Associations between Avocado Consumption and Diet Quality, Dietary Intake, Measures of Obesity and Body Composition in Adolescents: The Teen Food and Development Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurements
2.2.1. Dietary and Avocado Intake
2.2.2. Diet Quality
2.2.3. Indicators of Obesity and Body Composition
2.3. Covariates
2.4. Data Analysis
2.5. Comparison of Diet Quality and Dietary Intake
2.6. Association between Avocado Intake and Anthropometric Indicators of Health
2.7. Determinants of Avocado Intake
3. Results
3.1. Diet Quality and Anthropometric Health Indicators of Avocado Consumers and Non-Consumers
3.2. Dietary Intake of Avocado Consumers and Non-Consumers
3.3. Determinants of Avocado Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sebastian, R.; Enns, C.W.; Goldman, J.; Moshfegh, A. Late Evening Food and Beverage Consumption by Adolescents in the U.S.: What We Eat in America, NHANES 2013–2016; Agricultural Research Service, USDA: Beltsville, MD, USA, 2019.
- Hilger-Kolb, J.; Bosle, C.; Motoc, I.; Hoffmann, K. Associations between dietary factors and obesity-related biomarkers in healthy children and adolescents—A systematic review. Nutr. J. 2017, 16, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leandro, C.G.; Fonseca, E.V.D.S.D.; De Lim, C.R.; Tchamo, M.E.; Ferreira-E-Silva, W.T. Barriers and Enablers That Influence Overweight/Obesity/Obesogenic Behavior in Adolescents from Lower-Middle Income Countries: A Systematic Review. Food Nutr. Bull. 2019, 40, 562–571. [Google Scholar] [CrossRef]
- Banfield, E.C.; Liu, Y.; Davis, J.S.; Chang, S.; Frazier-Wood, A.C. Poor Adherence to US Dietary Guidelines for Children and Adolescents in the National Health and Nutrition Examination Survey Population. J. Acad. Nutr. Diet. 2016, 116, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Micha, R.; Li, Y.; Mozaffarian, D. Trends in Food Sources and Diet Quality among US Children and Adults, 2003–2018. JAMA Netw. Open 2021, 4, e215262. [Google Scholar] [CrossRef]
- Gu, X.; Tucker, K.L. Dietary quality of the US child and adolescent population: Trends from 1999 to 2012 and associations with the use of federal nutrition assistance programs. Am. J. Clin. Nutr. 2016, 105, 194–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, J.G.; Zhang, N.; Fenchel, M.; Jacobs, D.R., Jr.; Hu, T.; Urbina, E.M.; Burns, T.L.; Raitakari, O.; Steinberger, J.; Bazzano, L.; et al. Prediction of adult class II/III obesity from childhood BMI: The i3C consortium. Int. J. Obes. 2020, 44, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Burns, A.M.; Zitt, M.A.; Rowe, C.C.; Langkamp-Henken, B.; Mai, V.; Nieves, J.C.; Ukhanova, M.; Christman, M.C.; Dahl, W.J. Diet quality improves for parents and children when almonds are incorporated into their daily diet: A randomized, crossover study. Nutr. Res. 2016, 36, 80–89. [Google Scholar] [CrossRef]
- Smith, J.; Zhu, Y.; Jain, N.; Holschuh, N. Association between whole grain food intake in Canada and nutrient intake, food group intake and diet quality: Findings from the 2015 Canadian Community Health Survey. PLoS ONE 2021, 16, e0253052. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, V.K.; Na, M.; Proctor, D.N.; Kris-Etherton, P.M.; Petersen, K.S. Consumption of Dried Fruits Is Associated with Greater Intakes of Underconsumed Nutrients, Higher Total Energy Intakes, and Better Diet Quality in US Adults: A Cross-Sectional Analysis of the National Health and Nutrition Examination Survey, 2007–2016. J. Acad. Nutr. Diet. 2021, 121, 1258–1272. [Google Scholar] [CrossRef] [PubMed]
- Dreher, M.L.; Davenport, A.J. Hass Avocado Composition and Potential Health Effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [Green Version]
- Mahmassani, H.A.; Avendano, E.E.; Raman, G.; Johnson, E.J. Avocado consumption and risk factors for heart disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 523–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabeshpour, J.; Razavi, B.M.; Hosseinzadeh, H. Effects of Avocado (Persea americana) on Metabolic Syndrome: A Comprehensive Systematic Review. Phytother. Res. 2017, 31, 819–837. [Google Scholar] [CrossRef] [PubMed]
