Calcium and Vitamin D Supplementation and Their Association with Kidney Stone Disease: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Physiology of Bone and Mineral Metabolism
4. Evidence of Bone and Mineral Metabolism Derangements in Patients with Kidney Stone Disease
5. Evidence on the Role of Vitamin D and Calcium Supplementation in Patients with Kidney Stone Disease
5.1. Dietary Calcium Intake and Supplementation
5.2. Vitamin D Supplementation
6. Conclusions
Funding
Conflicts of Interest
References
- GEA Firenze Study Group; Croppi, E.; Ferraro, P.M.; Taddei, L.; Gambaro, G. Prevalence of Renal Stones in an Italian Urban Population: A General Practice-Based Study. Urol. Res. 2012, 40, 517–522. [Google Scholar] [CrossRef]
- Scales, C.D.; Smith, A.C.; Hanley, J.M.; Saigal, C.S. Urologic Diseases in America Project Prevalence of Kidney Stones in the United States. Eur. Urol. 2012, 62, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozdzik, A.; Maalouf, N.; Letavernier, E.; Brocheriou, I.; Body, J.-J.; Vervaet, B.; Van Haute, C.; Noels, J.; Gadisseur, R.; Castiglione, V.; et al. Meeting Report of the “Symposium on Kidney Stones and Mineral Metabolism: Calcium Kidney Stones in 2017”. J. Nephrol. 2019, 32, 681–698. [Google Scholar] [CrossRef] [Green Version]
- Bargagli, M.; Moochhala, S.; Robertson, W.G.; Gambaro, G.; Lombardi, G.; Unwin, R.J.; Ferraro, P.M. Urinary Metabolic Profile and Stone Composition in Kidney Stone Formers with and without Heart Disease. J. Nephrol. 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Marano, R.; Primiano, A.; Gervasoni, J.; Bargagli, M.; Rovere, G.; Bassi, P.F.; Gambaro, G. Stone Composition and Vascular Calcifications in Patients with Nephrolithiasis. J. Nephrol. 2019, 32, 589–594. [Google Scholar] [CrossRef]
- Curhan, G.C.; Willett, W.C.; Rimm, E.B.; Speizer, F.E.; Stampfer, M.J. Body Size and Risk of Kidney Stones. J. Am. Soc. Nephrol. 1998, 9, 1645–1652. [Google Scholar] [CrossRef]
- Shavit, L.; Ferraro, P.M.; Johri, N.; Robertson, W.; Walsh, S.B.; Moochhala, S.; Unwin, R. Effect of Being Overweight on Urinary Metabolic Risk Factors for Kidney Stone Formation. Nephrol. Dial. Transplant. 2015, 30, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Diabetes Mellitus and the Risk of Nephrolithiasis. Kidney Int. 2005, 68, 1230–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spatola, L.; Ferraro, P.M.; Gambaro, G.; Badalamenti, S.; Dauriz, M. Metabolic Syndrome and Uric Acid Nephrolithiasis: Insulin Resistance in Focus. Metab. Clin. Exp. 2018, 83, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Guerra, A.; Allegri, F.; Nouvenne, A.; Cervellin, G.; Maggio, M.; Lauretani, F.; Borghi, L.; Meschi, T. Determinants of Calcium and Oxalate Excretion in Subjects with Calcium Nephrolithiasis: The Role of Metabolic Syndrome Traits. J. Nephrol. 2018, 31, 395–403. [Google Scholar] [CrossRef]
- Kummer, A.E.; Grams, M.; Lutsey, P.; Chen, Y.; Matsushita, K.; Köttgen, A.; Folsom, A.R.; Coresh, J. Nephrolithiasis as a Risk Factor for CKD: The Atherosclerosis Risk in Communities Study. Clin. J. Am. Soc. Nephrol. 2015, 10, 2023–2029. [Google Scholar] [CrossRef] [Green Version]
