Creatine Supplementation in Children and Adolescents
Abstract
:1. Introduction
2. Effects of Creatine Supplementation on Creatine Content
3. Prevalence of Use among Adolescents
4. Performance Benefits
5. Clinical Applications
6. Safety
7. Practical Recommendations and Future Directions
- “Creatine monohydrate is the most effective ergogenic nutritional supplement currently available to athletes with the intent of increasing high intensity exercise capacity and lean body mass during training.”
- “Creatine monohydrate supplementation is not only safe, but has been reported to have a number of therapeutic benefits in healthy and diseased populations ranging from infants to the elderly. There is no compelling scientific evidence that the short- or long-term use of creatine monohydrate (up to 30 g/day for 5 years) has any detrimental effects on otherwise healthy individuals or among clinical populations who may benefit from creatine supplementation.”
- “If proper precautions and supervision are provided, creatine monohydrate supplementation in children and adolescent athletes is acceptable and may provide a nutritional alternative with a favorable safety profile to potentially dangerous anabolic androgenic drugs. However, we recommend that creatine supplementation only be considered for use by younger athletes who: (a) are involved in serious/competitive supervised training; (b) are consuming a well-balanced and performance-enhancing diet; (c) are knowledgeable about the appropriate use of creatine; and (d) do not exceed recommended dosages.”
- “Label advisories on creatine products that caution against usage by those under 18 years old, while perhaps intended to insulate their manufacturers from legal liability, are likely unnecessary given the science supporting creatine’s safety, including in children and adolescents. The quickest method of increasing muscle creatine stores may be to consume ~0.3 g/kg/day of creatine monohydrate for 5–7-days followed by 3–5 g/day thereafter to maintain elevated stores. Initially, ingesting smaller amounts of creatine monohydrate (e.g., 3–5 g/day) will increase muscle creatine stores over a 3–4 week period, however, the initial performance effects of this method of supplementation are less supported.”
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef]
- Hultman, E.; Soderlund, K.; Timmons, J.A.; Cederblad, G.; Greenhaff, P.L. Muscle creatine loading in men. J. Appl. Physiol. 1996, 81, 232–237. [Google Scholar] [CrossRef]
- Harris, R.C.; Soderlund, K.; Hultman, E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci. 1992, 83, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Jagim, A.R.; Oliver, J.M.; Sanchez, A.; Galvan, E.; Fluckey, J.; Riechman, S.; Greenwood, M.; Kelly, K.; Meininger, C.; Rasmussen, C.; et al. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate. J. Int. Soc. Sports Nutr. 2012, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Kreider, R.B. Effects of creatine supplementation on performance and training adaptations. Mol. Cell. Biochem. 2003, 244, 89–94. [Google Scholar] [CrossRef]
- Preen, D.; Dawson, B.; Goodman, C.; Beilby, J.; Ching, S. Creatine supplementation: A comparison of loading and maintenance protocols on creatine uptake by human skeletal muscle. Int. J. Sport. Nutr. Exerc. Metab. 2003, 13, 97–111. [Google Scholar] [CrossRef]
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Prevalence of Dietary Supplement Use by Athletes: Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Unnithan, V.B.; Veehof, S.H.; Vella, C.A.; Kern, M. Is there a physiologic basis for creatine use in children and adolescents? J. Strength Cond. Res. 2001, 15, 524–528. [Google Scholar]
- Banerjee, B.; Sharma, U.; Balasubramanian, K.; Kalaivani, M.; Kalra, V.; Jagannathan, N.R. Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: A randomized, placebo-controlled 31P MRS study. Magn. Reson. Imaging 2010, 28, 698–707. [Google Scholar] [CrossRef]
