Bridging Policy and Service Performance of Hospital-Based Nutrition Support by Healthcare Information Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Period
2.2. Study Site and Healthcare Information Technology
2.3. Interventions
2.3.1. Enhanced Nutrition Support Practice
2.3.2. Enhanced NST−HIT Components
- Component 1: Establishment of an Integrated NST Patient Management Program
- Component 2: Upgrade of NST Attending Physicians’ Response Steps
- Component 3: Construction of a Clinical Data Warehouse
2.3.3. Promotion of NST to Clinical Departments
2.4. Outcomes
2.5. Statistical Analysis
2.6. Ethics Approval and Consent to Participate
3. Results
3.1. Changes in the Timely Completion Rate of NST Consultation
3.2. Response Time by Professionals
3.3. Changes in the NST Reimbursement Rate
3.4. Duration of TPN Order by Ward Physicians
3.5. Length of Hospital Stay for Patients Receiving NST Services
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
NSI = Age × 1 + BMI × 1.5 + Serum Albumin × 2 + TLC × 1.5 |
---|
Age (years) > 65; 1, ≤65; 2 BMI (kg/m2) < 18.5; 1, ≥18.5; 2 Serum albumin (g/dl) < 3.5; 1, ≥3.5; 2 TLC (cells/mm3) < 900; 1, ≥900; 2 |
Group | n | Mean (SD) | t | p-Value |
---|---|---|---|---|
Pre-intervention 1 | 1262 | 22.81 (21.80) | 4.421 | <0.001 |
Post-intervention 2 | 1389 | 18.19 (20.38) |
Group | n | Mean (SD) | t | p-Value |
---|---|---|---|---|
Pre-intervention 1 | 1171 | 32.87 (28.55) | 2.358 | <0.05 |
Post-intervention 2 | 2171 | 30.42 (28.61) |
References
- Ruiz, A.J.; Buitrago, G.; Rodriguez, N.; Gomez, G.; Sulo, S.; Gomez, C.; Partridge, J.; Misas, J.; Dennis, R.; Alba, M.J.; et al. Clinical and economic outcomes associated with malnutrition in hospitalized patients. Clin. Nutr. 2019, 38, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
- Jie, B.; Jiang, Z.M.; Nolan, M.T.; Zhu, S.N.; Yu, K.; Kondrup, J. Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk. Nutrition 2012, 28, 1022–1027. [Google Scholar] [CrossRef]
- Lee, J.S.; Kang, J.E.; Park, S.H.; Jin, H.K.; Jang, S.M.; Kim, S.A.; Rhie, S.J. Nutrition and clinical outcomes of nutrition support in multidisciplinary team for critically ill patients. Nutr. Clin. Pract. 2018, 33, 633–639. [Google Scholar] [CrossRef]
- Sriram, K.; Sulo, S.; VanDerBosch, G.; Partridge, J.; Feldstein, J.; Hegazi, R.A.; Summerfelt, W.T. A comprehensive nutrition-focused quality improvement program reduces 30-day readmissions and length of stay in hospitalized patients. JPEN J. Parenter. Enteral. Nutr. 2017, 41, 384–391. [Google Scholar] [CrossRef]
- Lakdawalla, D.N.; Mascarenhas, M.; Jena, A.B.; Vanderpuye-Orgle, J.; LaVallee, C.; Linthicum, M.T.; Snider, J.T. Impact of oral nutrition supplements on hospital outcomes in pediatric patients. JPEN J. Parenter. Enteral. Nutr. 2014, 38, 42S–49S. [Google Scholar] [CrossRef] [PubMed]
- Bally, M.R.; Blaser Yildirim, P.Z.; Bounoure, L.; Gloy, V.L.; Mueller, B.; Briel, M.; Schuetz, P. Nutritional support and outcomes in malnourished medical inpatients: A systematic review and meta-analysis. JAMA Intern. Med. 2016, 176, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Shang, E.; Hasenberg, T.; Schlegel, B.; Sterchi, A.B.; Schindler, K.; Druml, W.; Koletzko, B.; Meier, R. An European survey of structure and organisation of nutrition support teams in Germany, Austria and Switzerland. Clin. Nutr. 2005, 24, 1005–1013. [Google Scholar] [CrossRef]
