Associations of Dietary Patterns and Nutrients with Glycated Hemoglobin in Participants with and without Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline and Year 6 Features
3.2. Associations of Dietary Patterns and Nutrients with Glycemia at Cross-Sectional and Longitudinal Time Points
3.3. Associations of Food Groups with Glycemia at Cross-Sectional and Longitudinal Time Points
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menke, A.; Casagrande, S.; Geiss, L.; Cowie, C.C. Prevalence of and Trends in Diabetes among Adults in the United States, 1988–2012. JAMA 2015, 314, 1021–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, M.; Svensson, A.M.; Kosiborod, M.; Gudbjornsdottir, S.; Pivodic, A.; Wedel, H.; Dahlqvist, S.; Clements, M.; Rosengren, A. Glycemic control and excess mortality in type 1 diabetes. N. Engl. J. Med. 2014, 371, 1972–1982. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 5. Lifestyle Management: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S46–S60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lennerz, B.S.; Koutnik, A.P.; Azova, S.; Wolfsdorf, J.I.; Ludwig, D.S. Carbohydrate restriction for diabetes: Rediscovering centuries-old wisdom. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Wedick, N.M.; Pan, A.; Cassidy, A.; Rimm, E.B.; Sampson, L.; Rosner, B.; Willett, W.; Hu, F.B.; Sun, Q.; van Dam, R.M. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr. 2012, 95, 925–933. [Google Scholar] [CrossRef] [Green Version]
- Aune, D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv. Nutr. 2019, 10, S404–S421. [Google Scholar] [CrossRef] [Green Version]
- Nansel, T.R.; Lipsky, L.M.; Liu, A. Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes. Am. J. Clin. Nutr. 2016, 104, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Seckold, R.; Howley, P.; King, B.R.; Bell, K.; Smith, A.; Smart, C.E. Dietary intake and eating patterns of young children with type 1 diabetes achieving glycemic targets. BMJ Open Diabetes Res. Care 2019, 7, e000663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaacks, L.M.; Crandell, J.; Mendez, M.A.; Lamichhane, A.P.; Liu, W.; Ji, L.; Du, S.; Rosamond, W.; Popkin, B.M.; Mayer-Davis, E.J. Dietary patterns associated with HbA1c and LDL cholesterol among individuals with type 1 diabetes in China. J. Diabetes Its Complicat. 2015, 29, 343–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balk, S.N.; Schoenaker, D.A.; Mishra, G.D.; Toeller, M.; Chaturvedi, N.; Fuller, J.H.; Soedamah-Muthu, S.S. Association of diet and lifestyle with glycated haemoglobin in type 1 diabetes participants in the EURODIAB prospective complications study. Eur. J. Clin. Nutr. 2016, 70, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Delahanty, L.M.; Nathan, D.M.; Lachin, J.M.; Hu, F.B.; Cleary, P.A.; Ziegler, G.K.; Wylie-Rosett, J.; Wexler, D.J. Association of