- Solis, M.Y.; Artioli, G.G.; Otaduy, M.C.G.; Leite, C.D.C.; Arruda, W.; Veiga, R.R.; Gualano, B. Effect of age, diet, and tissue type on PCr response to creatine supplementation. J. Appl. Physiol. 2017, 123, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Burke, D.G.; Chilibeck, P.D.; Parise, G.; Candow, D.G.; Mahoney, D.; Tarnopolsky, M. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med. Sci. Sports Exerc. 2003, 35, 1946–1955. [Google Scholar] [CrossRef]
- Solis, M.Y.; Hayashi, A.P.; Artioli, G.G.; Roschel, H.; Sapienza, M.T.; Otaduy, M.C.; De Sa Pinto, A.L.; Silva, C.A.; Sallum, A.M.; Pereira, R.M.; et al. Efficacy and safety of creatine supplementation in juvenile dermatomyositis: A randomized, double-blind, placebo-controlled crossover trial. Muscle Nerve 2016, 53, 58–66. [Google Scholar] [CrossRef]
- Hayashi, A.P.; Solis, M.Y.; Sapienza, M.T.; Otaduy, M.C.; de Sa Pinto, A.L.; Silva, C.A.; Sallum, A.M.; Pereira, R.M.; Gualano, B. Efficacy and safety of creatine supplementation in childhood-onset systemic lupus erythematosus: A randomized, double-blind, placebo-controlled, crossover trial. Lupus 2014, 23, 1500–1511. [Google Scholar] [CrossRef]
- Ndika, J.D.; Johnston, K.; Barkovich, J.A.; Wirt, M.D.; O’Neill, P.; Betsalel, O.T.; Jakobs, C.; Salomons, G.S. Developmental progress and creatine restoration upon long-term creatine supplementation of a patient with arginine:glycine amidinotransferase deficiency. Mol. Genet. Metab. 2012, 106, 48–54. [Google Scholar] [CrossRef]
- Clark, J.F.; Cecil, K.M. Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes. Pediatr. Res. 2015, 77, 398–405. [Google Scholar] [CrossRef]
- van de Kamp, J.M.; Pouwels, P.J.; Aarsen, F.K.; ten Hoopen, L.W.; Knol, D.L.; de Klerk, J.B.; de Coo, I.F.; Huijmans, J.G.; Jakobs, C.; van der Knaap, M.S.; et al. Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect. J. Inherit. Metab. Dis. 2012, 35, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Merege-Filho, C.A.; Otaduy, M.C.; de Sa-Pinto, A.L.; de Oliveira, M.O.; de Souza Goncalves, L.; Hayashi, A.P.; Roschel, H.; Pereira, R.M.; Silva, C.A.; Brucki, S.M.; et al. Does brain creatine content rely on exogenous creatine in healthy youth? A proof-of-principle study. Appl. Physiol. Nutr. Metab. 2017, 42, 128–134. [Google Scholar] [CrossRef]
- Dolan, E.; Gualano, B.; Rawson, E.S. Beyond muscle: The effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. Eur. J. Sport Sci. 2019, 19, 1–14. [Google Scholar] [CrossRef]
- Ray, T.R.; Eck, J.C.; Covington, L.A.; Murphy, R.B.; Williams, R.; Knudtson, J. Use of oral creatine as an ergogenic aid for increased sports performance: Perceptions of adolescent athletes. South Med. J. 2001, 94, 608–612. [Google Scholar] [CrossRef]
- McGuine, T.A.; Sullivan, J.C.; Bernhardt, D.A. Creatine supplementation in Wisconsin high school athletes. WMJ 2002, 101, 25–30. [Google Scholar]
- Bell, A.; Dorsch, K.D.; McCreary, D.R.; Hovey, R. A look at nutritional supplement use in adolescents. J. Adolesc. Health 2004, 34, 508–516. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Faigenbaum, A.D.; Ratamess, N.A.; Ross, R.; Kang, J.; Tenenbaum, G. Nutritional supplementation and anabolic steroid use in adolescents. Med. Sci. Sports Exerc. 2008, 40, 15–24. [Google Scholar] [CrossRef]
- Evans, M.W., Jr.; Ndetan, H.; Perko, M.; Williams, R.; Walker, C. Dietary supplement use by children and adolescents in the United States to enhance sport performance: Results of the National Health Interview Survey. J. Prim. Prev. 2012, 33, 3–12. [Google Scholar] [CrossRef]
- Yager, Z.; McLean, S. Muscle building supplement use in Australian adolescent boys: Relationships with body image, weight lifting, and sports engagement. BMC Pediatr. 2020, 20, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, J.M.; Ganson, K.T.; Gorrell, S.; Mitchison, D.; Murray, S.B. Association Between Legal Performance-Enhancing Substances and Use of Anabolic-Androgenic Steroids in Young Adults. JAMA Pediatr. 2020, 174, 992–993. [Google Scholar] [CrossRef]