- Heskey, C.; Oda, K.; Sabaté, J. Avocado Intake, and Longitudinal Weight and Body Mass Index Changes in an Adult Cohort. Nutrients 2019, 11, 691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulgoni, V.L.; Dreher, M.; Davenport, A.J. Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001–2008. Nutr. J. 2013, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segovia-Siapco, G.; Pribis, P.; Messina, M.; Oda, K.; Sabaté, J. Is soy intake related to age at onset of menarche? A cross-sectional study among adolescents with a wide range of soy food consumption. Nutr. J. 2014, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Nezami, M.; Segovia-Siapco, G.; Beeson, W.L.; Sabaté, J. Associations between Consumption of Dairy Foods and Anthropometric Indicators of Health in Adolescents. Nutrients 2016, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Segovia-Siapco, G.; Oda, K.; Sabaté, J. Evaluation of the relative validity of a Web-based food frequency questionnaire used to assess Soy Isoflavones and nutrient intake in adolescents. BMC Nutr. 2016, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Haines, P.S.; Siega-Riz, A.M.; Popkin, B.M. The Diet Quality Index-International (DQI-I) Provides an Effective Tool for Cross-National Comparison of Diet Quality as Illustrated by China and the United States. J. Nutr. 2003, 133, 3476–3484. [Google Scholar] [CrossRef]
- Mariscal-Arcas, M.; Romaguera, D.; Rivas, A.; Feriche, B.; Pons, A.; Tur, J.A.; Olea-Serrano, F. Diet quality of young people in southern Spain evaluated by a Mediterranean adaptation of the Diet Quality Index-International (DQI-I). Br. J. Nutr. 2007, 98, 1267–1273. [Google Scholar] [CrossRef]
- Tur, J.A.; Romaguera, D.; Pons, A. The Diet Quality Index-International (DQI-I): Is it a useful tool to evaluate the quality of the Mediterranean diet? Br. J. Nutr. 2005, 93, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Cho, I.; Lee, K.; Lee, Y.; Paek, C.; Kim, H.; Kim, J.; Lee, K.; Han, J.; Bae, W. Assessment of Dietary Habits Using the Diet Quality Index—International in Cerebrovascular and Cardiovascular Disease Patients. Nutrients 2021, 13, 542. [Google Scholar] [CrossRef]
- Bondia-Pons, I.; Mayneris-Perxachs, J.; Serra-Majem, L.; Castellote, A.I.; Mariné, A.; López-Sabater, M.C. Diet quality of a population sample from coastal north-east Spain evaluated by a Mediterranean adaptation of the Diet Quality Index (DQI). Public Health Nutr. 2010, 13, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Setayeshgar, S.; Maximova, K.; Ekwaru, J.P.; Gray-Donald, K.; Henderson, M.; Paradis, G.; Tremblay, A.; Veugelers, P. Diet quality as measured by the Diet Quality Index–International is associated with prospective changes in body fat among Canadian children. Public Health Nutr. 2017, 20, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loong, C.; Leo, L.; Goh, D.; Lim, P.S.; Loke, W.M. Promoting physical activity and improving dietary quality of Singaporean adolescents: Effectiveness of a school-based fitness and wellness program. Int. J. Adolesc. Med. Health 2018, 31. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.L.; Teles, J.; Fragoso, I. Health-related quality of life of Portuguese children and adolescents according to diet quality and food intake. Qual. Life Res. 2020, 29, 2197–2207. [Google Scholar] [CrossRef]
- Williams, J.; Townsend, N.; Rayner, M.; Jayawardena, R.; Katulanda, P.; Manoharan, S.; Wickramasinghe, K. Diet quality of adolescents in rural Sri Lanka based on the Diet Quality Index–International: Findings from the ‘Integrating Nutrition Promotion and Rural Development’ project. Public Health Nutr. 2019, 22, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 2020. Available online: https://www.dietaryguidelines.gov (accessed on 8 June 2021).