diet with glycated hemoglobin during intensive treatment of type 1 diabetes in the Diabetes Control and Complications Trial. Am. J. Clin. Nutr. 2009, 89, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.L.R.; Gómez-Díaz, R.A.; González, A.L.V.; González, R.M.; Becerra, M.C.S.; Rio, S.; Cruz, M.; Wacher-Rodarte, N.H.; Pacheco, R.A.R.; Aburto, V.H.B. Association between glycemic control and dietary patterns in patients with type 2 diabetes in a Mexican institute. Nutrition 2020, 78, 110901. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Nuli, R.; Zhang, Y.; Zhang, Y.; Abudusemaiti, M.; Kadeer, A.; Tian, X.; Xiao, H. Association of Dietary Patterns with Type 2 Diabetes Mellitus among Middle-Aged Adults in Uygur Population of Xinjiang Region. J. Nutr. Sci. Vitaminol. 2019, 65, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Darani Zad, N.; Mohd Yusof, R.; Esmaili, H.; Jamaluddin, R.; Mohseni, F. Association of dietary pattern with biochemical blood profiles and bodyweight among adults with Type 2 diabetes mellitus in Tehran, Iran. J. Diabetes Metab. Disord. 2015, 14, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, A.; Alman, A.C.; Snell-Bergeon, J.K. Dietary fiber intake and glycemic control: Coronary artery calcification in type 1 diabetes (CACTI) study. Nutr. J. 2019, 18, 23. [Google Scholar] [CrossRef] [Green Version]
- Snell-Bergeon, J.K.; Chartier-Logan, C.; Maahs, D.M.; Ogden, L.G.; Hokanson, J.E.; Kinney, G.L.; Eckel, R.H.; Ehrlich, J.; Rewers, M. Adults with type 1 diabetes eat a high-fat atherogenic diet that is associated with coronary artery calcium. Diabetologia 2009, 52, 801–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimm, E.B.; Giovannucci, E.L.; Stampfer, M.J.; Colditz, G.A.; Litin, L.B.; Willett, W.C. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am. J. Epidemiol. 1992, 135, 1114–1126, discussion 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Kriska, A.M.; Knowler, W.C.; LaPorte, R.E.; Drash, A.L.; Wing, R.R.; Blair, S.N.; Bennett, P.H.; Kuller, L.H. Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes Care 1990, 13, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Gross, L.S.; Li, L.; Ford, E.S.; Liu, S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: An ecologic assessment. Am. J. Clin. Nutr. 2004, 79, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Goran, M.I.; Ulijaszek, S.J.; Ventura, E.E. High fructose corn syrup and diabetes prevalence: A global perspective. Glob. Public Health 2013, 8, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Aro, A.; Willett, W.C. Health effects of trans-fatty acids: Experimental and observational evidence. Eur. J. Clin. Nutr. 2009, 63 (Suppl. 2), S5–S21. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Amin, M.N.; Siddiqui, S.A.; Hossain, M.P.; Sultana, F.; Kabir, M.R. Trans fatty acids and lipid profile: A serious risk factor to cardiovascular disease, cancer and diabetes. Diabetes Metab. Syndr. 2019, 13, 1643–1647. [Google Scholar] [CrossRef]