- Petroczi, A.; Naughton, D.P.; Mazanov, J.; Holloway, A.; Bingham, J. Performance enhancement with supplements: Incongruence between rationale and practice. J. Int. Soc. Sports Nutr. 2007, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petroczi, A.; Naughton, D.P. The age-gender-status profile of high performing athletes in the UK taking nutritional supplements: Lessons for the future. J. Int. Soc. Sports Nutr. 2008, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Jovanov, P.; Dordic, V.; Obradovic, B.; Barak, O.; Pezo, L.; Maric, A.; Sakac, M. Prevalence, knowledge and attitudes towards using sports supplements among young athletes. J. Int. Soc. Sports Nutr. 2019, 16, 27. [Google Scholar] [CrossRef] [Green Version]
- Braun, H.; Koehler, K.; Geyer, H.; Kleiner, J.; Mester, J.; Schanzer, W. Dietary supplement use among elite young German athletes. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Calfee, R.; Fadale, P. Popular ergogenic drugs and supplements in young athletes. Pediatrics 2006, 117, e577–e589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DesJardins, M. Supplement use in the adolescent athlete. Curr. Sports Med. Rep. 2002, 1, 369–373. [Google Scholar] [CrossRef]
- Diehl, K.; Thiel, A.; Zipfel, S.; Mayer, J.; Schnell, A.; Schneider, S. Elite adolescent athletes’ use of dietary supplements: Characteristics, opinions, and sources of supply and information. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 165–174. [Google Scholar] [CrossRef]
- Grindstaff, P.D.; Kreider, R.; Bishop, R.; Wilson, M.; Wood, L.; Alexander, C.; Almada, A. Effects of creatine supplementation on repetitive sprint performance and body composition in competitive swimmers. Int. J. Sport Nutr. 1997, 7, 330–346. [Google Scholar] [CrossRef]
- Juhasz, I.; Gyore, I.; Csende, Z.; Racz, L.; Tihanyi, J. Creatine supplementation improves the anaerobic performance of elite junior fin swimmers. Acta Physiol. Hung. 2009, 96, 325–336. [Google Scholar] [CrossRef]
- Theodorou, A.S.; Havenetidis, K.; Zanker, C.L.; O’Hara, J.P.; King, R.F.; Hood, C.; Paradisis, G.; Cooke, C.B. Effects of acute creatine loading with or without carbohydrate on repeated bouts of maximal swimming in high-performance swimmers. J. Strength Cond. Res. 2005, 19, 265–269. [Google Scholar] [CrossRef]
- Dawson, B.; Vladich, T.; Blanksby, B.A. Effects of 4 weeks of creatine supplementation in junior swimmers on freestyle sprint and swim bench performance. J. Strength Cond. Res. 2002, 16, 485–490. [Google Scholar]
- Theodorou, A.S.; Cooke, C.B.; King, R.F.; Hood, C.; Denison, T.; Wainwright, B.G.; Havenetidis, K. The effect of longer-term creatine supplementation on elite swimming performance after an acute creatine loading. J. Sports Sci. 1999, 17, 853–859. [Google Scholar] [CrossRef]
- Juhasz, I.; Kopkane, J.P.; Hajdu, P.; Szalay, G.; Kopper, B.; Tihanyi, J. Creatine Supplementation Supports the Rehabilitation of Adolescent Fin Swimmers in Tendon Overuse Injury Cases. J. Sports Sci. Med. 2018, 17, 279–288. [Google Scholar]
- Mohebbi, H.; Rahnama, N.; Moghadassi, M.; Ranjbar, K. Effect of creatine supplementation on sprint and skill performance in young soccer players. Middle East J. Sci. Res. 2012, 12, 397–401. [Google Scholar] [CrossRef]
- Ostojic, S.M. Creatine supplementation in young soccer players. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 95–103. [Google Scholar] [CrossRef]
- Yanez-Silva, A.; Buzzachera, C.F.; Picarro, I.D.C.; Januario, R.S.B.; Ferreira, L.H.B.; McAnulty, S.R.; Utter, A.C.; Souza-Junior, T.P. Effect of low dose, short-term creatine supplementation on muscle power output in elite youth soccer players. J. Int. Soc. Sports Nutr. 2017, 14, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claudino, J.G.; Mezencio, B.; Amaral, S.; Zanetti, V.; Benatti, F.; Roschel, H.; Gualano, B.; Amadio, A.C.; Serrao, J.C. Creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players. J. Int. Soc. Sports Nutr. 2014, 11, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagim, A.R.; Stecker, R.A.; Harty, P.S.; Erickson, J.L.; Kerksick, C.M. Safety of Creatine Supplementation in Active Adolescents and Youth: A Brief Review. Front. Nutr. 2018, 5, 115. [Google Scholar] [CrossRef]
