Antimicrobial Photodynamic Treatment with Mother Juices and Their Single Compounds as Photosensitizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radiation Source and Photosensitizers
2.2. Bacterial Strains and Total Human Salivary Bacteria
2.3. Application Protocol of aPDT
3. Results
4. Discussion
4.1. Pomegranate
4.2. Chokeberry
4.3. Bilberry
4.4. Multicomponent PSs for aPDT
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Laguna, V.; García-Malinis, A.J.; Aspiroz, C.; Rezusta, A.; Gilaberte, Y. Antimicrobial effects of photodynamic therapy. G. Ital. Di Dermatol. E Venereol. Organo Uff. Soc. Ital. Di Dermatol. E Sifilogr. 2018, 153, 833–846. [Google Scholar] [CrossRef] [PubMed]
- de Paula Rodrigues, R.; Tini, I.R.; Soares, C.P.; da Silva, N.S. Effect of photodynamic therapy supplemented with quercetin in hep-2 cells. Cell Biol. Int. 2014, 38, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Hamblin, M.R. Antimicrobial photosensitizers: Drug discovery under the spotlight. Curr. Med. Chem. 2015, 22, 2159–2185. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahmad, A.; Bucher, M.; Anderson, A.C.; Tennert, C.; Hellwig, E.; Wittmer, A.; Vach, K.; Karygianni, L. Antimicrobial photoinactivation using visible light plus water-filtered infrared-a (vis + wira) alters in situ oral biofilms. PLoS ONE 2015, 10, e0132107. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahmad, A.; Tennert, C.; Karygianni, L.; Wrbas, K.T.; Hellwig, E.; Altenburger, M.J. Antimicrobial photodynamic therapy using visible light plus water-filtered infrared-a (wira). J. Med. Microbiol. 2013, 62, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Al-Ahmad, A.; Walankiewicz, A.; Hellwig, E.; Follo, M.; Tennert, C.; Wittmer, A.; Karygianni, L. Photoinactivation using visible light plus water-filtered infrared-a (vis+wira) and chlorine e6 (ce6) eradicates planktonic periodontal pathogens and subgingival biofilms. Front. Microbiol. 2016, 7, 1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burchard, T.; Karygianni, L.; Hellwig, E.; Follo, M.; Wrbas, T.; Wittmer, A.; Vach, K.; Al-Ahmad, A. Inactivation of oral biofilms using visible light and water-filtered infrared a radiation and indocyanine green. Future Med. Chem. 2019, 11, 1721–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollmer, A.; Al-Ahmad, A.; Argyropoulou, A.; Thurnheer, T. Antimicrobial photoinactivation using visible light plus water-filtered infrared-a (vis + wira) and hypericum perforatum modifies in situ oral biofilms. Sci. Rep. 2019, 9, 20325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karygianni, L.; Ruf, S.; Follo, M.; Hellwig, E.; Bucher, M.; Anderson, A.C.; Vach, K.; Al-Ahmad, A. Novel broad-spectrum antimicrobial photoinactivation of in situ oral biofilms by visible light plus water-filtered infrared a. Appl. Environ. Microbiol. 2014, 80, 7324–7336. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Pell, P.A.; Sneath, P.H.A. Maintenance of bacteria on glass beads at −60 °C to −76 °C. In Maintenance of Microorganisms and Cultured Cells A Manual of Laboratory Methods, 2nd ed.; Kirsop, B.E., Doyle, A.E., Eds.; Academic Press: London, UK, 1991; pp. 45–50. [Google Scholar]
- Al-Ahmad, A.; Auschill, T.M.; Braun, G.; Hellwig, E.; Arweiler, N.B. Overestimation of streptococcus mutans prevalence by nested pcr detection of the 16s rrna gene. J. Med. Microbiol. 2006, 55, 109–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, G. Principles and working mechanisms of water-filtered infrared-a (wira) in relation to wound healing. GMS Krankenh. Interdiszip. 2007, 2, Doc54. [Google Scholar]