- Gambaro, G.; Croppi, E.; Bushinsky, D.; Jaeger, P.; Cupisti, A.; Ticinesi, A.; Mazzaferro, S.; D’Addessi, A.; Ferraro, P.M. The Risk of Chronic Kidney Disease Associated with Urolithiasis and Its Urological Treatments: A Review. J. Urol. 2017, 198, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Coe, F.L.; Parks, J.H.; Asplin, J.R. The Pathogenesis and Treatment of Kidney Stones. N. Engl. J. Med. 1992, 327, 1141–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraro, P.M.; Bargagli, M.; Trinchieri, A.; Gambaro, G. Risk of Kidney Stones: Influence of Dietary Factors, Dietary Patterns, and Vegetarian–Vegan Diets. Nutrients 2020, 12, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evan, A.P.; Worcester, E.M.; Coe, F.L.; Williams, J.; Lingeman, J.E. Mechanisms of Human Kidney Stone Formation. Urolithiasis 2015, 43, 19–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bargagli, M.; Tio, M.C.; Waikar, S.S.; Ferraro, P.M. Dietary Oxalate Intake and Kidney Outcomes. Nutrients 2020, 12, 2673. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Taylor, E.N.; Gambaro, G.; Curhan, G.C. Dietary and Lifestyle Risk Factors Associated with Incident Kidney Stones in Men and Women. J. Urol. 2017, 198, 858–863. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Bargagli, M. Dietetic and Lifestyle Recommendations for Stone Formers. Arch. Esp. Urol. 2021, 74, 112–122. [Google Scholar]
- Monico, C.G.; Milliner, D.S. Genetic Determinants of Urolithiasis. Nat. Rev. Nephrol. 2011, 8, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Bargagli, M.; Primiano, G.; Primiano, A.; Gervasoni, J.; Naticchia, A.; Servidei, S.; Gambaro, G.; Ferraro, P.M. Recurrent Kidney Stones in a Family with a Mitochondrial Disorder Due to the m.3243A>G Mutation. Urolithiasis 2019, 47, 489–492. [Google Scholar] [CrossRef]
- Skolarikos, A.; Straub, M.; Knoll, T.; Sarica, K.; Seitz, C.; Petřík, A.; Türk, C. Metabolic Evaluation and Recurrence Prevention for Urinary Stone Patients: EAU Guidelines. Eur. Urol. 2015, 67, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Letavernier, E.; Daudon, M. Vitamin D, Hypercalciuria and Kidney Stones. Nutrients 2018, 10, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itani, O.; Tsang, R. Normal Bone and Mineral Physiology and Metabolism. In Neonatal Nutrition and Metabolism; Thureen, P.J., Hay, W.W., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 185–228. ISBN 978-1-107-41179-1. [Google Scholar]
- Datta, H.K.; Ng, W.F.; Walker, J.A.; Tuck, S.P.; Varanasi, S.S. The Cell Biology of Bone Metabolism. J. Clin. Pathol. 2008, 61, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D. Calcium Intake, Calcium Bioavailability and Bone Health. Br. J. Nutr. 2002, 87, S169–S177. [Google Scholar] [CrossRef]
- Bargagli, M.; Arena, M.; Naticchia, A.; Gambaro, G.; Mazzaferro, S.; Fuster, D.; Ferraro, P.M. The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism. Nutrients 2021, 13, 2328. [Google Scholar] [CrossRef]
- Christakos, S. Recent Advances in Our Understanding of 1,25-Dihydroxyvitamin D3 Regulation of Intestinal Calcium Absorption. Arch. Biochem. Biophys. 2012, 523, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Bronner, F. Mechanisms of Intestinal Calcium Absorption. J. Cell. Biochem. 2003, 88, 387–393. [Google Scholar] [CrossRef]
- Seldin, D.W. Renal Handling of Calcium. Nephron 1999, 81, 2–7. [Google Scholar] [CrossRef]
- Loupy, A.; Ramakrishnan, S.K.; Wootla, B.; Chambrey, R.; de la Faille, R.; Bourgeois, S.; Bruneval, P.; Mandet, C.; Christensen, E.I.; Faure, H.; et al. PTH-Independent Regulation of Blood Calcium Concentration by the Calcium-Sensing Receptor. J. Clin. Investig. 2012, 122, 3355–3367. [Google Scholar] [CrossRef] [Green Version]
- Frische, S.; Alexander, R.T.; Ferreira, P.; Tan, R.S.G.; Wang, W.; Svenningsen, P.; Skjødt, K.; Dimke, H. Localization and Regulation of Claudin-14 in Experimental Models of Hypercalcemia. Am. J. Physiol. Renal Physiol. 2021, 320, F74–F86. [Google Scholar] [CrossRef]