- Kley, R.A.; Tarnopolsky, M.A.; Vorgerd, M. Creatine for treating muscle disorders. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A.; Mahoney, D.J.; Vajsar, J.; Rodriguez, C.; Doherty, T.J.; Roy, B.D.; Biggar, D. Creatine monohydrate enhances strength and body composition in Duchenne muscular dystrophy. Neurology 2004, 62, 1771–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarnopolsky, M.A. Clinical use of creatine in neuromuscular and neurometabolic disorders. Subcell. Biochem. 2007, 46, 183–204. [Google Scholar] [CrossRef]
- Evangeliou, A.; Vasilaki, K.; Karagianni, P.; Nikolaidis, N. Clinical applications of creatine supplementation on paediatrics. Curr. Pharm. Biotechnol. 2009, 10, 683–690. [Google Scholar] [CrossRef]
- Louis, M.; Poortmans, J.R.; Francaux, M.; Hultman, E.; Berre, J.; Boisseau, N.; Young, V.R.; Smith, K.; Meier-Augenstein, W.; Babraj, J.A.; et al. Creatine supplementation has no effect on human muscle protein turnover at rest in the postabsorptive or fed states. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E764–E770. [Google Scholar] [CrossRef] [Green Version]
- Escolar, D.M.; Buyse, G.; Henricson, E.; Leshner, R.; Florence, J.; Mayhew, J.; Tesi-Rocha, C.; Gorni, K.; Pasquali, L.; Patel, K.M.; et al. CINRG randomized controlled trial of creatine and glutamine in Duchenne muscular dystrophy. Ann. Neurol. 2005, 58, 151–155. [Google Scholar] [CrossRef]
- Yoganathan, S.; Arunachal, G.; Kratz, L.; Varman, M.; Sudhakar, S.V.; Oommen, S.P.; Jain, S.; Thomas, M.; Babuji, M. Guanidinoacetate Methyltransferase (GAMT) Deficiency, A Cerebral Creatine Deficiency Syndrome: A Rare Treatable Metabolic Disorder. Ann. Indian Acad. Neurol. 2020, 23, 419–421. [Google Scholar] [CrossRef]
- Stockler, S.; Schutz, P.W.; Salomons, G.S. Cerebral creatine deficiency syndromes: Clinical aspects, treatment and pathophysiology. Subcell. Biochem. 2007, 46, 149–166. [Google Scholar] [CrossRef] [PubMed]
- Stockler-Ipsiroglu, S.; van Karnebeek, C.D. Cerebral creatine deficiencies: A group of treatable intellectual developmental disorders. Semin. Neurol. 2014, 34, 350–356. [Google Scholar] [CrossRef]
- Stockler, S.; Holzbach, U.; Hanefeld, F.; Marquardt, I.; Helms, G.; Requart, M.; Hanicke, W.; Frahm, J. Creatine deficiency in the brain: A new, treatable inborn error of metabolism. Pediatr. Res. 1994, 36, 409–413. [Google Scholar] [CrossRef]
- Stockler, S.; Hanefeld, F.; Frahm, J. Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 1996, 348, 789–790. [Google Scholar] [CrossRef]
- Trotier-Faurion, A.; Dezard, S.; Taran, F.; Valayannopoulos, V.; de Lonlay, P.; Mabondzo, A. Synthesis and biological evaluation of new creatine fatty esters revealed dodecyl creatine ester as a promising drug candidate for the treatment of the creatine transporter deficiency. J. Med. Chem. 2013, 56, 5173–5181. [Google Scholar] [CrossRef]
- Trotier-Faurion, A.; Passirani, C.; Bejaud, J.; Dezard, S.; Valayannopoulos, V.; Taran, F.; de Lonlay, P.; Benoit, J.P.; Mabondzo, A. Dodecyl creatine ester and lipid nanocapsule: A double strategy for the treatment of creatine transporter deficiency. Nanomedicine 2014, 10, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Sipila, I.; Rapola, J.; Simell, O.; Vannas, A. Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. N. Engl. J. Med. 1981, 304, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Vannas-Sulonen, K.; Sipila, I.; Vannas, A.; Simell, O.; Rapola, J. Gyrate atrophy of the choroid and retina. A five-year follow-up of creatine supplementation. Ophthalmology 1985, 92, 1719–1727. [Google Scholar] [CrossRef]
- Walter, M.C.; Lochmuller, H.; Reilich, P.; Klopstock, T.; Huber, R.; Hartard, M.; Hennig, M.; Pongratz, D.; Muller-Felber, W. Creatine monohydrate in muscular dystrophies: A double-blind, placebo-controlled clinical study. Neurology 2000, 54, 1848–1850. [Google Scholar] [CrossRef]
- Braegger, C.P.; Schlattner, U.; Wallimann, T.; Utiger, A.; Frank, F.; Schaefer, B.; Heizmann, C.W.; Sennhauser, F.H. Effects of creatine supplementation in cystic fibrosis: Results of a pilot study. J. Cyst. Fibros. 2003, 2, 177–182. [Google Scholar] [CrossRef]
- Louis, M.; Lebacq, J.; Poortmans, J.R.; Belpaire-Dethiou, M.C.; Devogelaer, J.P.; Van Hecke, P.; Goubel, F.; Francaux, M. Beneficial effects of creatine supplementation in dystrophic patients. Muscle Nerve 2003, 27, 604–610. [Google Scholar] [CrossRef]
