholar] [CrossRef]
- Koivusalo, A.; Kauppinen, H.; Anttila, A.; Rautelin, H.; Jusufovic, J.; Lindahl, H.; Rintala, R. Intraluminal casein model of necrotizing enterocolitis for assessment of mucosal destruction, bacterial translocation, and the effects of allopurinol and N-acetylcysteine. Pediatr. Surg. Int. 2002, 18, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Abrams, S.A.; Schanler, R.J.; Lee, M.L.; Rechtman, D.J.; the Prolacta Study Group. Greater Mortality and Morbidity in Extremely Preterm Infants Fed a Diet Containing Cow Milk Protein Products. Breastfeed. Med. 2014, 9, 281–285. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Bass, J.; Krantis, A. An intraluminal model of necrotizing enterocolitis in the developing neonatal piglet. J. Pediatr. Surg. 1995, 30, 1138–1142. [Google Scholar] [CrossRef]
- Nanthakumar, N.N.; Fusunyan, R.D.; Sanderson, I.; Walker, W.A. Inflammation in the developing human intestine: A possible pathophysiologic contribution to necrotizing enterocolitis. Proc. Natl. Acad. Sci. USA 2000, 97, 6043–6048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, C.J.; De Plaen, I.G. Inflammatory signaling in NEC: Role of NF-κB, cytokines and other inflammatory mediators. Pathophysiology 2014, 21, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Vansarla, G.; Håkansson, A.P.; Bergenfelz, C. HAMLET a human milk protein-lipid complex induces a pro-inflammatory phenotype of myeloid cells. Eur. J. Immunol. 2021, 51, 965–977. [Google Scholar] [CrossRef]
- Petrof, E.O.; Kojima, K.; Ropeleski, M.J.; Musch, M.W.; Tao, Y.; De Simone, C.; Chang, E.B. Probiotics inhibit nuclear factor-κB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. Gastroenterology 2004, 127, 1474–1487. [Google Scholar] [CrossRef]
- Jensen, R.G. Lipids in human milk. Lipids 1999, 34, 1243–1271. [Google Scholar] [CrossRef] [PubMed]
- Dagnelie, P.C.; Van Staveren, W.A.; Roos, A.H.; Tuinstra, L.G.; Burema, J. Nutrients and contaminants in human milk from mothers on macrobiotic and omnivorous diets. Eur. J. Clin. Nutr. 1992, 46, 355–366. [Google Scholar] [PubMed]
- Chulei, R.; Xiaofang, L.; Hongsheng, M.; Xiulan, M.; Guizheng, L.; Gianhong, D.; DeFrancesco, C.A.; Connor, W.E. Milk Composition in Women from Five Different Regions of China: The Great Diversity of Milk Fatty Acids. J. Nutr. 1995, 125, 2993–2998. [Google Scholar] [CrossRef]
- Du, Y.; Yang, M.; Lee, S.; Behrendt, C.L.; Hooper, L.V.; Saghatelian, A.; Wan, Y. Maternal western diet causes inflammatory milk and TLR2/4-dependent neonatal toxicity. Genes Dev. 2012, 26, 1306–1311. [Google Scholar] [CrossRef] [Green Version]
- Humberg, A.; Fortmann, I.; Siller, B.; Kopp, M.V.; Herting, E.; Göpel, W.; Härtel, C.; German Neonatal Network, German Center for Lung Research and Priming Immunity at the beginning of life (PRIMAL) Consortium. Preterm birth and sustained inflammation: Consequences for the neonate. Semin. Immunopathol. 2020, 42, 451–468. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.A.; Quigley, M.A.; Brocklehurst, P. Donor breast milk versus infant formula for preterm infants: Systematic review and meta-analysis. Arch. Dis. Child.-Fetal Neonatal Ed. 2007, 92, F169–F175. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, D.L.; Gibbins, S.; Kiss, A.; Bando, N.; Brennan-Donnan, J.; Ng, E.; Campbell, D.M.; Vaz, S.; Fusch, C.; Asztalos, E.; et al. Effect of Supplemental Donor Human Milk Compared with Preterm Formula on Neurodevelopment of Very Low-Birth-Weight Infants at 18 Months. JAMA 2016, 316, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Jarjour, J.; Juarez, A.M.; Kocak, D.K.; Liu, N.J.; Tabata, M.M.; Hawthorne, K.M.; Ramos, R.F.; Abrams, S.A. A Novel Approach to Improving Fat Delivery in Neonatal Enteral Feeding. Nutrients 2015, 7, 5051–5064. [Google Scholar] [CrossRef] [PubMed]
