Association of Reduced Free T3 to Free T4 Ratio with Lower Serum Creatinine in Japanese Hemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Subjects
2.2. Measurement of Thyroid Hormones in Serum
3. Statistical Analysis
4. Results
4.1. Selection of HD Patients for Analysis
4.2. Clinical Characteristics of Euthyroid HD Patients
4.3. Correlation of Serum FT3/FT4 Ratio with Various Clinical Parameters
4.4. Multiple Regression Analysis of Serum Creatinine, Albumin, and CRP with Serum FT3/FT4 Ratio
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rhee, C.M.; Brent, G.A.; Kovesdy, C.P.; Soldin, O.P.; Nguyen, D.; Budoff, M.J.; Brunelli, S.M.; Kalantar-Zadeh, K. Thyroid functional disease: An under-recognized cardiovascular risk factor in kidney disease patients. Nephrol. Dial. Transplant. 2014, 30, 724–737. [Google Scholar] [CrossRef]
- Rhee, C.M.; Kalantar-Zadeh, K.; Streja, E.; Carrero, J.J.; Ma, J.Z.; Lu, J.L.; Kovesdy, C.P. The relationship between thyroid function and esti-mated glomerular filtration rate in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2015, 30, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Song, S.H.; Kwak, I.S.; Lee, N.W.; Kang, Y.H.; Seong, E.Y.; Park, J.S. The prevalence of low triiodothyronine according to the stage of chronic kidney disease in subjects with a normal thyroid-stimulating hormone. Nephrol. Dial. Transplant. 2008, 24, 1534–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surks, M.I.; Ortiz, E.; Daniels, G.H.; Sawin, C.T.; Col, N.F.; Cobin, R.H.; Franklyn, J.A.; Hershman, J.M.; Burman, K.D.; Denke, M.A.; et al. Subclinical thyroid disease: Scientific review and guidelines for diagnosis and management. JAMA 2004, 291, 228–238. [Google Scholar] [CrossRef]
- Danzi, S.; Klein, I. Thyroid Disease and the Cardiovascular System. Endocrinol. Metab. Clin. N. Am. 2014, 43, 517–528. [Google Scholar] [CrossRef]
- Tatar, E.; Kircelli, F.; Asci, G.; Carrero, J.J.; Gungor, O.; Demirci, M.S.; Ozbek, S.S.; Ceylan, N.; Ozkahya, M.; Toz, H.; et al. Associations of Triiodothyronine Levels with Carotid Atherosclerosis and Arterial Stiffness in Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2011, 6, 2240–2246. [Google Scholar] [CrossRef]
- Zoccali, C.; Benedetto, F.; Mallamaci, F.; Tripepi, G.; Cutrupi, S.; Pizzini, P.; Malatino, L.S.; Bonanno, G.; Seminara, G. Low triiodothyronine and cardiomyopathy in patients with end-stage renal disease. J. Hypertens. 2006, 24, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Drechsler, C.; Schneider, A.; Gutjahr-Lengsfeld, L.; Kroiss, M.; Carrero, J.J.; Krane, V.; Allolio, B.; Wanner, C.; Fassnacht, M. Thyroid function, cardiovascular events, and mortality in diabetic hemodialy-sis patients. Am. J. Kidney Dis. 2014, 63, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Utiger, D. Altered thyroid function in nonthyroidal illness and surgery. To treat or not to treat? N. Engl. J. Med. 1995, 333, 1562–1563. [Google Scholar] [CrossRef]