- Sakellaris, G.; Nasis, G.; Kotsiou, M.; Tamiolaki, M.; Charissis, G.; Evangeliou, A. Prevention of traumatic headache, dizziness and fatigue with creatine administration. A pilot study. Acta Paediatr 2008, 97, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, J.M.; Nagel, K.; Pearce, E.; Wright, M.; Barr, R.D.; Tarnopolsky, M.A. Creatine monohydrate attenuates body fat accumulation in children with acute lymphoblastic leukemia during maintenance chemotherapy. Pediatr. Blood Cancer 2008, 51, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Kalamitsou, S.; Masino, S.; Evangelos, P.; Gogou, M.; Katsanika, I.; Papadopoulou-Legbelou, K.; Aspasia, S.; Spilioti, M.; Evangeliou, A. The effect of creatine supplementation on seizure control in children under ketogenic diet: A pilot study. Integr. Mol. Med. 2019, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dover, S.; Stephens, S.; Schneiderman, J.E.; Pullenayegum, E.; Wells, G.D.; Levy, D.M.; Marcuz, J.A.; Whitney, K.; Schulze, A.; Tein, I.; et al. The effect of creatine supplementation on muscle function in childhood myositis: A randomized, double-blind, placebo-controlled feasibility study. J. Rheumatol. 2020. [Google Scholar] [CrossRef]
- Kemp, G.J.; Taylor, D.J.; Dunn, J.F.; Frostick, S.P.; Radda, G.K. Cellular energetics of dystrophic muscle. J. Neurol. Sci. 1993, 116, 201–206. [Google Scholar] [CrossRef]
- Nanto-Salonen, K.; Komu, M.; Lundbom, N.; Heinanen, K.; Alanen, A.; Sipila, I.; Simell, O. Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology 1999, 53, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Valtonen, M.; Nanto-Salonen, K.; Jaaskelainen, S.; Heinanen, K.; Alanen, A.; Heinonen, O.J.; Lundbom, N.; Erkintalo, M.; Simell, O. Central nervous system involvement in gyrate atrophy of the choroid and retina with hyperornithinaemia. J. Inherit. Metab. Dis. 1999, 22, 855–866. [Google Scholar] [CrossRef]
- Heinanen, K.; Nanto-Salonen, K.; Komu, M.; Erkintalo, M.; Heinonen, O.J.; Pulkki, K.; Valtonen, M.; Nikoskelainen, E.; Alanen, A.; Simell, O. Muscle creatine phosphate in gyrate atrophy of the choroid and retina with hyperornithinaemia--clues to pathogenesis. Eur. J. Clin. Invest. 1999, 29, 426–431. [Google Scholar] [CrossRef]
- Bakian, A.V.; Huber, R.S.; Scholl, L.; Renshaw, P.F.; Kondo, D. Dietary creatine intake and depression risk among U.S. adults. Transl. Psychiatry 2020, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Kious, B.M.; Kondo, D.G.; Renshaw, P.F. Creatine for the Treatment of Depression. Biomolecules 2019, 9, 406. [Google Scholar] [CrossRef] [Green Version]
- Cullen, K.R.; Padilla, L.E.; Papke, V.N.; Klimes-Dougan, B. New Somatic Treatments for Child and Adolescent Depression. Curr. Treat. Options Psychiatry 2019, 6, 380–400. [Google Scholar] [CrossRef]
- Toniolo, R.A.; Silva, M.; Fernandes, F.B.F.; Amaral, J.; Dias, R.D.S.; Lafer, B. A randomized, double-blind, placebo-controlled, proof-of-concept trial of creatine monohydrate as adjunctive treatment for bipolar depression. J. Neural Transm. 2018, 125, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Riesberg, L.A.; Weed, S.A.; McDonald, T.L.; Eckerson, J.M.; Drescher, K.M. Beyond muscles: The untapped potential of creatine. Int. Immunopharmacol. 2016, 37, 31–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Guingand, D.L.; Ellery, S.J.; Davies-Tuck, M.L.; Dickinson, H. Creatine and pregnancy outcomes, a prospective cohort study in low-risk pregnant women: Study protocol. BMJ Open 2019, 9, e026756. [Google Scholar] [CrossRef] [Green Version]
- de Guingand, D.L.; Palmer, K.R.; Bilardi, J.E.; Ellery, S.J. Acceptability of dietary or nutritional supplementation in pregnancy (ADONS)—Exploring the consumer’s perspective on introducing creatine monohydrate as a pregnancy supplement. Midwifery 2020, 82, 102599. [Google Scholar] [CrossRef]
- United States Food and Drug Administration. Center for Food Safety & Applied Nutrition Adverse Event Reporting System, 07/29/2020 ed.2021. Available online: https://www.fda.gov/food/compliance-enforcement-food/cfsan-adverse-event-reporting-system-caers#files (accessed on 5 February 2021).