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washinton, DC, USA, 2006; p. 1344. [Google Scholar]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Monasta, L.; Lobstein, T.; Cole, T.J.; Vignerova, J.; Cattaneo, A. Defining overweight and obesity in pre-school children: IOTF reference or WHO standard? Obes. Rev. 2011, 12, 295–300. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.-K.; Kim, Y.-S.; Kim, J.-H.; Kim, S.-H.; Kim, Y. Dietary Patterns and Their Associations with the Diet Quality Index-International (DQI-I) in Korean Women with Gestational Diabetes Mellitus. Clin. Nutr. Res. 2015, 4, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Chmurzynska, A.; Muzsik, A.; Krzyżanowska-Jankowska, P.; Walkowiak, J.; Bajerska, J. The Effect of Habitual Fat Intake, IL6 Polymorphism, and Different Diet Strategies on Inflammation in Postmenopausal Women with Central Obesity. Nutrients 2019, 11, 1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crupkin, M.; Zambelli, A. Detrimental Impact ofTransFats on Human Health: Stearic Acid-Rich Fats as Possible Substitutes. Compr. Rev. Food Sci. Food Saf. 2008, 7, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Leme, A.C.; Baranowski, T.; Thompson, D.; Philippi, S.; O’Neil, C.E.; Fulgoni, V.L., III; Nicklas, T.A. Food Sources of Shortfall Nutrients Among US Adolescents: National Health and Nutrition Examination Survey (NHANES) 2011-2014. Fam. Community Health 2020, 43, 59–73. [Google Scholar] [CrossRef] [PubMed]
- López-González, L.; Becerra-Tomás, N.; Babio, N.; Martínez-González, M.Á.; Díaz-López, A.; Corella, D.; Goday, A.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M.; et al. Variety in fruits and vegetables, diet quality and lifestyle in an older adult mediterranean population. Clin. Nutr. 2021, 40, 1510–1518. [Google Scholar] [CrossRef]
- O’Neil, C.E.; Nicklas, T.A.; Zanovec, M.; Cho, S.S.; Kleinman, R. Consumption of whole grains is associated with improved diet quality and nutrient intake in children and adolescents: The National Health and Nutrition Examination Survey 1999–2004. Public Health Nutr. 2010, 14, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, S.A.; Shriver, L.H.; Taylor, C.A. Variety of fruit and vegetables is related to preschoolers’ overall diet quality. Prev. Med. Rep. 2017, 5, 112–117. [Google Scholar] [CrossRef]
- Tey, S.L.; Brown, R.; Gray, A.; Chisholm, A.; Delahunty, C. Nuts Improve Diet Quality Compared to Other Energy-Dense Snacks While Maintaining Body Weight. J. Nutr. Metab. 2011, 2011, 357350. [Google Scholar] [CrossRef] [PubMed]
- Ducharme-Smith, K.; Caulfield, L.E.; Brady, T.M.; Rosenstock, S.; Mueller, N.T.; Garcia-Larsen, V. Higher Diet Quality in African-American Adolescents Is Associated with Lower Odds of Metabolic Syndrome: Evidence from the NHANES. J. Nutr. 2021, 151, 1609–1617. [Google Scholar] [CrossRef]
- De Miguel-Etayo, P.; Moreno, L.A.; Santabárbara, J.; Martín-Matillas, M.; Julian, M.C.A.-S.; del Moral, A.M.; Campoy, C.; Marcos, A.; Garagorri, J.M.; López-Belmonte, G.; et al. Diet quality index as a predictor of treatment efficacy in overweight and obese adolescents: The EVASYON study. Clin. Nutr. 2018, 38, 782–790. [Google Scholar] [CrossRef] [Green Version]