- Gambaro, G.; Croppi, E.; Coe, F.; Lingeman, J.; Moe, O.; Worcester, E.; Buchholz, N.; Bushinsky, D.; Curhan, G.C.; Ferraro, P.M.; et al. Metabolic Diagnosis and Medical Prevention of Calcium Nephrolithiasis and Its Systemic Manifestations: A Consensus Statement. J. Nephrol. 2016, 29, 715–734. [Google Scholar] [CrossRef]
- Shavit, L.; Chen, L.; Ahmed, F.; Ferraro, P.F.; Moochhala, S.; Walsh, S.B.; Unwin, R. Selective Screening for Distal Renal Tubular Acidosis in Recurrent Kidney Stone Formers: Initial Experience and Comparison of the Simultaneous Furosemide and Fludrocortisone Test with the Short Ammonium Chloride Test. Nephrol. Dial. Transplant. 2016, 31, 1870–1876. [Google Scholar] [CrossRef]
- Bargagli, M.; Dhayat, N.A.; Anderegg, M.; Semmo, M.; Huynh-Do, U.; Vogt, B.; Ferraro, P.M.; Fuster, D.G. Urinary Lithogenic Risk Profile in ADPKD Patients Treated with Tolvaptan. Clin. J. Am. Soc. Nephrol. 2020, 15, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, A.; Maletta, A.; Lizzano, R.; Marchesotti, F. Potential Renal Acid Load and the Risk of Renal Stone Formation in a Case-Control Study. Eur. J. Clin. Nutr. 2013, 67, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Bargagli, M.; Ferraro, P.M.; Dhayat, N.; Anderegg, M.; Fuster, D. Effect of Tolvaptan Treatment on Acid-Base Homeostasis in ADPKD Patients. Kidney Int. Rep. 2021, 6, 1749. [Google Scholar] [CrossRef] [PubMed]
- Pak, C.Y.C.; Sakhaee, K.; Moe, O.W.; Poindexter, J.; Adams-Huet, B.; Pearle, M.S.; Zerwekh, J.E.; Preminger, G.M.; Wills, M.R.; Breslau, N.A.; et al. Defining Hypercalciuria in Nephrolithiasis. Kidney Int. 2011, 80, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Leslie, S.W.; Sajjad, H. StatPearls; Hypercalciuria; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Martínez, G.M.; Trincado, A.P.; Pérez, F.L.; Azcona, M.I.; López, A.M.E.; Acha, P.J.; Albero, G.R. A Comparison of Induced Effects on Urinary Calcium by Thiazides and Different Dietary Salt Doses: Implications in Clinical Practice. Nefrologia 2019, 39, 73–79. [Google Scholar] [CrossRef]
- Downie, M.L.; Alexander, R.T. Molecular Mechanisms Altering Tubular Calcium Reabsorption. Pediatr. Nephrol. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Penniston, K.L.; Nakada, S.Y. Updates in the Metabolic Management of Calcium Stones. Curr. Urol. Rep. 2018, 19, 41. [Google Scholar] [CrossRef] [PubMed]
- Prezioso, D.; Strazzullo, P.; Lotti, T.; Bianchi, G.; Borghi, L.; Caione, P.; Carini, M.; Caudarella, R.; Ferraro, M.; Gambaro, G.; et al. Dietary Treatment of Urinary Risk Factors for Renal Stone Formation. A Review of CLU Working Group. Arch. Ital. Urol. Androl. 2015, 87, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, N.M.; Moe, O.W.; Adams-Huet, B.; Sakhaee, K. Hypercalciuria Associated with High Dietary Protein Intake Is Not Due to Acid Load. J. Clin. Endocrinol. Metab. 2011, 96, 3733–3740. [Google Scholar] [CrossRef]
- Pak, C.Y.; East, D.A.; Sanzenbacher, L.J.; Delea, C.S.; Bartter, F.C. Gastrointestinal Calcium Absorption in Nephrolithiasis. J. Clin. Endocrinol. Metab. 1972, 35, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Edwards, N.A.; Hodgkinson, A. Metabolic Studies in Patients with Idiopathic Hypercalciuria. Clin. Sci. 1965, 29, 143–157. [Google Scholar] [PubMed]
- Fleet, J.C. The Role of Vitamin D in the Endocrinology Controlling Calcium Homeostasis. Mol. Cell. Endocrinol. 2017, 453, 36–45. [Google Scholar] [CrossRef]
- Hoenderop, J.G.J.; Nilius, B.; Bindels, R.J.M. Calcium Absorption across Epithelia. Physiol. Rev. 2005, 85, 373–422. [Google Scholar] [CrossRef] [Green Version]