- Gonçalves, R.V.; Santos, J.D.B.; Silva, N.S.; Guillocheau, E.; Silva, R.E.; Souza-Silva, T.G.; Oliveira, R.F.; Santos, E.C.; Novaes, R.D. Trans-fatty acids aggravate anabolic steroid-induced metabolic disturbances and differential gene expression in muscle, pancreas and adipose tissue. Life Sci. 2019, 232, 116603. [Google Scholar] [CrossRef]
- Risérus, U. Trans fatty acids and insulin resistance. Atheroscler. Suppl. 2006, 7, 37–39. [Google Scholar] [CrossRef]
- Soedamah-Muthu, S.S.; Chaturvedi, N.; Fuller, J.H.; Toeller, M. Do European people with type 1 diabetes consume a high atherogenic diet? 7-year follow-up of the EURODIAB Prospective Complications Study. Eur. J. Nutr. 2013, 52, 1701–1710. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.N.; Volkening, L.K.; Quinn, N.; Laffel, L.M. Intensively managed young children with type 1 diabetes consume high-fat, low-fiber diets similar to age-matched controls. Nutr. Res. 2014, 34, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, D.B.; Petersen, K.F.; Shulman, G.I. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 2007, 87, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Rosenfalck, A.M.; Almdal, T.; Viggers, L.; Madsbad, S.; Hilsted, J. A low-fat diet improves peripheral insulin sensitivity in patients with Type 1 diabetes. Diabet. Med. J. Br. Diabet. Assoc. 2006, 23, 384–392. [Google Scholar] [CrossRef]
- Jannasch, F.; Kroger, J.; Schulze, M.B. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, P.; Gray, L.J.; Troughton, J.; Khunti, K.; Davies, M.J. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: Systematic review and meta-analysis. BMJ 2010, 341, c4229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villegas, R.; Shu, X.O.; Gao, Y.T.; Yang, G.; Elasy, T.; Li, H.; Zheng, W. Vegetable but not fruit consumption reduces the risk of type 2 diabetes in Chinese women. J. Nutr. 2008, 138, 574–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyne, T.; Ibiebele, T.I.; Baade, P.D.; Dobson, A.; McClintock, C.; Dunn, S.; Leonard, D.; Shaw, J. Diabetes mellitus and serum carotenoids: Findings of a population-based study in Queensland, Australia. Am. J. Clin. Nutr. 2005, 82, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Will, J.C.; Bowman, B.A.; Narayan, K.M. Diabetes mellitus and serum carotenoids: Findings from the Third National Health and Nutrition Examination Survey. Am. J. Epidemiol. 1999, 149, 168–176. [Google Scholar] [CrossRef]
- Yin, Y.; Zheng, Z.; Jiang, Z. Effects of lycopene on metabolism of glycolipid in type 2 diabetic rats. Biomed. Pharmacother. 2019, 109, 2070–2077. [Google Scholar] [CrossRef]