- Casper, C.; Hascoet, J.-M.; Ertl, T.; Gadzinowski, J.; Carnielli, V.; Rigo, J.; Lapillonne, A.; Couce, M.L.; Vågerö, M.; Palmgren, I.; et al. Recombinant Bile Salt-Stimulated Lipase in Preterm Infant Feeding: A Randomized Phase 3 Study. PLoS ONE 2016, 11, e0156071. [Google Scholar] [CrossRef] [Green Version]
- Sheen, W.; Ahmed, M.; Patel, H.; Codipilly, C.N.; Schanler, R.J. Is the Antioxidant Capacity of Stored Human Milk Preserved? Breastfeed. Med. 2021, 16, 564–567. [Google Scholar] [CrossRef]
- Groer, M.W.; Luciano, A.A.; Dishaw, L.J.; Ashmeade, T.L.; Miller, E.; A Gilbert, J. Development of the preterm infant gut microbiome: A research priority. Microbiome 2014, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- AlFaleh, K.; Anabrees, J.; Bassler, D.; Al-Kharfi, T. Cochrane Review: Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evidence-Based Child Health A Cochrane Rev. J. 2012, 7, 1807–1854. [Google Scholar] [CrossRef]
- Gibson, M.K.; Crofts, T.S.; Dantas, G. Antibiotics and the developing infant gut microbiota and resistome. Curr. Opin. Microbiol. 2015, 27, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuppala, V.S.; Meinzen-Derr, J.; Morrow, A.L.; Schibler, K.R. Prolonged Initial Empirical Antibiotic Treatment is Associated with Adverse Outcomes in Premature Infants. J. Pediatr. 2011, 159, 720–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Håkansson, A.; Svensson, M.; Mossberg, A.-K.; Sabharwal, H.; Linse, S.; Lazou, I.; Lönnerdal, B.; Svanborg, C. A folding variant of α-lactalbumin with bactericidal activity against Streptococcus pneumoniae. Mol. Microbiol. 2002, 35, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Clementi, E.A.; Marks, L.; Duffey, M.E.; Hakansson, A.P. A Novel Initiation Mechanism of Death in Streptococcus pneumoniae Induced by the Human Milk Protein-Lipid Complex HAMLET and Activated during Physiological Death. J. Biol. Chem. 2012, 287, 27168–27182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clementi, E.A.; Wilhelm, K.R.; Schleucher, J.; Morozova-Roche, L.A.; Hakansson, A.P. A Complex of Equine Lysozyme and Oleic Acid with Bactericidal Activity against Streptococcus pneumoniae. PLoS ONE 2013, 8, e80649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamiri, F.; Riesbeck, K.; Hakansson, A.P. HAMLET, a Protein Complex from Human Milk, Has Bactericidal Activity and Enhances the Activity of Antibiotics against Pathogenic Streptococci. Antimicrob. Agents Chemother. 2019, 63, e01193-19. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chetta, K.E.; Alcorn, J.L.; Baatz, J.E.; Wagner, C.L. Cytotoxic Lactalbumin-Oleic Acid Complexes in the Human Milk Diet of Preterm Infants. Nutrients 2021, 13, 4336. https://doi.org/10.3390/nu13124336
Chetta KE, Alcorn JL, Baatz JE, Wagner CL. Cytotoxic Lactalbumin-Oleic Acid Complexes in the Human Milk Diet of Preterm Infants. Nutrients. 2021; 13(12):4336. https://doi.org/10.3390/nu13124336
Chicago/Turabian StyleChetta, Katherine E., Joseph L. Alcorn, John E. Baatz, and Carol L. Wagner. 2021. "Cytotoxic Lactalbumin-Oleic Acid Complexes in the Human Milk Diet of Preterm Infants" Nutrients 13, no. 12: 4336. https://doi.org/10.3390/nu13124336
APA StyleChetta, K. E., Alcorn, J. L., Baatz, J. E., & Wagner, C. L. (2021). Cytotoxic Lactalbumin-Oleic Acid Complexes in the Human Milk Diet of Preterm Infants. Nutrients, 13(12), 4336. https://doi.org/10.3390/nu13124336