- Cong, M.-H.; Li, S.-L.; Cheng, G.-W.; Liu, J.-Y.; Song, C.-X.; Deng, Y.-B.; Shang, W.-H.; Yang, D.; Liu, X.-H.; Liu, W.-W.; et al. An Interdisciplinary Nutrition Support Team Improves Clinical and Hospitalized Outcomes of Esophageal Cancer Patients with Concurrent Chemoradiotherapy. Chin. Med. J. 2015, 128, 3003. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.; Baumgartner, A.; Bounoure, L.; Bally, M.; Deutz, N.E.; Greenwald, J.L.; Stanga, Z.; Mueller, B.; Schuetz, P. Association of Nutritional Support With Clinical Outcomes Among Medical Inpatients Who Are Malnourished or at Nutritional Risk: An Updated Systematic Review and Meta-analysis. JAMA Netw Open 2019, 2, e1915138. [Google Scholar] [CrossRef] [Green Version]
- Shin, B.C.; Chun, I.A.; Ryu, S.Y.; Oh, J.E.; Choi, P.K.; Kang, H.G. Association between indication for therapy by nutrition support team and nutritional status. Medicine 2018, 97, e13932. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, J. Nutrition support teams: How they work, are set up and maintained. Frontline Gastroenterol. 2010, 1, 171–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duerksen, D.R.; Keller, H.H.; Vesnaver, E.; Allard, J.P.; Bernier, P.; Gramlich, L.; Payette, H.; Laporte, M.; Jeejeebhoy, K. Physicians’ perceptions regarding the detection and management of malnutrition in Canadian hospitals. JPEN J. Parenter. Enteral. Nutr. 2015, 39, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Gurses, A.P.; Xiao, Y. A systematic review of the literature on multidisciplinary rounds to design information technology. J. Am. Med. Inform. Assoc. 2006, 13, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.Y.; Hwang, H.; Jheon, S.H. Hospital information systems: Experience at the fully digitized Seoul National University Bundang Hospital. J. Thorac. Dis. 2016, 8 (Suppl. S8), S637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kim, S.; Sohn, C. Development of Nutrition Screening Index for Hospitalized Patients. Korean J. Community Nutr. 2006, 11, 779–784. [Google Scholar]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Kim, S.; Yeom, H.; Park, Y.; Chung, S.; Shin, A.; Han, H.; Park, D. Comparison of Tools for Nutritional Risk Screening at Hospital Admission. Korean J. Nutr. 2009, 2, 6–12. [Google Scholar] [CrossRef]
- Turley, C.B.; Obeid, J.; Larsen, R.; Fryar, K.M.; Lenert, L.; Bjorn, A.; Lyons, G.; Moskowitz, J.; Sanderson, I. Leveraging a statewide clinical data warehouse to expand boundaries of the learning health system. eGEMs 2016, 4, 1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jannot, A.S.; Zapletal, E.; Avillach, P.; Mamzer, M.F.; Burgun, A.; Degoulet, P. The Georges Pompidou University Hospital Clinical Data Warehouse: A 8-years follow-up experience. Int. J. Med. Inform. 2017, 102, 21–28. [Google Scholar] [CrossRef]
- Wagner, A.K.; Soumerai, S.B.; Zhang, F.; Ross-Degnan, D. Segmented regression analysis of interrupted time series studies in medication use research. J. Clin. Pharm. Ther. 2002, 27, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Langley, J.; Beasley, C. Health Information Technology for Improving Quality of Care in Primary Care Settings; Prepared by the Institute for Healthcare Improvement for the National Opinion Research Center under contract no. 290-04-0016, AHRQ Publication no. 07-0079-EF.; Agency for Healthcare Research and Quality: Rockville, MD, USA, July 2007. [Google Scholar]
- West, C.P.; Dyrbye, L.N.; Shanafelt, T.D. Physician burnout: Contributors, consequences and solutions. J. Intern. Med. 2018, 283, 516–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD. OECD.Stat—Health Status. Available online: https://stats.oecd.org/index.aspx?DataSetCode=HEALTH_STAT (accessed on 9 March 2019).