- Zheng, Z.; Yin, Y.; Lu, R.; Jiang, Z. Lycopene Ameliorated Oxidative Stress and Inflammation in Type 2 Diabetic Rats. J. Food Sci. 2019, 84, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.P.G. Low-calorie sweetener use and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans. Physiol. Behav. 2016, 164, 517–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, K.A.; Mattes, R.D. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am. J. Clin. Nutr. 2019, 109, 1288–1301. [Google Scholar] [CrossRef]
- Sylvetsky, A.C.; Chandran, A.; Talegawkar, S.A.; Welsh, J.A.; Drews, K.; El Ghormli, L. Consumption of Beverages Containing Low-Calorie Sweeteners, Diet, and Cardiometabolic Health in Youth With Type 2 Diabetes. J. Acad. Nutr. Diet. 2020, 120, 1348–1358.e1346. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality among US Adults, 1999–2016. Jama 2019, 322, 1178–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type 1 Diabetes | Non-Diabetic Controls | ||||
---|---|---|---|---|---|
n = 568 | n = 689 | ||||
Variables | Mean or n | SD or % § | Mean or n | SD or % § | p Value |
Age (years) | 37 | 9 | 39 | 9 | <0.0001 |
Sex (female; n) | 316 | 56 | 346 | 50 | 0.031 |
Diabetes duration (years) | 23.5 | 8.9 | -- | -- | -- |
HbA1c (%) | 7.9 | 1.2 | 5.5 | 0.4 | <0.0001 |
HbA1c (met < 7% goal) | 113 | 20 | N/A | N/A | N/A |
BMI (kg/m2) | 26.2 | 4.3 | 26.2 | 5.0 | 0.929 |
SBP (mmHg) | 117 | 14 | 114 | 12 | <0.0001 |
DBP (mmHg) | 77 | 9 | 79 | 8 | 0.001 |
LDL-C (mg/dL) | 101 | 29 | 115 | 33 | <0.0001 |
HDL-C (mg/dL) | 56 | 16 | 50 | 14 | <0.0001 |
Triacylglycerol (mg/dL) | 93 | 54 | 132 | 103 | <0.0001 |
Dietary total calories (kcal/day) | 1766 | 613 | 1822 | 619 | 0.111 |
Dietary carbohydrates (% kcal/day) | 45 | 9 | 48 | 9 | <0.0001 |
Dietary fats (% kcal/day) | 35 | 7 | 33 | 7 | <0.0001 |
Dietary saturated fats (% kcal/day) | 12.7 | 3.1 | 11.7 | 2.8 | <0.0001 |
Dietary proteins (% kcal/day) | 19.7 | 3.6 | 18.5 | 3.9 | 0.0007 |
Dietary fiber (g/day) | 16.7 | 7.8 | 16.7 | 8.1 | 0.874 |
Dietary animal fats (g/day) | 40.7 | 20.1 | 38.1 | 18.6 | 0.0188 |
Dietary vegetable fats (g/day) | 28.5 | 13.8 | 28.2 | 14.1 | 0.683 |
Fruit, veggie, cereal, and meat pattern | 0.06 | 1.35 | −0.06 | 0.56 | 0.07 |
Baked desserts pattern | 0.01 | 1.18 | −0.006 | 0.85 | 0.77 |
Convenience foods and alcohol pattern | −0.04 | 0.86 | 0.03 | 1.11 | 0.22 |
Physical activity (KJ/week) | 6268 | 1121 | 6609 | 1098 | 0.21 |
Dietary Patterns/Nutrients (Baseline) | HbA1c (Baseline) | HbA1c (Year 6) | ||||||
---|---|---|---|---|---|---|---|---|
T1D (n = 568) | Non-Diabetic Control (n = 689) | T1D (n = 452) | Non-Diabetic Control (n = 538) | |||||
β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | |
Fruit, veggie, cereal, meat pattern | ||||||||
Model 1 a | 0.06 ± 0.04 | 0.15 | 0.003 ± 0.03 | 0.91 | 0.03 ± 0.04 | 0.47 | −0.005 ± 0.05 | 0.92 |
Model 2 b | 0.07 ± 0.04 | 0.10 | 0.016 ± 0.03 | 0.65 | 0.05 ± 0.04 | 0.19 | −0.003 ± 0.05 | 0.94 |