- Cieplik, F.; Deng, D.; Crielaard, W.; Buchalla, W.; Hellwig, E.; Al-Ahmad, A.; Maisch, T. Antimicrobial photodynamic therapy—What we know and what we don’t. Crit. Rev. Microbiol. 2018, 44, 571–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, J.R.; de Castro, V.C.; das Graças Figueiredo Vilela, P.; Camargo, S.E.; Carvalho, C.A.; Jorge, A.O.; de Oliveira, L.D. Cytotoxicity of brazilian plant extracts against oral microorganisms of interest to dentistry. BMC Complement. Altern. Med. 2013, 13, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosas-Piñón, Y.; Mejía, A.; Díaz-Ruiz, G.; Aguilar, M.I.; Sánchez-Nieto, S.; Rivero-Cruz, J.F. Ethnobotanical survey and antibacterial activity of plants used in the altiplane region of mexico for the treatment of oral cavity infections. J. Ethnopharmacol. 2012, 141, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzano, G.F.; Scioscia, E.; Sateriale, D.; Pastore, G.; Colicchio, R.; Pagliuca, C.; Cantile, T.; Alcidi, B.; Coda, M.; Ingenito, A.; et al. In vitro antibacterial activity of pomegranate juice and peel extracts on cariogenic bacteria. BioMed Res. Int. 2017, 2017, 2152749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulube, Z.; Patel, M. Effect of punica granatum on the virulence factors of cariogenic bacteria streptococcus mutans. Microb. Pathog. 2016, 98, 45–49. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Fawole, O.A.; Makunga, N.P.; Opara, U.L. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complement. Altern. Med. 2016, 16, 143. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Nazeam, J.A.; Al-Shareef, W.A.; Helmy, M.W.; El-Haddad, A.E. Bioassay-guided isolation of potential bioactive constituents from pomegranate agrifood by-product. Food Chem. 2020, 326, 126993. [Google Scholar] [CrossRef]
- Millo, G.; Juntavee, A.; Ratanathongkam, A.; Nualkaew, N.; Peerapattana, J.; Chatchiwiwattana, S. Antibacterial inhibitory effects of punica granatum gel on cariogenic bacteria: An in vitro study. Int. J. Clin. Pediatr. Dent. 2017, 10, 152–157. [Google Scholar] [CrossRef]
- Topalović, A.; Knežević, M.; Gačnik, S.; Mikulic-Petkovsek, M. Detailed chemical composition of juice from autochthonous pomegranate genotypes (punica granatum l.) grown in different locations in montenegro. Food Chem. 2020, 330, 127261. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fang, Y.; Yin, Y.; Feng, L. Flavonols and flavones changes in pomegranate (punica granatum l.) fruit peel during fruit development. J. Agric. Sci. Technol. 2014, 16, 1649–1659. [Google Scholar]
- Khanavi, M.; Moghaddam, G.; Oveisi, M.R.; Sadeghi, N.; Jannat, B.; Rostami, M.; Saadat, M.A.; Hajimahmoodi, M. Hyperoside and anthocyanin content of ten different pomegranate cultivars. Pak. J. Biol. Sci. PJBS 2013, 16, 636–641. [Google Scholar] [CrossRef] [Green Version]
- Khomich, L.M.; Perova, I.B.; Eller, K.I. Pomegranate juice nutritional profile. Vopr. Pitan. 2019, 88, 80–92. [Google Scholar]
- Gardeli, C.; Varela, K.; Krokida, E.; Mallouchos, A. Investigation of anthocyanins stability from pomegranate juice (punica granatum l. Cv ermioni) under a simulated digestion process. Medicines 2019, 6, 90. [Google Scholar] [CrossRef] [Green Version]
- Vegara, S.; Mena, P.; Martí, N.; Saura, D.; Valero, M. Approaches to understanding the contribution of anthocyanins to the antioxidant capacity of pasteurized pomegranate juices. Food Chem. 2013, 141, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.; Číž, M.; Kratchanova, M.; Blazheva, D. Black chokeberry (aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chem. 2019, 284, 108–117. [Google Scholar] [CrossRef]
- Lee, H.J.; Oh, S.Y.; Hong, S.H. Inhibition of streptococcal biofilm formation by aronia by extracellular rna degradation. J. Sci. Food Agric. 2020, 100, 1806–1811. [Google Scholar] [CrossRef] [PubMed]