- Gray, R.W.; Wilz, D.R.; Caldas, A.E.; Lemann, J. The Importance of Phosphate in Regulating Plasma 1,25-(OH)2-Vitamin D Levels in Humans: Studies in Healthy Subjects in Calcium-Stone Formers and in Patients with Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 1977, 45, 299–306. [Google Scholar] [CrossRef]
- Kaplan, R.A.; Haussler, M.R.; Deftos, L.J.; Bone, H.; Pak, C.Y. The Role of 1 Alpha, 25-Dihydroxyvitamin D in the Mediation of Intestinal Hyperabsorption of Calcium in Primary Hyperparathyroidism and Absorptive Hypercalciuria. J. Clin. Investig. 1977, 59, 756–760. [Google Scholar] [CrossRef]
- Shen, F.H.; Baylink, D.J.; Nielsen, R.L.; Sherrard, D.J.; Ivey, J.L.; Haussler, M.R. Increased Serum 1,25-Dihydroxyvitamin D in Idiopathic Hypercalciuria. J. Lab. Clin. Med. 1977, 90, 955–962. [Google Scholar] [PubMed]
- Hu, H.; Zhang, J.; Lu, Y.; Zhang, Z.; Qin, B.; Gao, H.; Wang, Y.; Zhu, J.; Wang, Q.; Zhu, Y.; et al. Association between Circulating Vitamin D Level and Urolithiasis: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 301. [Google Scholar] [CrossRef]
- Tang, J.; McFann, K.K.; Chonchol, M.B. Association between Serum 25-Hydroxyvitamin D and Nephrolithiasis: The National Health and Nutrition Examination Survey III, 1988–1994. Nephrol. Dial. Transplant. 2012, 27, 4385–4389. [Google Scholar] [CrossRef]
- Shakhssalim, N.; Gilani, K.R.; Parvin, M.; Torbati, P.M.; Kashi, A.H.; Azadvari, M.; Golestan, B.; Basiri, A. An Assessment of Parathyroid Hormone, Calcitonin, 1,25 (OH)2 Vitamin D3, Estradiol and Testosterone in Men with Active Calcium Stone Disease and Evaluation of Its Biochemical Risk Factors. Urol. Res. 2011, 39, 1–7. [Google Scholar] [CrossRef]
- Jarrar, K.; Amasheh, R.A.; Graef, V.; Weidner, W. Relationship between 1,25-Dihydroxyvitamin-D, Calcium and Uric Acid in Urinary Stone Formers. Urol. Int. 1996, 56, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Giannini, S.; Nobile, M.; Castrignano, R.; Pati, T.; Tasca, A.; Villi, G.; Pellegrini, F.; D’Angelo, A. Possible Link between Vitamin D and Hyperoxaluria in Patients with Renal Stone Disease. Clin. Sci. 1993, 84, 51–54. [Google Scholar] [CrossRef]
- Taylor, E.N.; Hoofnagle, A.N.; Curhan, G.C. Calcium and Phosphorus Regulatory Hormones and Risk of Incident Symptomatic Kidney Stones. Clin. J. Am. Soc. Nephrol. 2015, 10, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Breslau, N.A.; Preminger, G.M.; Adams, B.V.; Otey, J.; Pak, C.Y. Use of Ketoconazole to Probe the Pathogenetic Importance of 1,25-Dihydroxyvitamin D in Absorptive Hypercalciuria. J. Clin. Endocrinol. Metab. 1992, 75, 1446–1452. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Carlberg, C. The Physiology of Vitamin D—Far More than Calcium and Bone. Front. Physiol. 2014, 5, 335. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Tavasoli, S.; Taheri, M. Vitamin D and Calcium Kidney Stones: A Review and a Proposal. Int. Urol. Nephrol. 2019, 51, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Kennel, K.A.; Drake, M.T.; Hurley, D.L. Vitamin D Deficiency in Adults: When to Test and How to Treat. Mayo Clin. Proc. 2010, 85, 752–758. [Google Scholar] [CrossRef] [Green Version]
- Lapointe, J.-Y.; Tessier, J.; Paquette, Y.; Wallendorff, B.; Coady, M.J.; Pichette, V.; Bonnardeaux, A. NPT2a Gene Variation in Calcium Nephrolithiasis with Renal Phosphate Leak. Kidney Int. 2006, 69, 2261–2267. [Google Scholar] [CrossRef] [Green Version]
- Mace, M.L.; Olgaard, K.; Lewin, E. New Aspects of the Kidney in the Regulation of Fibroblast Growth Factor 23 (FGF23) and Mineral Homeostasis. Int. J. Mol. Sci. 2020, 21, 8810. [Google Scholar] [CrossRef] [PubMed]