Model 3 c | 0.03 ± 0.04 | 0.35 | 0.002 ± 0.03 | 0.94 | 0.02 ± 0.03 | 0.51 | 0.0002 ± 0.05 | 0.99 |
Baked desserts pattern | ||||||||
Model 1 a | 0.11 ± 0.05 | 0.02 | 0.004 ± 0.03 | 0.96 | 0.12 ± 0.06 | 0.03 | 0.02 ± 0.02 | 0.32 |
Model 2 b | 0.08 ± 0.05 | 0.07 | 0.002 ± 0.03 | 0.98 | 0.11 ± 0.06 | 0.04 | 0.022 ± 0.02 | 0.37 |
Model 3 c | 0.11 ± 0.04 | 0.02 | 0.002 ± 0.02 | 0.89 | 0.11 ± 0.06 | 0.05 | 0.021 ± 0.02 | 0.41 |
Convenience foods and alcohol pattern | ||||||||
Model 1 a | 0.12 ± 0.07 | 0.09 | 0.002 ± 0.05 | 0.65 | 0.06 ± 0.06 | 0.35 | −0.007 ± 0.02 | 0.73 |
Model 2 b | 0.13 ± 0.07 | 0.06 | 0.001 ± 0.02 | 0.47 | 0.08 ± 0.06 | 0.18 | −0.008 ± 0.02 | 0.75 |
Model 3 c | 0.06 ± 0.06 | 0.34 | 0.008 ± 0.02 | 0.64 | 0.05 ± 0.06 | 0.41 | −0.011 ± 0.02 | 0.63 |
Carbohydrates (% kcal) | ||||||||
Model 1 a | 0.006 ± 0.005 | 0.28 | 0.002 ± 0.001 | 0.18 | 0.013 ± 0.005 | 0.02 | 0.001 ± 0.002 | 0.46 |
Model 2 b | 0.017 ± 0.014 | 0.22 | 0.002 ± 0.003 | 0.56 | 0.002 ± 0.014 | 0.88 | 0.005 ± 0.003 | 0.27 |
Model 3 c | 0.007 ± 0.005 | 0.21 | 0.002 ± 0.001 | 0.23 | 0.014 ± 0.005 | 0.02 | 0.001 ± 0.002 | 0.47 |
Proteins (%kcal) | ||||||||
Model 1 a | 0.01 ± 0.02 | 0.47 | 0.003 ± 0.004 | 0.40 | 0.03 ± 0.01 | 0.02 | 0.009 ± 0.005 | 0.86 |
Model 2 b | 0.03 ± 0.02 | 0.15 | 0.006 ± 0.005 | 0.23 | 0.03 ± 0.02 | 0.08 | 0.007 ± 0.004 | 0.66 |
Model 3 c | 0.02 ± 0.01 | 0.14 | 0.003 ± 0.002 | 0.42 | 0.03 ± 0.01 | 0.008 | 0.007 ± 0.003 | 0.86 |
Total Fats (% kcal) | ||||||||
Model 1 a | 0.010 ± 0.007 | 0.17 | 0.003 ± 0.002 | 0.07 | 0.013 ± 0.007 | 0.08 | 0.006 ± 0.003 | 0.06 |
Model 2 b | 0.019 ± 0.015 | 0.19 | 0.009 ± 0.004 | 0.82 | 0.011 ± 0.15 | 0.43 | 0.013 ± 0.005 | 0.02 |
Model 3 c | 0.008 ± 0.007 | 0.21 | 0.003 ± 0.002 | 0.11 | 0.013 ± 0.007 | 0.07 | 0.006 ± 0.003 | 0.06 |
Saturated fats (% kcal) | ||||||||
Model 1 a | 0.015 ± 0.002 | 0.01 | 0.001 ± 0.002 | 0.12 | 0.018 ± 0.007 | 0.003 | 0.002 ± 0.001 | 0.06 |
Model 2 b | 0.012 ± 0.015 | 0.09 | 0.009 ± 0.004 | 0.82 | 0.015 ± 0.04 | 0.22 | 0.014 ± 0.003 | 0.02 |
Model 3 c | 0.008 ± 0.003 | 0.09 | 0.002 ± 0.002 | 0.11 | 0.013 ± 0.007 | 0.13 | 0.010 ± 0.003 | 0.05 |
Animal fats | ||||||||
Model 1 a | 0.008 ± 0.002 | 0.002 | 0.002 ± 0.002 | 0.11 | 0.004 ± 0.002 | 0.11 | 0.007 ± 0.02 | 0.88 |
Model 2 b | 0.009 ± 0.003 | 0.006 | 0.001 ± 0.001 | 0.17 | 0.006 ± 0.007 | 0.24 | 0.001 ± 0.01 | 0.92 |
Model 3 c | 0.006 ± 0.003 | 0.07 | 0.002 ± 0.001 | 0.06 | 0.004 ± 0.003 | 0.27 | 0.011 ± 0.01 | 0.44 |
Vegetable fats | ||||||||
Model 1 a | 0.005 ± 0.003 | 0.15 | 0.003 ± 0.001 | 0.61 | 0.004 ± 0.003 | 0.19 | 0.003 ± 0.002 | 0.74 |
Model 2 b | 0.008 ± 0.003 | 0.84 | 0.002 ± 0.001 | 0.64 | 0.007 ± 0.006 | 0.26 | 0.008 ± 0.001 | 0.99 |
Model 3 c | 0.004 ± 0.003 | 0.91 | 0.003 ± 0.001 | 0.65 | 0.005 ± 0.004 | 0.44 | 0.003 ± 0.002 | 0.11 |
Food Groups (Baseline) | HbA1c (Baseline) | HbA1c (Year 6) | ||
---|---|---|---|---|