- Bräunlich, M.; Økstad, O.A.; Slimestad, R.; Wangensteen, H.; Malterud, K.E.; Barsett, H. Effects of aronia melanocarpa constituents on biofilm formation of escherichia coli and bacillus cereus. Molecules 2013, 18, 14989–14999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidor, A.; Gramza-Michałowska, A. Black chokeberry aronia melanocarpa l.-a qualitative composition, phenolic profile and antioxidant potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh, Y.; Ishihara, K. Investigation of the antimicrobial activity of bilberry (vaccinium myrtillus l.) extract against periodontopathic bacteria. J. Oral Biosci. 2020, 62, 169–174. [Google Scholar] [CrossRef]
- Liu, S.; Marsol-Vall, A.; Laaksonen, O.; Kortesniemi, M.; Yang, B. Characterization and quantification of nonanthocyanin phenolic compounds in white and blue bilberry (vaccinium myrtillus) juices and wines using uhplc-dad−esi-qtof-ms and uhplc-dad. J. Agric. Food Chem. 2020, 68, 7734–7744. [Google Scholar] [CrossRef] [PubMed]
- Koponen, J.M.; Happonen, A.M.; Auriola, S.; Kontkanen, H.; Buchert, J.; Poutanen, K.S.; Törrönen, A.R. Characterization and fate of black currant and bilberry flavonols in enzyme-aided processing. J. Agric. Food Chem. 2008, 56, 3136–3144. [Google Scholar] [CrossRef] [PubMed]
- Ichiyanagi, T.; Hatano, Y.; Matsugo, S.; Konishi, T. Structural dependence of hplc separation pattern of anthocyanins from bilberry (vaccinium myrtillus l.). Chem. Pharm. Bull. 2004, 52, 628–630. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Hu, T.; Yan, W. Authentication of the bilberry extracts by an hplc fingerprint method combining reference standard extracts. Molecules 2020, 25, 2514. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Schantz, M.; Richling, E. High performance liquid chromatography analysis of anthocyanins in bilberries (vaccinium myrtillus l.), blueberries (vaccinium corymbosum l.), and corresponding juices. J. Food Sci. 2012, 77, C340–C345. [Google Scholar] [CrossRef]
- Riihinen, K.; Jaakola, L.; Kärenlampi, S.; Hohtola, A. Organ-specific distribution of phenolic compounds in bilberry (vaccinium myrtillus) and 'northblue' blueberry (vaccinium corymbosum x v. Angustifolium). Food Chem. 2008, 110, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Miari, M.; Rasheed, S.S.; Haidar Ahmad, N.; Itani, D.; Abou Fayad, A.; Matar, G.M. Natural products and polysorbates: Potential inhibitors of biofilm formation in pseudomonas aeruginosa. J. Infect. Dev. Ctries. 2020, 14, 580–588. [Google Scholar] [CrossRef]
- Ben Lagha, A.; LeBel, G.; Grenier, D. Dual action of highbush blueberry proanthocyanidins on aggregatibacter actinomycetemcomitans and the host inflammatory response. BMC Complement. Altern. Med. 2018, 18, 10. [Google Scholar] [CrossRef] [Green Version]
- Ben Lagha, A.; Dudonné, S.; Desjardins, Y.; Grenier, D. Wild blueberry (vaccinium angustifolium ait.) polyphenols target fusobacterium nucleatum and the host inflammatory response: Potential innovative molecules for treating periodontal diseases. J. Agric. Food Chem. 2015, 63, 6999–7008. [Google Scholar] [CrossRef]
- Cásedas, G.; Les, F.; Gómez-Serranillos, M.P.; Smith, C.; López, V. Anthocyanin profile, antioxidant activity and enzyme inhibiting properties of blueberry and cranberry juices: A comparative study. Food Funct. 2017, 8, 4187–4193. [Google Scholar] [CrossRef] [PubMed]
- Davarmanesh, M.; Miri, R.; Haghnegahdar, S.; Tadbir, A.A.; Tanideh, N.; Saghiri, M.A.; Garcia-Godoy, F.; Asatourian, A. Protective effect of bilberry extract as a pretreatment on induced oral mucositis in hamsters. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, 702–708. [Google Scholar] [CrossRef]