- Schlingmann, K.P.; Ruminska, J.; Kaufmann, M.; Dursun, I.; Patti, M.; Kranz, B.; Pronicka, E.; Ciara, E.; Akcay, T.; Bulus, D.; et al. Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia. J. Am. Soc. Nephrol. 2016, 27, 604–614. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.J.; Lee, R.; Kim, H.S. Infantile Hypercalcemia with Novel Compound Heterozygous Mutation in SLC34A1 Encoding Renal Sodium-Phosphate Cotransporter 2a: A Case Report. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Minucci, A.; Primiano, A.; De Paolis, E.; Gervasoni, J.; Persichilli, S.; Naticchia, A.; Capoluongo, E.; Gambaro, G. A Novel CYP24A1 Genotype Associated to a Clinical Picture of Hypercalcemia, Nephrolithiasis and Low Bone Mass. Urolithiasis 2017, 45, 291–294. [Google Scholar] [CrossRef]
- Fencl, F.; Bláhová, K.; Schlingmann, K.P.; Konrad, M.; Seeman, T. Severe Hypercalcemic Crisis in an Infant with Idiopathic Infantile Hypercalcemia Caused by Mutation in CYP24A1 Gene. Eur. J. Pediatr. 2013, 172, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Dauber, A.; Nguyen, T.T.; Sochett, E.; Cole, D.E.C.; Horst, R.; Abrams, S.A.; Carpenter, T.O.; Hirschhorn, J.N. Genetic Defect in CYP24A1, the Vitamin D 24-Hydroxylase Gene, in a Patient with Severe Infantile Hypercalcemia. J. Clin. Endocrinol. Metab. 2012, 97, E268–E274. [Google Scholar] [CrossRef] [Green Version]
- Schlingmann, K.P.; Kaufmann, M.; Weber, S.; Irwin, A.; Goos, C.; John, U.; Misselwitz, J.; Klaus, G.; Kuwertz-Bröking, E.; Fehrenbach, H.; et al. Mutations in CYP24A1 and Idiopathic Infantile Hypercalcemia. N. Engl. J. Med. 2011, 365, 410–421. [Google Scholar] [CrossRef]
- Lightwood, R.; Stapleton, T. Idiopathic Hypercalcaemia in Infants. Lancet 1953, 265, 255–256. [Google Scholar] [CrossRef]
- Tebben, P.J.; Milliner, D.S.; Horst, R.L.; Harris, P.C.; Singh, R.J.; Wu, Y.; Foreman, J.W.; Chelminski, P.R.; Kumar, R. Hypercalcemia, Hypercalciuria, and Elevated Calcitriol Concentrations with Autosomal Dominant Transmission Due to CYP24A1 Mutations: Effects of Ketoconazole Therapy. J. Clin. Endocrinol. Metab. 2012, 97, E423–E427. [Google Scholar] [CrossRef] [Green Version]
- Meusburger, E.; Mündlein, A.; Zitt, E.; Obermayer-Pietsch, B.; Kotzot, D.; Lhotta, K. Medullary Nephrocalcinosis in an Adult Patient with Idiopathic Infantile Hypercalcaemia and a Novel CYP24A1 Mutation. Clin. Kidney J. 2013, 6, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Nesterova, G.; Malicdan, M.C.; Yasuda, K.; Sakaki, T.; Vilboux, T.; Ciccone, C.; Horst, R.; Huang, Y.; Golas, G.; Introne, W.; et al. 1,25-(OH)2D-24 Hydroxylase (CYP24A1) Deficiency as a Cause of Nephrolithiasis. Clin. J. Am. Soc. Nephrol. 2013, 8, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Wolf, P.; Müller-Sacherer, T.; Baumgartner-Parzer, S.; Winhofer, Y.; Kroo, J.; Gessl, A.; Luger, A.; Krebs, M. A Case of “Late-Onset” Idiopathic Infantile Hypercalcemia Secondary to Mutations in the CYP24A1 Gene. Endocr. Pract. 2014, 20, e91–e95. [Google Scholar] [CrossRef]
- Davidson Peiris, E.; Wusirika, R. A Case Report of Compound Heterozygous CYP24A1 Mutations Leading to Nephrolithiasis Successfully Treated with Ketoconazole. Case Rep. Nephrol. Dial. 2017, 7, 167–171. [Google Scholar] [CrossRef]
- Melo, T.L.; Esper, P.L.G.; Zambrano, L.I.; Ormanji, M.S.; Rodrigues, F.G.; Heilberg, I.P. Expression of Vitamin D Receptor, CYP27B1 and CYP24A1 Hydroxylases and 1,25-Dihydroxyvitamin D3 Levels in Stone Formers. Urolithiasis 2020, 48, 19–26. [Google Scholar] [CrossRef]
- Ketha, H.; Singh, R.J.; Grebe, S.K.; Bergstralh, E.J.; Rule, A.D.; Lieske, J.C.; Kumar, R. Altered Calcium and Vitamin D Homeostasis in First-Time Calcium Kidney Stone-Formers. PLoS ONE 2015, 10, e0137350. [Google Scholar] [CrossRef] [Green Version]