- Lim, V.S. Thyroid function in patients with chronic renal failure. Am. J. Kidney Dis. 2001, 38, S80–S84. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Shoji, T.; Miyashima, M.; Nagata, Y.; Kakutani, Y.; Ochi, A.; Morioka, T.; Nakatani, S.; Mori, K.; Tsujimoto, Y.; et al. Low Free Triiodothyronine Level as a Predictor of Cardiovascular Events and All-Cause Mortality in Patients Undergoing Hemodialysis: The DREAM Cohort. J. Atheroscler. Thromb. 2021, 28, 1071–1082. [Google Scholar] [CrossRef]
- Rhee, C.M. Low-T3 Syndrome in Peritoneal Dialysis: Metabolic Adaptation, Marker of Illness, or Mortality Mediator? Clin. J. Am. Soc. Nephrol. 2015, 10, 917–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvatore, D.; Simonides, W.S.; Dentice, M.; Zavacki, A.M.; Larsen, P.R. Thyroid hormones and skeletal muscle—new insights and potential implications. Nat. Rev. Endocrinol. 2014, 10, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Kong, S.H.; Kim, J.H.; Park, Y.J.; Lee, J.H.; Hong, A.R.; Shin, C.S.; Cho, N.H. Low free T3 to free T4 ratio was associated with low muscle mass and impaired physical performance in community-dwelling aged population. Osteoporos. Int. 2019, 31, 525–531. [Google Scholar] [CrossRef]
- Zupo, R.; Castellana, F.; Sardone, R.; Lampignano, L.; Paradiso, S.; Giagulli, V.A.; Triggiani, V.; Di Lorenzo, L.; Giannelli, G.; De Pergola, G. Higher Muscle Mass Implies Increased Free-Thyroxine to Free-Triiodothyronine Ratio in Sub-jects with Overweight and Obesity. Front Endocrinol. 2020, 11, 565065. [Google Scholar] [CrossRef]
- Nakaya, R.; Shoji, T.; Nagata, Y.; Nakatani, S.; Mori, K.; Morioka, T.; Tsujimoto, Y.; Emoto, M. Associations of Serum Insulin-Like Growth Factor 1 with New Cardiovascular Events and Subsequent Death in Hemodialysis Patients: The DREAM Cohort. J. Atheroscler. Thromb. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Sasaki, K.; Shoji, T.; Kabata, D.; Shintani, A.; Okute, Y.; Tsuchikura, S.; Shimomura, N.; Tujimoto, Y.; Nakatani, S.; Mori, K.; et al. Oxidative Stress and Inflammation as Predictors of Mortality and Cardiovascular Events in Hemodialysis Patients: The DREAM Cohort. J. Atheroscler. Thromb. 2021, 28, 249–260. [Google Scholar] [CrossRef]
- Inaba, M.; Kumeda, Y.; Yamada, S.; Toi, N.; Hamai, C.; Noguchi, K.; Yasuda, E.; Furumitsu, Y.; Emoto, M.; Ohno, Y. Association of higher arterial ketone body ratio (acetoacetate/β-hydroxybutyrate) with relevant nutritional marker in hemodialysis patients. BMC Nephrol. 2020, 21, 510. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Yamamoto, S.; Fukuma, S.; Nakano, T.; Tsuruya, K.; Inaba, M. Geriatric Nutritional Risk Index (GNRI) and Creatinine Index Equally Predict the Risk of Mortality in Hemodialysis Patients: J-DOPPS. Sci. Rep. 2020, 10, 5756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, M.-T.; Tseng, W.-C.; Ou, S.-M.; Lee, K.-H.; Yang, C.-Y.; Tarng, D.-C. Comparison of Simplified Creatinine Index and Systemic Inflammatory Markers for Nutritional Evaluation of Hemodialysis Patients. Nutrients 2021, 13, 1870. [Google Scholar] [CrossRef]
- Mebis, L.; van den Berghe, G. Thyroid axis function and dysfunction in critical illness. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 745–757. [Google Scholar] [CrossRef]