β ± SE | p | β ± SE | p | |
Whole fruits | 0.001 ± 0.022 | 0.96 | 0.02 ± 0.01 | 0.19 |
Fruit juice | 0.06 ± 0.04 | 0.14 | 0.06 ± 0.04 | 0.98 |
Tomatoes | −0.04 ± 0.07 | 0.61 | −0.12 ± 0.04 | 0.009 |
Dark green vegetables | −0.04 ± 0.02 | 0.04 | −0.02 ± 0.02 | 0.43 |
Starchy vegetables | −0.07 ± 0.06 | 0.31 | −0.05 ± 0.04 | 0.19 |
Orange/red vegetables | 0.05 ± 0.06 | 0.52 | 0.07 ± 0.03 | 0.85 |
Other vegetables | 0.03 ± 0.04 | 0.51 | 0.05 ± 0.02 | 0.07 |
Low fat dairy | 0.08 ± 0.06 | 0.17 | −0.02 ± 0.04 | 0.64 |
Other dairy | 0.03 ± 0.01 | 0.09 | −0.03 ± 0.02 | 0.75 |
Legumes | −0.02 ± 0.06 | 0.67 | 0.11 ± 0.06 | 0.86 |
Nuts | 0.10 ± 0.05 | 0.08 | 0.03 ± 0.05 | 0.40 |
Eggs | 0.11 ± 0.05 | 0.99 | 0.03 ± 0.04 | 0.54 |
Red meat | 0.05 ± 0.03 | 0.10 | 0.06 ± 0.03 | 0.66 |
Processed meat | 0.03 ± 0.04 | 0.37 | 0.02 ± 0.01 | 0.27 |
Fish, low cholesterol | 0.09 ± 0.05 | 0.79 | 0.05 ± 0.04 | 0.33 |
Fish, high cholesterol | 0.11 ± 0.05 | 0.15 | 0.13 ± 0.05 | 0.15 |
Chicken/Turkey | 0.03 ± 0.04 | 0.14 | 0.05 ± 0.04 | 0.81 |
Pizza | 0.12 ± 0.05 | 0.97 | 0.11 ± 0.05 | 0.86 |
Salty snacks | 0.02 ± 0.03 | 0.18 | 0.04 ± 0.03 | 0.17 |
Low-calorie/no-calorie beverages | 0.11 ± 0.03 | 0.002 | 0.41 ± 0.06 | <0.001 |
SSB | 0.02 ± 0.01 | 0.47 | 0.07 ± 0.02 | 0.67 |
Tea | 0.02 ± 0.03 | 0.51 | 0.11 ± 0.04 | 0.06 |
Coffee | −0.02 ± 0.02 | 0.33 | −0.03 ± 0.04 | 0.47 |
Wine | −0.04 ± 0.04 | 0.35 | 0.05 ± 0.04 | 0.92 |
Beer | −0.06 ± 0.05 | 0.47 | 0.19 ± 0.05 | 0.79 |
Liquor | 0.17 ± 0.10 | 0.08 | 0.11 ± 0.05 | 0.52 |
Candy, cookies, pies, cakes, rolls (homemade and commercial) | 0.05 ± 0.01 | 0.001 | 0.03 ± 0.01 | 0.04 |
Cold breakfast cereal | 0.09 ± 0.05 | 0.32 | 0.10 ± 0.06 | 0.06 |
Cooked breakfast cereal | 0.04 ± 0.03 | 0.42 | 0.04 ± 0.03 | 0.21 |
Refined grains | 0.05 ± 0.03 | 0.15 | 0.11 ± 0.03 | 0.54 |
Whole grains | 0.02 ± 0.01 | 0.78 | −0.06 ± 0.03 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basu, A.; Alman, A.C.; Snell-Bergeon, J.K. Associations of Dietary Patterns and Nutrients with Glycated Hemoglobin in Participants with and without Type 1 Diabetes. Nutrients 2021, 13, 1035. https://doi.org/10.3390/nu13031035
Basu A, Alman AC, Snell-Bergeon JK. Associations of Dietary Patterns and Nutrients with Glycated Hemoglobin in Participants with and without Type 1 Diabetes. Nutrients. 2021; 13(3):1035. https://doi.org/10.3390/nu13031035
Chicago/Turabian StyleBasu, Arpita, Amy C. Alman, and Janet K. Snell-Bergeon. 2021. "Associations of Dietary Patterns and Nutrients with Glycated Hemoglobin in Participants with and without Type 1 Diabetes" Nutrients 13, no. 3: 1035. https://doi.org/10.3390/nu13031035
APA StyleBasu, A., Alman, A. C., & Snell-Bergeon, J. K. (2021). Associations of Dietary Patterns and Nutrients with Glycated Hemoglobin in Participants with and without Type 1 Diabetes. Nutrients, 13(3), 1035. https://doi.org/10.3390/nu13031035