- Drenowatz, C.; Shook, R.P.; Hand, G.A.; Hébert, J.R.; Blair, S.N. The independent association between diet quality and body composition. Sci. Rep. 2015, 4, 4928. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.E.; Parnell, W.R.; Howe, A.S.; Lubransky, A.C.; Black, K.E.; Skidmore, P.M. Diet quality is associated with measures of body fat in adolescents from Otago, New Zealand. Public Health Nutr. 2015, 18, 1453–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.Y.; Zhuang, L.H.; Li, W.; Guo, H.W.; Zhang, J.H.; Zhao, Y.K.; Hu, J.W.; Gao, Q.Q.; Luo, S.; Ohinmaa, A.; et al. The influence of diet quality and dietary behavior on health-related quality of life in the general population of children and ado-lescents: A systematic review and meta-analysis. Qual. Life Res. 2019, 28, 1989–2015. [Google Scholar] [CrossRef]
- Ferrer-Cascales, R.; Albaladejo-Blázquez, N.; Ruiz-Robledillo, N.; Clement-Carbonell, V.; Sánchez-SanSegundo, M.; Zaragoza-Martí, A. Higher Adherence to the Mediterranean Diet is Related to More Subjective Happiness in Adolescents: The Role of Health-Related Quality of Life. Nutrients 2019, 11, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacka, F.N.; Kremer, P.; Berk, M.; De Silva-Sanigorski, A.M.; Moodie, M.; Leslie, E.; Pasco, J.A.; Swinburn, B.A. A Prospective Study of Diet Quality and Mental Health in Adolescents. PLoS ONE 2011, 6, e24805. [Google Scholar] [CrossRef]
- Kulkarni, A.A.; Swinburn, B.A.; Utter, J. Associations between diet quality and mental health in socially disadvantaged New Zealand adolescents. Eur. J. Clin. Nutr. 2014, 69, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Butler, T.L.; Fraser, G.E.; Beeson, W.L.; Knutsen, S.F.; Herring, R.P.; Chan, J.; Sabaté, J.; Montgomery, S.; Haddad, E.; Preston-Martin, S.; et al. Cohort Profile: The Adventist Health Study-2 (AHS-2). Int. J. Epidemiol. 2008, 37, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Segovia-Siapco, G.; Burkholder-Cooley, N.; Tabrizi, S.H.; Sabaté, J. Beyond Meat: A Comparison of the Dietary Intakes of Vegetarian and Non-vegetarian Adolescents. Front. Nutr. 2019, 6, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.L.; Straker, L.M.; Kerr, D.A.; Smith, A.J. Overweight adolescents eat what? And when? Analysis of consumption patterns to guide dietary message development for intervention. J. Hum. Nutr. Diet. 2014, 28 (Supplement S2), 80–93. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.M.; Kasprzak, C.M.; Mansouri, T.H.; Gregory, A.M., 2nd; Barich, R.A.; Hatzinger, L.A.; Leone, L.A.; Temple, J.L. An ecological perspective of food choice and eating autonomy among adolescents. Front. Psychol. 2021, 12, 654139. [Google Scholar] [CrossRef] [PubMed]
DQI-I Component | Scoring Criteria | Scoring |
---|---|---|
Variety Overall food group intake variety | 5 food groups: Meat/poultry/fish/egg; Dairy/beans; Grains; Fruits; Vegetables. Each food group is awarded 0–3 points based on servings eaten per day: ≥1 serving/day (svg/d) = 3 pts; 0 svg/d = 0 pt | 0–20 pts 0–15 |