- United States Food and Drug Administration. Recently Published GRAS Notices and FDA Letters. Available online: https://www.fda.gov/food/gras-notice-inventory/recently-published-gras-notices-and-fda-letters (accessed on 5 February 2021).
- Simpson, A.J.; Horne, S.; Sharp, P.; Sharps, R.; Kippelen, P. Effect of Creatine Supplementation on the Airways of Youth Elite Soccer Players. Med. Sci. Sports Exerc. 2019, 51, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Bukic, J.; Rusic, D.; Bozic, J.; Zekan, L.; Leskur, D.; Seselja Perisin, A.; Modun, D. Differences among health care students’ attitudes, knowledge and use of dietary supplements: A cross-sectional study. Complement. Ther. Med. 2018, 41, 35–40. [Google Scholar] [CrossRef]
- Antonio, J.; Candow, D.G.; Forbes, S.C.; Gualano, B.; Jagim, A.R.; Kreider, R.B.; Rawson, E.S.; Smith-Ryan, A.E.; VanDusseldorp, T.A.; Willoughby, D.S.; et al. Common questions and misconceptions about creatine supplementation: What does the scientific evidence really show? J. Int. Soc. Sports Nutr. 2021, 18, 13. [Google Scholar] [CrossRef]
Author Year (Country) | Subjects | Design | Duration | Dosing Protocol | Primary Variables | Results | Adverse Events |
---|---|---|---|---|---|---|---|
Swimming | |||||||
Dawson et al. 2002 (Australia) [36] | 10 male, 10 female (16.4 ± 1.8 years) swimmers | Matched, placebo-controlled | 4 weeks | 20 g/day (5 days) 5 g/day (22 days) | Sprint swim performance and swim bench test | ↑ swim bench test performance | None reported |
Grindstaff et al. 1997 (USA) [33] | 18 (11 female, 7 male) adolescent swimmers (15.3 ± 0.6 years) | Randomized, double-blind, placebo controlled | 9 days | 21 g/day | Sprint swim performance; arm ergometer performance | ↑ sprint swimming performance | None reported |
Juhasz et al. 2009 (Hungary) [34] | 16 male fin swimmers (15.9 ± 1.6 years) | Randomized, placebo-controlled, single-blind trail | 5 days | 20 g/day | Average power, dynamic strength (swim based tests) | ↑ anaerobic performance; ↑ dynamic strength | None reported |
Theodorou et al. 1999 (UK) [37] | 10 elite female (17.7 ± 2.0 years) and 12 elite male (17.7 ± 2.3 years) swimmers | Randomized, double-blind, placebo-controlled | 11 weeks | 25 g/day (4 days) 5 g/day (2 months) | Swimming interval performance | ↑ interval performance following loading phase; long-term improvements after maintenance dose | None reported |
Theodorou et al. 2005 (United Kingtom) [35] | 10 high performance swimmers (males: n = 6; females: n = 4) (17.8 ± 1.8 years | Randomized, double-blind trial | 4 days | 20 g/day of CrM or 20 g/day of CrM + 100 g of carbohydrates per serving | High-intensity swim performance during repeated intervals | ↑ mean swim velocity for all swimmers; swim velocity in Cr + Carbohydrate condition | Gastrointestinal discomfort in CrM + Carbohydrate group only |
Soccer | |||||||
Claudino et al. 2014 (Brazil) [42] | 14 male Brazilian elite soccer players (18.3 ± 0.9 years) | Randomized, double-blind, placebo-controlled | 7 weeks | 20 g/day (1 week) 5 g/day (6 weeks) | Lower limb muscle power via countermovement vertical jump | lower body power | None reported |
Mohebbi et al. 2012 (Iran) [39] | 17 adolescent soccer players (17.2 ± 1.4 years) | Randomized, double-blind, placebo-controlled | 7 days | 20 g/day | Repeated sprint test, soccer dribbling performance and shooting accuracy | ↑ repeat sprint performance; ↑ dribbling performance | None reported |
Ostojic et al. 2004 (Yugoslavia) [40] | 20 adolescent male soccer players (16.6 ± 1.9 years) | Matched, placebo-controlled | 7 days | 30 g/day | Soccer specific skills tests | ↑ dribble test and endurance times; ↑ sprint power test and countermovement jump | None reported |