- Gilani, N.; Wang, K.; Muncan, A.; Peter, J.; An, S.; Bhatti, S.; Pandya, K.; Zhang, Y.; Tang, Y.D.; Gerdes, A.M.; et al. Triiodothyronine maintains cardiac transverse-tubule structure and function. J. Mol. Cell. Cardioll. 2021, 160, 1–14. [Google Scholar] [CrossRef]
- Park, S.Y.; Park, S.E.; Jung, S.W.; Jin, H.S.; Park, I.B.; Ahn, S.V.; Lee, S. Free triiodothyronine/free thyroxine ratio rather than thyrotropin is more associated with metabolic parameters in healthy euthyroid adult subjects. Clin. Endocrinol. 2017, 87, 87–96. [Google Scholar] [CrossRef]
- Nagasaki, T.; Inaba, M.; Henmi, Y.; Kumeda, Y.; Ueda, M.; Tahara, H.; Sugiguchi, S.; Fujiwara, S.; Emoto, M.; Ishimura, E.; et al. Decrease in carotid intima-media thickness in hypothyroid patients after normalization of thyroid function. Clin. Endocrinol. 2003, 59, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Mariani, L.H.; Berns, J.S. The Renal Manifestations of Thyroid Disease. J. Am. Soc. Nephrol. 2011, 23, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Ichii, M.; Mori, K.; Miyaoka, D.; Sonoda, M.; Tsujimoto, Y.; Nakatani, S.; Shoji, T.; Emoto, M. Suppression of thyrotropin secretion during roxadustat treatment for renal anemia in a patient un-dergoing hemodialysis. BMC Nephrol. 2021, 22, 104. [Google Scholar] [CrossRef] [PubMed]
- Inaba, M.; Kurajoh, M.; Okuno, S.; Imanishi, Y.; Yamada, S.; Mori, K.; Ishimura, E.; Yamakawa, T.; Nishizawa, Y. Poor muscle quality rather than reduced lean body mass is responsible for the lower serum creatinine level in hemodialysis patients with diabetes mellitus. Clin. Nephrol. 2010, 74, 266–272. [Google Scholar]
- Yoda, M.; Inaba, M.; Okuno, S.; Yoda, K.; Yamada, S.; Imanishi, Y.; Mori, K.; Shoji, T.; Ishimura, E.; Yamakawa, T.; et al. Poor muscle quality as a predictor of high mortality independent of diabetes in hemodialysis patients. Biomed. Pharmacother. 2012, 66, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, R.; De Stefano, M.A.; Di Girolamo, D.; Salvatore, D. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells. Mol. Cell. Endocrinol. 2017, 459, 79–83. [Google Scholar] [CrossRef]
- Dentice, M.; Marsili, A.; Ambrosio, R.; Guardiola, O.; Sibilio, A.; Paik, J.H.; Minchiotti, G.; DePinho, R.A.; Fenzi, G.; Larsen, P.R.; et al. The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J. Clin Investig. 2010, 120, 4021–4030. [Google Scholar] [CrossRef]
- Larsen, P.R.; Davies, T.F.; Schlumberger, M.-J.; Hay, I.D. Thyroid physiology and diagnostic evaluation of patients with thyroid dis-orders. In Williams Textbook of Endocrinology; Larsen, P.R., Kronenberg, H.M., Melmed, S., Polonsky, K.S., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2003; pp. 331–373. [Google Scholar]
- Maia, A.L.; Kim, B.W.; Huang, S.A.; Harney, J.W.; Larsen, P.R. Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J. Clin. Investig. 2005, 115, 2524–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergi, G.; Coin, A.; Bussolotto, M.; Benincà, P.; Tomasi, G.; Pisent, C.; Peruzza, S.; Inelmen, E.M.; Enzi, G. Influence of fat-free mass and functional status on resting energy expenditure in underweight elders. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2002, 57, M302–M307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoccali, C.; Mallamaci, F.; Tripepi, G.; Cutrupi, S.; Pizzini, P. Low triiodothyronine and survival in end-stage renal disease. Kidney Int. 2006, 70, 523–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