Within-group variety for protein source | 6 protein sources: Meat, Poultry, Fish, Dairy, Beans, Eggs ≥3 sources consumed: 5 pts 2 sources consumed: 3 pts. 1 source consumed: 1 pt 0 source consumed: 0 pt | 0–5 |
Adequacy | Adequacy in intake of the following 8 groups based on age-and-gender-specific recommendations: For each of the adequacy groups, 0–5 pts are awarded depending on DGA 2020–2025 recommended svg/d or percentage of RDA met. | 0–40 pts |
Vegetables: ≥2.5 svg/d = 5 pts; 0 svg/d = 0 pt | 0–5 | |
Fruits: ≥2 svg/d = 5 pts; 0 svg/d = 0 pt | 0–5 | |
Grain: ≥6 oz/d = 5 pts; 0 oz/d = 0 pt | 0–5 | |
Fiber: Females: ≥25.0 g/day (g/d) = 5 pts; Males: ≥31 g/d = 5 pts; <0.5/g for Males or Females = 0 pt | 0–5 | |
Protein: Females: ≥46.0 g/d = 5 pts; Males: ≥52 g/d = 5 pts; <0.5/g for Males or Females = 0 pt | 0–5 | |
Iron: Females: ≥15.0 milligrams/day (mg/d) = 5 pts, <0.3 mg/d = 0; Males: ≥11 mg/d = 5 pts; <0.22 mg/d = 0 pt | 0–5 | |
Calcium: ≥1300.0 mg/d = 5 pts; < 26.0 mg = 0 pt | 0–5 | |
Vitamin C: Females: ≥65.0 mg/d = 5 pts, <1.3 mg/d = 0; Males: ≥75.0 mg/d = 5 pts; <1.5 mg/d = 0 pt | 0–5 | |
Moderation | For each of the 5 moderation groups, 0–6 pts are awarded depending on percentage of RDA met | 0–30 pts |
Total fat: ≤25% of total energy/d = 6 pts; >25–35% of total energy/d = 3 pts; >35% of total energy/d = 0 pt | 0–6 | |
Saturated fat:<7% of total energy/d = 6 pts; >7–10% of total energy/d = 3 pts; >10% of total energy/d = 0 pt | 0–6 | |
Cholesterol:≤300.0 mg/d = 6 pts; >300–400 mg/d = 3 pts; >400.0 mg/d = 0 pt | 0–6 | |
Sodium:≤2300 mg/d = 6 pts; >2300–3300 mg/d = 3 pts; >3300 mg/d = 0 pt | 0–6 | |
Empty calorie foods:≤3% total energy/d = 6 pts; >3–10% of total energy = 3 pts; >10% of total energy = 0 pt | 0–6 | |
Balance | Balance in the intake of energy from macronutrients ratio is given 0–6 pts, and ratio of the unsaturated to saturated fatty acids is given 0–4 pts. | 0–10 pts |
Macronutrient ratio (carbohydrate: protein: fat): 55.0–65.0: 10.0–15.0: 15.0–25.0 = 6 pts; 52.0–68.0: 9.0–16.0:13.0–27.0 = 4 pts; 50.0–70.0: 8.0–17.0: 12.0–30.0 = 2 pts; else = 0 pt | 0–6 | |
Fatty acid ratio (PUFA:MUFA:SFA): both P/S and M/S are 1.0–1.5 = 4 pts; both P/S and M/S are 0.8–1.7 = 2 pts; else = 0 pt | 0–4 | |
TOTAL DQI-I | Variety + Adequacy + Moderation + Balance | 0–100 pts |
Variable | All Participants | Non-Consumer (n = 215) | Consumer (n = 319) | p-Value | |||
---|---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | |||||
Gender | 0.293 * | ||||||
Female | 304 (56.9) | 116 (54.0) | 188 (58.9) | ||||
Male | 230 (43.1) | 99 (46.0) | 131 (41.1) | ||||
Site | <0.001 * | ||||||
California | 296 (55.4) | 94 (43.7) | 202 (63.3) | ||||
Michigan | 238 (44.6) | 121 (56.3) | 117 (36.7) | ||||
Father’s education | 0.046 | ||||||
HS or less | 98 (18.4) | 46 (21.4) | 52 (16.3) | ||||
College | 206 (38.6) | 90 (41.9) | 116 (36.4) | ||||
Graduate | 230 (43.1) | 79 (36.7) | 151 (47.3) | ||||