- Molin, A.; Baudoin, R.; Kaufmann, M.; Souberbielle, J.C.; Ryckewaert, A.; Vantyghem, M.C.; Eckart, P.; Bacchetta, J.; Deschenes, G.; Kesler-Roussey, G.; et al. CYP24A1 Mutations in a Cohort of Hypercalcemic Patients: Evidence for a Recessive Trait. J. Clin. Endocrinol. Metab. 2015, 100, E1343–E1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, N.S.; Stathopoulos, V.M.; Bushinsky, D.A. Increased Sensitivity to 1,25(OH)2D3 in Bone from Genetic Hypercalciuric Rats. Am. J. Physiol. 1996, 271, C130–C135. [Google Scholar] [CrossRef]
- Li, X.Q.; Tembe, V.; Horwitz, G.M.; Bushinsky, D.A.; Favus, M.J. Increased Intestinal Vitamin D Receptor in Genetic Hypercalciuric Rats. A Cause of Intestinal Calcium Hyperabsorption. J. Clin. Investig. 1993, 91, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Tsuruoka, S.; Bushinsky, D.A.; Schwartz, G.J. Defective Renal Calcium Reabsorption in Genetic Hypercalciuric Rats. Kidney Int. 1997, 51, 1540–1547. [Google Scholar] [CrossRef] [Green Version]
- Maierhofer, W.J.; Gray, R.W.; Cheung, H.S.; Lemann, J. Bone Resorption Stimulated by Elevated Serum 1,25-(OH)2-Vitamin D Concentrations in Healthy Men. Kidney Int. 1983, 24, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Lieben, L.; Masuyama, R.; Torrekens, S.; Van Looveren, R.; Schrooten, J.; Baatsen, P.; Lafage-Proust, M.-H.; Dresselaers, T.; Feng, J.Q.; Bonewald, L.F.; et al. Normocalcemia Is Maintained in Mice under Conditions of Calcium Malabsorption by Vitamin D-Induced Inhibition of Bone Mineralization. J. Clin. Investig. 2012, 122, 1803–1815. [Google Scholar] [CrossRef] [PubMed]
- Letavernier, E.; Verrier, C.; Goussard, F.; Perez, J.; Huguet, L.; Haymann, J.-P.; Baud, L.; Bazin, D.; Daudon, M. Calcium and Vitamin D Have a Synergistic Role in a Rat Model of Kidney Stone Disease. Kidney Int. 2016, 90, 809–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Chen, M.; Li, M.; Ma, H.; Tong, S.; Lei, Y.; Qi, L. Vitamin D Receptor Gene (VDR) Polymorphisms and the Urolithiasis Risk: An Updated Meta-Analysis Based on 20 Case-Control Studies. Urolithiasis 2014, 42, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Zerwekh, J.E.; Reed, B.Y.; Heller, H.J.; González, G.B.; Haussler, M.R.; Pak, C.Y. Normal Vitamin D Receptor Concentration and Responsiveness to 1,25-Dihydroxyvitamin D3 in Skin Fibroblasts from Patients with Absorptive Hypercalciuria. Miner. Electrolyte Metab. 1998, 24, 307–313. [Google Scholar] [CrossRef]
- Hess, B.; Ackermann, D.; Essig, M.; Takkinen, R.; Jaeger, P. Renal Mass and Serum Calcitriol in Male Idiopathic Calcium Renal Stone Formers: Role of Protein Intake. J. Clin. Endocrinol. Metab. 1995, 80, 1916–1921. [Google Scholar] [CrossRef]
- Cormick, G.; Belizán, J.M. Calcium Intake and Health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef] [Green Version]
- Coe, F.L.; Worcester, E.M.; Evan, A.P. Idiopathic Hypercalciuria and Formation of Calcium Renal Stones. Nat. Rev. Nephrol. 2016, 12, 519–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coe, F.L.; Favus, M.J.; Crockett, T.; Strauss, A.L.; Parks, J.H.; Porat, A.; Gantt, C.L.; Sherwood, L.M. Effects of Low-Calcium Diet on Urine Calcium Excretion, Parathyroid Function and Serum 1,25(OH)2D3 Levels in Patients with Idiopathic Hypercalciuria and in Normal Subjects. Am. J. Med. 1982, 72, 25–32. [Google Scholar] [CrossRef]