Yanez-Silva et al. 2017 (Brazil) [41] | Elite youth soccer players (17.0 ± 0.5 years) | Matched, double-blind, placebo-controlled | 7 days | 0.03 g/kg/day | Muscle power output (Wingate anaerobic power test) | ↑ peak and mean power output; ↑ total work | None reported |
Author Year | Subjects | Design | Duration | Dosing Protocol | Primary Variables | Results | Adverse Events |
---|---|---|---|---|---|---|---|
Sipila et al. 1981 [57] | 7 (3 adolescents) patients with gyrate atrophy of retina | Open label treatment intervention | 12 months | 1.5 g/day | Visual acuity, muscle fiber characteristics, laboratory markers of creatine metabolism | Visual acuity; ↑ Thickness of Type II muscle fibers | No side effects reported |
Vannas-Sulonen et al. 1985 [58] | 13 patients (9 male, 4 female) between ages of 6–31 years diagnosed with gyrate atrophy of the choroid | Prospective, open-label cohort | 36–72 months | 0.25–0.5 g dose 3×/day | Morphological and eye function assessments | Cr supplementation did not prevent normal deterioration; ↓ Muscle atrophy, primarily in type II fibers | None reported |
Walter et al. 2000 [59] | 36 patients with multiple types of muscular dystrophies (overall mean age: 26 ± 16 years) 8 patients with Duchenne dystrophy (mean age: 10 ± 3 years) | Randomized, double-blind, placebo-controlled | 8 weeks | 10 g/day (adults) 5 g/day (children) | Muscular performance, neuromuscular symptoms score, vital capacity and qualitative assessments | ↑ (3%) in muscle strength; ↑ (10%) in neurological symptoms. Children tended to experience greater strength changes. | None reported. Indicated to be well-tolerated. |
Braegger et al. 2003 [60] | 18 cystic fibrosis patients (7 F, 11 M) ranging in age from 8–18 years | Prospective open-label pilot | Supplemented for 12 weeks; monitored for 24–36 weeks | 12 g/day for 1st week; 6 g/day for remaining 11 weeks | Lung function, strength, and clinical parameters | Lung function or sweat electrolytes. ↑ (18%) in peak isometric strength | One patient experienced transient muscle pain; No other side effects |
Louis et al. 2003 [61] | 15 boys with muscular dystrophy (mean age: 10.8 ± 2.8 years) | Double-blind, placebo-controlled, cross-over study design | 3 months, with 2 months washout | 3 g/day | Muscle function, densitometry, markers of hepatic and renal function, magnetic resonance spectroscopy | ↑ MVC by 15% ↑ TTE (~2×) ↑ TJS ↑ LS and WB BMD in ambulatory patients ↑ NTx/creatinine ratio in ambulatory patients | No changes in liver or kidney markers |
Tarnopolsky et al. 2004 [45] | 30 boys with Duchenne muscular dystrophy; mean age: 10 ± 3 years; height: 129.2 ± 16.0 cm; weight: 35.3 ± 15.8 kg | Double-blind, randomized, crossover trial | 4 months | 0.10 g/kg/day | Pulmonary function, strength, body composition, bone health, task function, blood & urinary markers | ↑ handgrip strength, fat-free mass, and bone markers functional tasks or activities of daily living | None |
Escolar et al. 2005 [49] | 50 ambulatory steroid naïve boys with Duchenne Muscular Dystrophy (mean age: 6 years) | Double-blind, placebo-controlled, randomized | 6 months | 5 g/day of creatine powder, 0.3 mg/kg of glutamine (×2 per day), or placebo | Manual muscle performance, quantitative muscle testing, time to rise | primary or secondary outcomes measures | Deemed safe and well-tolerated with no side effects reported. |
Sakellaris et al. 2008 [62] | 39 children/adolescents following traumatic brain injury | Open-label pilot study | 6 months | 0.4 g/kg/day | Duration of amnesia, duration of intubation, and intensive care unit stay post traumatic brain injury | ↓ Amnesia ↓ Intubation period ↓ Intensive care unit stay | None |