Ethnicity | 0.002 * | ||||||
African/Afr-Am | 51 (9.6) | 27 (12.6) | 24 (7.5) | ||||
Caucasian | 209 (39.1) | 89 (41.4) | 120 (37.6) | ||||
Hispanic | 76 (14.2) | 15 (7.0) | 61 (19.1) | ||||
Asian | 60 (11.2) | 22 (10.2) | 38 (11.9) | ||||
Other | 138 (25.8) | 62 (28.8) | 76 (23.9) | ||||
Dietary pattern | 0.413 * | ||||||
Non-vegetarian | 396 (74.2) | 164 (76.3) | 232 (72.7) | ||||
Vegetarian | 138 (25.8) | 51 (23.7) | 87 (27.3) | ||||
Mean | SD | Mean | SD | Mean | SD | p-value | |
Age, years | 15.0 | 1.7 | 14.8 | 1.8 | 15.2 | 1.7 | 0.010 † |
Sleep hours | 7.7 | 1.2 | 7.9 | 1.3 | 7.65 | 1.21 | 0.071 † |
Energy intake, kcal | 2191.0 | 764.7 | 2067.1 | 742.0 | 2274.52 | 769.66 | 0.002 † |
Median | IQR | Median | IQR | Median | IQR | p-value | |
Physical activity, min/d | 25.7 | 12.9, 51.4 | 25.7 | 9.6., 41.8 | 25.7 | 12.9, 51.4 | 0.066 ‡ |
Avocado intake, g/d, | 4.8 | 0.0, 8.4 | 0.0 | 0.0, 0.0 | 6.6 | 5.3, 11.8 | <0.001 ‡ |
Component * | Score Ranges (Points) | Non-Consumers (n = 215) | Consumers (n = 319) | p-Value | ||
---|---|---|---|---|---|---|
Mean or Median | SD or IQR | Mean or Median | SD or IQR | |||
DQI-I total | 0–100 | 62.93 | 8.45 | 67.46 | 7.71 | <0.001 † |
Variety | 0–20 | 18.04 | 2.25 | 18.81 | 1.54 | <0.001 ‡ |
Overall Food Group Variety | 0–15 | 13.57 | 1.49 | 14.00 | 1.18 | 0.002 ‡ |
Within-group variety for protein source | 0–5 | 4.56 | 0.92 | 4.84 | 0.55 | <0.001 ‡ |
Adequacy | 0–40 | 33.41 | 5.89 | 36.40 | 4.08 | <0.001 ‡ |
Vegetable group | 0–5 | 3.98 | 1.21 | 4.54 | 0.82 | <0.001 ‡ |
Fruit group | 0–5 | 3.21 | 1.57 | 4.21 | 1.17 | <0.001 ‡ |
Grain group | 0–5 | 4.62 | 0.77 | 4.73 | 0.64 | 0.261 ‡ |
Fiber | 0–5 | 3.50 | 1.19 | 4.05 | 1.07 | <0.001 ‡ |
Protein | 0–5 | 4.86 | 0.44 | 4.96 | 0.22 | 0.002 ‡ |
Vitamin C | 0–5 | 4.75 | 0.69 | 4.94 | 0.31 | <0.001 ‡ |
Calcium | 0–5 | 3.82 | 1.15 | 4.19 | 0.97 | <0.001 ‡ |
Iron | 0–5 | 4.68 | 0.75 | 4.78 | 0.54 | 0.217 ‡ |
Moderation | 0–30 | 10.17 | 5.32 | 10.59 | 5.75 | 0.574 ‡ |
Total fat intake | 0–6 | 1.17 | 1.75 | 1.52 | 1.96 | 0.040 ‡ |
Saturated fat intake | 0–6 | 0.66 | 1.42 | 1.23 | 2.04 | 0.006 ‡ |
Dietary cholesterol | 0–6 | 5.08 | 1.99 | 4.95 | 2.11 | 0.409 ‡ |
Sodium intake | 0–6 | 2.22 | 2.59 | 1.70 | 2.37 | 0.007 ‡ |
Empty calorie foods intake | 0–6 | 1.05 | 1.25 | 1.19 | 1.26 | 0.088 ‡ |
Balance | 0–10 | 1.31 | 1.96 | 1.66 | 2.24 | 0.072 ‡ |
Macronutrient ratio (carb:prot:fat) | 0–6 | 0.45 | 1.20 | 0.58 | 1.30 | 0.097 ‡ |
Fatty acid ratio (PUFA:MUFA:SFA) | 0–4 | 0.87 | 1.46 | 1.08 | 1.54 | 0.077 ‡ |
Variable | Non-Consumer (NC) (n = 215) | Consumer (C) (n = 319) | C:NC Ratio or EMM Diff | p-Value | |||
---|---|---|---|---|---|---|---|
EMM | 95% CI | EMM | 95% CI | EMM | SD or 95% CI | ||
DQI-I score | 64.62 | 63.39, 65.85 | 68.31 | 67.19, 69.43 | 3.69 | 0.70 § | <0.0001 |
BMI z-score | 0.33 | 0.16, 0.49 | 0.28 | 0.13, 0.43 | −0.05 | −0.23, 0.13 | 0.588 |
Waist-to-Height ratio † | 0.46 | 0.45, 0.47 | 0.46 | 0.45, 0.47 | 1.00 ‡ | 0.98, 1.02 | 0.855 |
Fat-free mass †, kg | 47.17 | 46.20, 48.17 | 46.36 | 45.46, 47.27 | 0.98 ‡ | 0.96, 1.01 | 0.146 |