- Kovacs, C.S. Calcium and Phosphate Metabolism and Related Disorders During Pregnancy and Lactation. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Kaltsas, G., Koch, C., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Lila, A.R.; Sarathi, V.; Jagtap, V.; Bandgar, T.; Menon, P.S.; Shah, N.S. Renal Manifestations of Primary Hyperparathyroidism. Indian J. Endocrinol. Metab. 2012, 16, 258–262. [Google Scholar] [CrossRef]
- Sella, S.; Cattelan, C.; Realdi, G.; Giannini, S. Bone Disease in Primary Hypercalciuria. Clin. Cases Miner. Bone Metab. 2008, 5, 118–126. [Google Scholar] [PubMed]
- Hess, B.; Jost, C.; Zipperle, L.; Takkinen, R.; Jaeger, P. High-Calcium Intake Abolishes Hyperoxaluria and Reduces Urinary Crystallization during a 20-Fold Normal Oxalate Load in Humans. Nephrol. Dial. Transplant. 1998, 13, 2241–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curhan, G.C.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J. A Prospective Study of Dietary Calcium and Other Nutrients and the Risk of Symptomatic Kidney Stones. N. Engl. J. Med. 1993, 328, 833–838. [Google Scholar] [CrossRef]
- Borghi, L.; Schianchi, T.; Meschi, T.; Guerra, A.; Allegri, F.; Maggiore, U.; Novarini, A. Comparison of Two Diets for the Prevention of Recurrent Stones in Idiopathic Hypercalciuria. N. Engl. J. Med. 2002, 346, 77–84. [Google Scholar] [CrossRef]
- Taylor, E.N.; Curhan, G.C. Dietary Calcium from Dairy and Nondairy Sources, and Risk of Symptomatic Kidney Stones. J. Urol. 2013, 190, 1255–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, R.D.; LaCroix, A.Z.; Gass, M.; Wallace, R.B.; Robbins, J.; Lewis, C.E.; Bassford, T.; Beresford, S.A.A.; Black, H.R.; Blanchette, P.; et al. Calcium Plus Vitamin D Supplementation and the Risk of Fractures. N. Engl. J. Med. 2006, 354, 669–683. [Google Scholar] [CrossRef]
- Wallace, R.B.; Wactawski-Wende, J.; O’Sullivan, M.J.; Larson, J.C.; Cochrane, B.; Gass, M.; Masaki, K. Urinary Tract Stone Occurrence in the Women’s Health Initiative (WHI) Randomized Clinical Trial of Calcium and Vitamin D Supplements. Am. J. Clin. Nutr. 2011, 94, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Curhan, G.C.; Willett, W.C.; Speizer, F.E.; Spiegelman, D.; Stampfer, M.J. Comparison of Dietary Calcium with Supplemental Calcium and Other Nutrients as Factors Affecting the Risk for Kidney Stones in Women. Ann. Intern. Med. 1997, 126, 497–504. [Google Scholar] [CrossRef]
- Curhan, G.C.; Willett, W.C.; Knight, E.L.; Stampfer, M.J. Dietary Factors and the Risk of Incident Kidney Stones in Younger Women: Nurses’ Health Study II. Arch. Intern. Med. 2004, 164, 885–891. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Dietary Factors and the Risk of Incident Kidney Stones in Men: New Insights after 14 Years of Follow-Up. J. Am. Soc. Nephrol. 2004, 15, 3225–3232. [Google Scholar] [CrossRef] [Green Version]
- Domrongkitchaiporn, S.; Sopassathit, W.; Stitchantrakul, W.; Prapaipanich, S.; Ingsathit, A.; Rajatanavin, R. Schedule of Taking Calcium Supplement and the Risk of Nephrolithiasis. Kidney Int. 2004, 65, 1835–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netelenbos, J.C.; Jongen, M.J.; van der Vijgh, W.J.; Lips, P.; van Ginkel, F.C. Vitamin D Status in Urinary Calcium Stone Formation. Arch. Intern. Med. 1985, 145, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Nouvenne, A.; Ferraro, P.M.; Folesani, G.; Lauretani, F.; Allegri, F.; Guerra, A.; Cerundolo, N.; Aloe, R.; Lippi, G.; et al. Idiopathic Calcium Nephrolithiasis and Hypovitaminosis D: A Case-Control Study. Urology 2016, 87, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Taylor, E.N.; Gambaro, G.; Curhan, G.C. Vitamin D Intake and the Risk of Incident Kidney Stones. J. Urol. 2017, 197, 405–410. [Google Scholar] [CrossRef]