Bourgeois et al. 2008 [63] | 9 children with lymphoblastic leukemia during chemotherapy (in treatment group); mean age of 7.6 years, 50 healthy children as history controls | Cross sectional, mixed cohort designs | 16 weeks | 0.1 g/kg/day | Height, weight, BMI, BMD, BMC, FFM, %BF, serum creatinine | ↑ %BF and BMI | None reported |
Banerjee et al. 2010 [9] | 33 ambulatory male patients with Duchenne muscular dystrophy | Randomized, placebo-controlled, single-blind trial | 8 weeks | Cr, 5 g/day (n = 18) | Cellular energetics, manual muscle test score and functional status | ↑ in PCr/Pi ratios | None reported |
Van de Kamp et al. 2012 [16] | 9 boys with creatine transporter defect | Long-term follow-up investigation | 4–6 years | Cr (400 mg/kg/day) and L-arginine (400 mg/kg/day) | Locomotor and personal social IQ subscales | Initial ↑ in locomotor and personal social IQ subscales; No lasting clinical improvement was recorded | No adverse events were reported. |
Hyashi et al. 2014 [13] | 15 participants with childhood systemic lupus erythematosus | Double-blind, placebo controlled, cross-over design | 12 weeks with 8 week washout period | 0.1 g/kg/day | Muscle function, body composition, biochemical markers of bone, aerobic conditioning, quality of life | intramuscular PCr, muscle function, and aerobic conditioning parameters, body composition, quality of life | laboratory parameters; No side effects reported |
Solis et al. 2016 [12] | Patients with juvenile dermatomyositis (mean age: 13 ± 4 years) | Randomized, double-blind, placebo-controlled, crossover trial | 12 weeks | 0.1 g/kg/day | Primary: muscle function Secondary: body composition, biochemical markers of bone remodeling, cytokines, laboratory markers of kidney function, aerobic conditioning, and quality of life | Muscle function, intramuscular PCr content, or other secondary outcomes measures | No side efforts reported. Markers of kidney function |
Kalamitsou et al. 2019 [64] | 22 children (9 F, 13 M) with refractory epilepsy ranging in age from 10 months to 8 years | Prospective cohort | 3–12 months follow-up | 0.4 g/kg/day creatine + ketogenic diet | Proportion of responders to ketogenic diet | 6/22 (27%) responded to creatine addition to ketogenic diet | None reported, well-tolerated with no exacerbations of underlying pathology |
Dover et al. 2020 [65] | 13 (7 F, 6 M) patients ranging in age from 7–14 years with juvenile dermatomyositis; 25.6–64.6 kg; 14.3–22.9 kg/m2 | Randomized, double-blind, placebo-controlled | 6 months | Up to 40 kg was 150 mg/kg/day >40 kg was 4.69 g/m2/day | Safety and tolerability muscle function, disease activity, aerobic capacity, muscle strength | in muscle function, strength, aerobic capacity, fatigue, physical activity ↓ in muscle pH following exercise | No adverse events reported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagim, A.R.; Kerksick, C.M. Creatine Supplementation in Children and Adolescents. Nutrients 2021, 13, 664. https://doi.org/10.3390/nu13020664
Jagim AR, Kerksick CM. Creatine Supplementation in Children and Adolescents. Nutrients. 2021; 13(2):664. https://doi.org/10.3390/nu13020664
Chicago/Turabian StyleJagim, Andrew R., and Chad M. Kerksick. 2021. "Creatine Supplementation in Children and Adolescents" Nutrients 13, no. 2: 664. https://doi.org/10.3390/nu13020664
APA StyleJagim, A. R., & Kerksick, C. M. (2021). Creatine Supplementation in Children and Adolescents. Nutrients, 13(2), 664. https://doi.org/10.3390/nu13020664