Female | 40.96 | 39.83, 42.13 | 40.83 | 39.85, 41.84 | 1.00 ‡ | 0.97, 1.03 | 0.841 |
Male | 53.50 | 51.14, 55.97 | 53.99 | 51.61, 56.48 | 1.01 ‡ | 0.96, 1.06 | 0.720 |
Fat mass †, kg | 10.54 | 9.56, 11.63 | 10.52 | 9.63, 11.49 | 1.00 ‡ | 0.89, 1.11 | 0.967 |
Female | 13.95 | 12.38, 15.71 | 13.64 | 12.38, 15.04 | 0.98 ‡ | 0.85, 1.12 | 0.752 |
Male | 7.65 | 6.45, 9.06 | 8.65 | 7.30, 10.25 | 1.13 ‡ | 0.94, 1.37 | 0.202 |
% Body fat † | 17.61 | 16.38, 18.92 | 17.93 | 16.81, 19.13 | 1.02 ‡ | 0.94, 1.11 | 0.659 |
Female | 24.85 | 22.89, 26.99 | 24.65 | 23.09, 26.32 | 0.99 ‡ | 0.90, 1.09 | 0.867 |
Male | 12.21 | 10.73, 13.90 | 13.44 | 11.81, 15.29 | 1.10 ‡ | 0.95, 1.27 | 0.193 |
Food Group/Nutrient | Non-Consumer (NC) (n = 215) | Consumer (C) n = 319 | C:NC Ratio ‡ or Mean Diff | 95% CI | p-Value | ||
---|---|---|---|---|---|---|---|
EMM | 95% CI | EMM | 95% CI | ||||
FOOD GROUPS, serving/day | |||||||
Breads, grains, cereals † | 3.9 | 3.7, 4.1 | 3.8 | 3.6, 4.0 | 0.98 | 0.93, 1.03 | 0.456 |
Dairy | 2.2 | 1.9, 2.3 | 1.9 | 1.8, 2.1 | 0.90 | 0.81, 1.00 | 0.039 |
Animal protein foods † | 0.6 | 0.4, 0.6 | 0.5 | 0.5, 0.6 | 1.03 | 0.90, 1.16 | 0.703 |
Plant protein foods† | 1.5 | 1.3, 1.7 | 1.9 | 1.7, 2.2 | 1.31 | 1.14, 1.51 | 0.0002 |
Fruits † | 1.4 | 1.2, 1.5 | 2.0 | 1.8, 2.2 | 1.50 | 1.33, 1.68 | <0.0001 |
Vegetables † | 2.4 | 2.3, 2.6 | 3.1 | 2.9, 3.3 | 1.28 | 1.18, 1.39 | <0.0001 |
Sweets † | 1.1 | 1.0, 1.3 | 1.2 | 1.1, 1.4 | 1.10 | 0.94, 1.30 | 0.222 |
Sweetened beverages † | 0.7 | 0.6, 0.8 | 0.8 | 0.7, 0.9 | 1.13 | 0.97, 1.32 | 0.119 |
NUTRIENTS, intake per day | |||||||
Energy, kcal/d | 2083.0 | 1961.1, 2204.8 | 2271.3 | 2159.9, 2382.7 | 188.32 | 51.6, 325.0 | 0.007 |
Total fat, g/d | 76.5 | 74.2, 78. 8 | 74.4 | 72.3, 76.5 | −2.10 | −4.7, 0.5 | 0.112 |
SFA †, g/d | 24.9 | 23.8, 26.1 | 23.0 | 22.0, 24.0 | 0.92 | 0.9, 1.0 | 0.002 |
MUFA, g/d | 25.0 | 24.2, 25.8 | 24.9 | 24.2, 25.7 | −0.07 | 1.0, 0.9 | 0.875 |
PUFA, g/d | 19.4 | 18.7, 20.1 | 19.4 | 18.8, 20.1 | 0.03 | −0.8, 0.8 | 0.941 |
Trans fats, g/d | 2.4 | 2.3, 2.5 | 2.2 | 2.2, 2.3 | −0.13 | −0.2, −0.0 | 0.034 |
Carbohydrates, g/d | 263.2 | 257.1, 269.3 | 266.4 | 260.8, 272.0 | 3.22 | −3.7, 10.1 | 0.358 |
Protein, g/d | 77.8 | 75.5, 80.2 | 80.9 | 78.8, 83.0 | 3.09 | 0.47, 5.71 | 0.021 |
Animal protein †, g/d | 25.7 | 24.0, 27.5 | 24.1 | 22.6, 25.7 | 0.94 | 0.87, 1.01 | 0.112 |
Vegetable Protein †, g/d | 43.5 | 41.4, 45.8 | 48.4 | 46.3, 50.7 | 1.11 | 1.05, 1.18 | 0.0002 |
Cholesterol †, mg/d | 159.5 | 148.0, 171.9 | 149.4 | 139.5, 160.0 | 0.94 | 0.86, 1.02 | 0.125 |
Dietary fiber †, g/d | 23.5 | 22.5, 24.5 | 26.3 | 25.3, 27.3 | 1.12 | 1.06, 1.17 | <0.0001 |
Retinol †, mcg/d | 813.5 | 773.1, 855.9 | 875.6 | 835.8, 917.3 | 1.08 | 1.02, 1.14 | 0.012 |
Folate †, mcg/d | 576.1 | 549.8, 603.7 | 603.3 | 578.0, 629.6 | 1.05 | 0.99, 1.10 | 0.086 |
Vitamin C †, mg/d | 138.7 | 127.4, 151.1 | 164.0 | 151.8, 177.3 | 1.18 | 1.07, 1.30 | 0.0006 |
Vitamin E †, mg/d | 8.8 | 8.4, 9.2 | 9.3 | 8.9, 9.7 | 1.05 | 1.00, 1.11 | 0.070 |
Calcium †, mg/d | 1077.3 | 1032.1, 1124.4 | 1154.7 | 1110.3, 1200.8 | 1.07 | 1.02, 1.12 | 0.005 |