- Sheikh, A.; Sood, H.S.; Bates, D.W. Leveraging health information technology to achieve the “triple aim” of healthcare reform. J. Am. Med. Inform. Assoc. 2015, 22, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Dreyfus, D. Technology alignment in the presence of regulatory changes: The case of meaningful use of information technology in healthcare. Int. J. Med. Inform. 2018, 110, 42–51. [Google Scholar] [CrossRef]
- Wager, K.A.; Lee, F.W.; Glaser, J.P. Health Care Information Systems: A Practical Approach for Health Care Management, 2nd ed.; Jossey-Bass: 989 Market Street, San Francisco, CA, USA, 2017. [Google Scholar]
- Hynes, D.M.; Perrin, R.A.; Rappaport, S.; Stevens, J.M.; Demakis, J.G. Informatics resources to support health care quality improvement in the Veterans Health Administration. J. Am. Med. Inform. Assoc. 2004, 11, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Epstein, R.M.; Street, R.L., Jr. The values and value of patient-centered care. Ann. Fam. Med. 2011, 9, 100–103. [Google Scholar] [CrossRef] [Green Version]
- Constand, M.K.; MacDermid, J.C.; Dal Bello-Haas, V.; Law, M. Scoping review of patient-centered care approaches in healthcare. BMC Health Serv. Res. 2014, 14, 271. [Google Scholar] [CrossRef] [Green Version]
- Bozzetti, F.; Forbes, A. The ESPEN clinical practice Guidelines on Parenteral Nutrition: Present status and perspectives for future research. Clin. Nutr. 2009, 28, 359–364. [Google Scholar] [CrossRef]
- Grol, R.; Grimshaw, J. From best evidence to best practice: Effective implementation of change in patients’ care. Lancet 2003, 362, 1225–1230. [Google Scholar] [CrossRef]
- Haines, A.; Kuruvilla, S.; Borchert, M. Bridging the implementation gap between knowledge and action for health. Bull. World Health Organ. 2004, 82, 724–731, discussion 732. [Google Scholar]
- Haynes, B.; Haines, A. Barriers and bridges to evidence based clinical practice. BMJ 1998, 317, 273–276. [Google Scholar] [CrossRef]
Outcomes | Pre-Intervention (1 January 2015−31 December 2015) Mean (SD) | Post-Intervention (1 July 2016−31 December 2018) Mean (SD) | p-Value | Mean Difference |
---|---|---|---|---|
Timely completion rate of NST consultation (%) | 45.00 (8.24) | 82.36 (4.68) | <0.001 | 37.36 |
Response time by professionals (hours) | ||||
NST physicians | 71.77 (29.98) | 19.76 (4.64) | <0.001 | −52.01 |
NST nurses | 35.32 (10.29) | 14.49 (6.20) | <0.001 | −20.83 |
NST pharmacists | 13.30 (1.87) | 13.03 (1.34) | 0.604 | −0.27 |
NST dietitian | 8.88 (1.13) | 8.39 (0.90) | 0.150 | −0.49 |
Reimbursement rate (%) | 51.36 (9.29) | 78.65 (4.17) | <0.001 | 27.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.; Park, Y.S.; Park, D.J.; Kim, S.; Lee, H.; Kim, M.; Lee, E.; Lee, H.-Y.; Lee, E. Bridging Policy and Service Performance of Hospital-Based Nutrition Support by Healthcare Information Technology. Nutrients 2021, 13, 595. https://doi.org/10.3390/nu13020595
Cho J, Park YS, Park DJ, Kim S, Lee H, Kim M, Lee E, Lee H-Y, Lee E. Bridging Policy and Service Performance of Hospital-Based Nutrition Support by Healthcare Information Technology. Nutrients. 2021; 13(2):595. https://doi.org/10.3390/nu13020595
Chicago/Turabian StyleCho, Jungwon, Young Suk Park, Do Joong Park, Soyeon Kim, Haekyung Lee, Minjeong Kim, Eunsook Lee, Ho-Young Lee, and Euni Lee. 2021. "Bridging Policy and Service Performance of Hospital-Based Nutrition Support by Healthcare Information Technology" Nutrients 13, no. 2: 595. https://doi.org/10.3390/nu13020595
APA StyleCho, J., Park, Y. S., Park, D. J., Kim, S., Lee, H., Kim, M., Lee, E., Lee, H. -Y., & Lee, E. (2021). Bridging Policy and Service Performance of Hospital-Based Nutrition Support by Healthcare Information Technology. Nutrients, 13(2), 595. https://doi.org/10.3390/nu13020595