n | 332 |
---|---|
Gender (M/F) | 214/118 |
Age (years) | 59.9 ± 11.5 |
DM, n (%) | 78 (23.5) |
HD duration, [months (IQR)] | 101.5 (42.0–171.5) |
BMI (kg/m2) | 22.1 ± 2.9 |
Systolic BP (mmHg) | 151.9 ± 18.0 |
Diastolic BP (mmHg) | 78.0 ± 7.4 |
Kt/V | 1.4 ± 0.3 |
Cardiothoracic ratio (%) | 49.0 ± 4.9 |
Creatinine (mg/dL) | 12.2 ± 2.8 |
Total Protein (g/dL) | 6.6 ± 0.5 |
Albumin (g/dL) | 3.7 ± 0.3 |
CRP [mg/dL (IQR)] | 0.14 (0.05–0.34) |
Total cholesterol (mg/dL) | 161.8 ± 35.3 |
HDL cholesterol (mg/dL) | 46.0 ± 13.9 |
LDL cholesterol (mg/dL) | 91.0 ± 28.1 |
PTH intact [pg/mL(IQR)] | 120.0 (42.5–219.0) |
TSH (μIU/mL) | 2.0 ± 0.9 |
FT4 (ng/dL) | 0.9 ± 0.1 |
FT3 (pg/mL) | 2.2 ± 0.3 |
FT3/FT4 ratio [(pg/mL)/(ng/dL)] | 2.3 ± 0.5 |
FT3/FT4 Ratio | |||||||
---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
Gender (m/f = 1/2) | −0.230 * | −0.285 * | −0.292 * | −0.231 * | −0.241 * | −0.292 * | −0.240 * |
Age (years) | −0.108 | −0.179 * | −0.163 * | −0.106 | −0.091 | −0.163 * | −0.097 |
DM (non-DM/DM = 0/1) | −0.022 | −0.058 | −0.056 | −0.021 | −0.022 | −0.056 | −0.023 |
Log HD duration | −0.017 | −0.003 | 0.006 | −0.016 | −0.006 | 0.006 | −0.008 |
BMI | 0.049 | 0.074 | 0.093 | 0.050 | 0.071 | 0.093 | 0.069 |
SBP | −0.117 * | −0.106 | −0.100 | −0.118 * | −0.116 * | −0.099 | −0.111 |
Kt/V | 0.072 | 0.066 | 0.061 | 0.072 | 0.069 | 0.061 | 0.068 |
Creatinine | 0.171 * | ― | ― | 0.169 * | 0.153 * | ― | 0.157 * |
Albumin | ― | 0.033 | ― | 0.005 | ― | −0.001 | −0.023 |
Log CRP | ― | ― | −0.109 * | ― | −0.092 | −0.109 | −0.098 |
r2 (p) | 0.161 (<0.0001) | 0.147 (<0.0001) | 0.157 (<0.0001) | 0.161 (<0.0001) | 0.168 (<0.0001) | 0.157 (<0.0001) | 0.169 (<0.0001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inaba, M.; Mori, K.; Tsujimoto, Y.; Yamada, S.; Yamazaki, Y.; Emoto, M.; Shoji, T. Association of Reduced Free T3 to Free T4 Ratio with Lower Serum Creatinine in Japanese Hemodialysis Patients. Nutrients 2021, 13, 4537. https://doi.org/10.3390/nu13124537
Inaba M, Mori K, Tsujimoto Y, Yamada S, Yamazaki Y, Emoto M, Shoji T. Association of Reduced Free T3 to Free T4 Ratio with Lower Serum Creatinine in Japanese Hemodialysis Patients. Nutrients. 2021; 13(12):4537. https://doi.org/10.3390/nu13124537
Chicago/Turabian StyleInaba, Masaaki, Katsuhito Mori, Yoshihiro Tsujimoto, Shinsuke Yamada, Yuko Yamazaki, Masanori Emoto, and Tetsuo Shoji. 2021. "Association of Reduced Free T3 to Free T4 Ratio with Lower Serum Creatinine in Japanese Hemodialysis Patients" Nutrients 13, no. 12: 4537. https://doi.org/10.3390/nu13124537
APA StyleInaba, M., Mori, K., Tsujimoto, Y., Yamada, S., Yamazaki, Y., Emoto, M., & Shoji, T. (2021). Association of Reduced Free T3 to Free T4 Ratio with Lower Serum Creatinine in Japanese Hemodialysis Patients. Nutrients, 13(12), 4537. https://doi.org/10.3390/nu13124537