- Lappe, J.; Watson, P.; Travers-Gustafson, D.; Recker, R.; Garland, C.; Gorham, E.; Baggerly, K.; McDonnell, S.L. Effect of Vitamin D and Calcium Supplementation on Cancer Incidence in Older Women: A Randomized Clinical Trial. JAMA 2017, 317, 1234–1243. [Google Scholar] [CrossRef]
- Gallagher, J.C.; Smith, L.M.; Yalamanchili, V. Incidence of Hypercalciuria and Hypercalcemia during Vitamin D and Calcium Supplementation in Older Women. Menopause 2014, 21, 1173–1180. [Google Scholar] [CrossRef] [Green Version]
- Malihi, Z.; Wu, Z.; Stewart, A.W.; Lawes, C.M.; Scragg, R. Hypercalcemia, Hypercalciuria, and Kidney Stones in Long-Term Studies of Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2016, 104, 1039–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leaf, D.E.; Korets, R.; Taylor, E.N.; Tang, J.; Asplin, J.R.; Goldfarb, D.S.; Gupta, M.; Curhan, G.C. Effect of Vitamin D Repletion on Urinary Calcium Excretion among Kidney Stone Formers. Clin. J. Am. Soc. Nephrol. 2012, 7, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Johri, N.; Jaeger, P.; Ferraro, P.M.; Shavit, L.; Nair, D.; Robertson, W.G.; Gambaro, G.; Unwin, R.J. Vitamin D Deficiency Is Prevalent among Idiopathic Stone Formers, but Does Correction Pose Any Risk? Urolithiasis 2017, 45, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Yang, B.; Ou, L.; Liang, Y.; Wan, S.; Li, S.; Zeng, G. Urinary Stone Analysis on 12,846 Patients: A Report from a Single Center in China. Urolithiasis 2014, 42, 39–43. [Google Scholar] [CrossRef]
- Malihi, Z.; Lawes, C.M.M.; Wu, Z.; Huang, Y.; Waayer, D.; Toop, L.; Khaw, K.-T.; Camargo, C.A.; Scragg, R. Monthly High-Dose Vitamin D Supplementation Does Not Increase Kidney Stone Risk or Serum Calcium: Results from a Randomized Controlled Trial. Am. J. Clin. Nutr. 2019, 109, 1578–1587. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D. The Relation between Infantile Hypercalcemia and Vitamin D--Public Health Implications in North America. Pediatrics 1967, 40, 1050–1061. [Google Scholar] [PubMed]
Food Category | Calcium Content (mg per 100 g Serving) |
---|---|
Dairy | |
Milk | 276 mg |
Cheese | From 138 to 333 mg |
Kefir | 247 mg |
Buttermilk | 222 mg |
Yogurt | From 116 to 216 mg |
Fish | |
Sardines | 286 mg |
Salmon | From 179 to 212 mg |
Vegetables | |
Lambsquarters | 362 mg |
Nettles | 334 mg |
Amaranth | 216 mg |
Soybeans | 175 mg |
Spinach | 154 mg |
White beans | From 93 to 141 mg |
Tofu | 138 mg |
Kale | 94 mg |
Almonds | 93 mg |
Broccoli | 21 mg |
Others | |
Tahini | 902 mg |
Rice milk | 221 mg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bargagli, M.; Ferraro, P.M.; Vittori, M.; Lombardi, G.; Gambaro, G.; Somani, B. Calcium and Vitamin D Supplementation and Their Association with Kidney Stone Disease: A Narrative Review. Nutrients 2021, 13, 4363. https://doi.org/10.3390/nu13124363
Bargagli M, Ferraro PM, Vittori M, Lombardi G, Gambaro G, Somani B. Calcium and Vitamin D Supplementation and Their Association with Kidney Stone Disease: A Narrative Review. Nutrients. 2021; 13(12):4363. https://doi.org/10.3390/nu13124363
Chicago/Turabian StyleBargagli, Matteo, Pietro Manuel Ferraro, Matteo Vittori, Gianmarco Lombardi, Giovanni Gambaro, and Bhaskar Somani. 2021. "Calcium and Vitamin D Supplementation and Their Association with Kidney Stone Disease: A Narrative Review" Nutrients 13, no. 12: 4363. https://doi.org/10.3390/nu13124363
APA StyleBargagli, M., Ferraro, P. M., Vittori, M., Lombardi, G., Gambaro, G., & Somani, B. (2021). Calcium and Vitamin D Supplementation and Their Association with Kidney Stone Disease: A Narrative Review. Nutrients, 13(12), 4363. https://doi.org/10.3390/nu13124363