Magnesium †, mg/d | 330.9 | 321.4, 340.7 | 359.5 | 350.0, 369.1 | 1.09 | 1.05, 1.12 | <0.0001 |
Iron †, mg/d | 17.6 | 16.9, 18.3 | 18.67 | 18.0, 19.3 | 1.06 | 1.01, 1.11 | 0.010 |
Zinc, mg/d | 11.6 | 11.1, 12.0 | 11.7 | 11.3, 12.1 | 0.13 | −0.33, 0.59 | 0.585 |
Sodium, mg/d | 3259.1 | 3167.9, 3350.4 | 3377.7 | 3294.2, 3461.1 | 118.54 | 16.14, 220.94 | 0.023 |
Potassium †, mg/d | 2671.4 | 2588.36, 2757.15 | 2943.55 | 2859.8, 3029.8 | 1.10 | 1.06, 1.14 | <0.0001 |
Variable | Estimated β Coefficent | Standard Error | 95% CI | p-Value |
---|---|---|---|---|
DQI-I: Variety | 0.15 | 0.09 | −0.02 to 0.32 | 0.093 |
DQI-I: Adequacy | 0.11 | 0.03 | 0.05 to 0.17 | 0.0002 |
DQI-I: Moderation | 0.06 | 0.03 | 0.01 to 0.11 | 0.016 |
DQI-I: Balance | −0.07 | 0.06 | −0.20 to 0.05 | 0.260 |
Age | 0.12 | 0.06 | −0.01 to 0.25 | 0.064 |
Gender | ||||
Female | reference | -- | -- | |
Male | −0.28 | 0.22 | −0.70 to 0.15 | 0.201 |
Site | ||||
California | reference | -- | -- | |
Michigan | −0.46 | 0.22 | −0.89 to −0.04 | 0.032 |
Father’s educational level | ||||
High School or less | −0.60 | 0.29 | −1.18 to −0.02 | 0.042 |
College | −0.44 | 0.23 | −0.89 to 0.01 | 0.057 |
Graduate | reference | -- | -- | |
Ethnicity | ||||
Caucasian | reference | -- | -- | |
African/Afr-Am | −0.76 | 0.36 | −1.47 to −0.06 | 0.034 |
Hispanic | 0.82 | 0.37 | 0.12 to 1.57 | 0.025 |
Asian | −0.25 | 0.36 | −0.95 to 0.46 | 0.480 |
Other | −0.30 | 0.39 | −1.07 to 0.47 | 0.439 |
Multi-Ethnic | −0.38 | 0.30 | −0.96 to 0.20 | 0.198 |
Sleep, hours | −0.15 | 0.09 | −0.33 to 0.02 | 0.086 |
Physical activity, mins/day | 0.01 | 0.00 | −0.00 to 0.02 | 0.055 |
Vegetarian status | ||||
Non-Vegetarian | reference | -- | -- | |
Vegetarian | 0.21 | 0.31 | −0.39 to 0.83 | 0.490 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segovia-Siapco, G.; Paalani, M.; Oda, K.; Pribis, P.; Sabaté, J. Associations between Avocado Consumption and Diet Quality, Dietary Intake, Measures of Obesity and Body Composition in Adolescents: The Teen Food and Development Study. Nutrients 2021, 13, 4489. https://doi.org/10.3390/nu13124489
Segovia-Siapco G, Paalani M, Oda K, Pribis P, Sabaté J. Associations between Avocado Consumption and Diet Quality, Dietary Intake, Measures of Obesity and Body Composition in Adolescents: The Teen Food and Development Study. Nutrients. 2021; 13(12):4489. https://doi.org/10.3390/nu13124489
Chicago/Turabian StyleSegovia-Siapco, Gina, Michael Paalani, Keiji Oda, Peter Pribis, and Joan Sabaté. 2021. "Associations between Avocado Consumption and Diet Quality, Dietary Intake, Measures of Obesity and Body Composition in Adolescents: The Teen Food and Development Study" Nutrients 13, no. 12: 4489. https://doi.org/10.3390/nu13124489
APA StyleSegovia-Siapco, G., Paalani, M., Oda, K., Pribis, P., & Sabaté, J. (2021). Associations between Avocado Consumption and Diet Quality, Dietary Intake, Measures of Obesity and Body Composition in Adolescents: The Teen Food and Development Study. Nutrients, 13(12), 4489. https://doi.org/10.3390/nu13124489