- Widén, C.; Coleman, M.; Critén, S.; Karlgren-Andersson, P.; Renvert, S.; Persson, G.R. Consumption of bilberries controls gingival inflammation. Int. J. Mol. Sci. 2015, 16, 10665–10673. [Google Scholar] [CrossRef] [Green Version]
- Liska, D.; Kelley, M.; Mah, E. 100% fruit juice and dental health: A systematic review of the literature. Front. Public Health 2019, 7, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ahmad, A.; Wiedmann-Al-Ahmad, M.; Carvalho, C.; Lang, M.; Follo, M.; Braun, G.; Wittmer, A.; Mülhaupt, R.; Hellwig, E. Bacterial and Candida albicans adhesion on rapid prototyping produced 3D-scaffolds manufactured as bone replacement materials. J. Biomed. Mater. Res. A 2008, 87, 933–943. [Google Scholar] [CrossRef]
- Zaura, E.; Brandt, B.W.; Prodan, A.; Teixeira de Mattos, M.J.; Imangaliyev, S.; Kool, J.; Buijs, M.J.; Jagers, F.L.; Hennequin-Hoenderdos, N.L.; Slot, D.E.; et al. On the ecosystemic network of saliva in healthy young adults. Int. Soc. Microb. Ecol. J. 2017, 11, 1218–1231. [Google Scholar] [CrossRef]
- Mark Welch, J.L.; Rossetti, B.J.; Rieken, C.W.; Dewhirst, F.E.; Borisy, G.G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl. Acad. Sci. USA 2016, 113, E791–E800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pomegranate | Bilberry | Chokeberry | |
---|---|---|---|
Total polyphenols calculated as pyrogallols * | 384 | 693 | 697 |
Tannins calculated as pyrogallols * | 218 | 371 | 446 |
Procyanidins calculated as cyanidin chloride ** | 100 | 836 | |
Ellagic acid *** | 8.6 |
Target | Concentration of the Photosensitizer | Killing Effects |
---|---|---|
S. mutans | 0.8–6% | ≥3 Log10 |
0.2–0.4% | ≤1 Log10 | |
S. sobrinus | 0.8–6% | ≥3 Log10 |
0.2–0.4% | ≤1 Log10 | |
Total salivary bacteria | 25–50% | ≥3 Log10 |
12.5% | ≤1 Log10 |
Target | Concentration of the Photosensitizer | Killing Effects |
---|---|---|
S. mutans | 6–50% | ≥3 Log10 |
1.5–3% | ≤2.4 Log10 | |
0.2–0.8% | ≤1 Log10 | |
S. sobrinus | 50% | 2.1 Log10 |
6–25% | 1–1.4 Log10 | |
Total salivary bacteria | 50% | 1.3 Log10 |
0.3–25% | ≤0.8 Log10 |
Target | Concentration of the Photosensitizer | Killing Effects |
---|---|---|
S. mutans | 12.5–50% | ≥3 Log10 |
6% | 2 Log10 | |
0.2–0.8% | ≤1 Log10 | |
S. sobrinus | 12.5–25% | ≥3 Log10 |
6% | 0.9 Log10 | |
Total salivary bacteria | 50% | 1.7 Log10 |
25% | 1 Log10 | |
12.5% | 0.5 Log10 |
Compound | Concentration of the Photosensitizer | Killing Effects |
---|---|---|
Punicalagin | 0.015–0.5 mg/mL | 0.4 Log10 |
0.015–0.5 mg/mL | no effects | |
Hyperoside | 1 mg/mL | 0.5 Log10 |
0.03–0.5 mg/mL | no effects | |
Cyanidin 3-glucoside chloride | 0.03–1 mg/mL | no effects |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrubasik-Hausmann, S.; Hellwig, E.; Müller, M.; Al-Ahmad, A. Antimicrobial Photodynamic Treatment with Mother Juices and Their Single Compounds as Photosensitizers. Nutrients 2021, 13, 710. https://doi.org/10.3390/nu13030710
Chrubasik-Hausmann S, Hellwig E, Müller M, Al-Ahmad A. Antimicrobial Photodynamic Treatment with Mother Juices and Their Single Compounds as Photosensitizers. Nutrients. 2021; 13(3):710. https://doi.org/10.3390/nu13030710
Chicago/Turabian StyleChrubasik-Hausmann, Sigrun, Elmar Hellwig, Michael Müller, and Ali Al-Ahmad. 2021. "Antimicrobial Photodynamic Treatment with Mother Juices and Their Single Compounds as Photosensitizers" Nutrients 13, no. 3: 710. https://doi.org/10.3390/nu13030710
APA StyleChrubasik-Hausmann, S., Hellwig, E., Müller, M., & Al-Ahmad, A. (2021). Antimicrobial Photodynamic Treatment with Mother Juices and Their Single Compounds as Photosensitizers. Nutrients, 13(3), 710. https://doi.org/10.3390/nu13030710