Caffeine-Induced Effects on Human Skeletal Muscle Contraction Time and Maximal Displacement Measured by Tensiomyography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2019, 681–688. [Google Scholar] [CrossRef]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the world anti-doping agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Kamimori, G.H.; McLellan, T.M.; Tate, C.M.; Voss, D.M.; Niro, P.; Lieberman, H.R. Caffeine improves reaction time, vigilance and logical reasoning during extended periods with restricted opportunities for sleep. Psychopharmacology 2015, 232, 2031–2042. [Google Scholar] [CrossRef] [Green Version]
- Magkos, F.; Kavouras, S.A. Caffeine and ephedrine: Physiological, metabolic and performance-enhancing effects. Sport Med. 2004, 34, 871–889. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar]
- Bhat, M.B.; Zhao, J.; Zang, W.; Balke, C.W.; Takeshima, H.; Wier, W.G.; Ma, J. Caffeine-induced release of intracellular Ca2+ from chinese hamster ovary cells expressing skeletal muscle ryanodine receptor: Effects on full- length and carboxyl-terminal portion of Ca2+ release channels. J. Gen. Physiol. 1997, 110, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Okada, M.; Kiryu, K.; Kawata, Y.; Mizuno, K.; Wada, K.; Tasaki, H.; Kaneko, S. Determination of the effects of caffeine and carbamazepine on striatal dopamine release by in vivo microdialysis. Eur. J. Pharmacol. 1997, 321, 181–188. [Google Scholar] [CrossRef]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sport Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Nehlig, A. Is caffeine a cognitive enhancer? J. Alzheimer’s Dis. 2010, 20, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Bazzucchi, I.; Felici, F.; Montini, M.; Figura, F.; Sacchetti, M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 2011, 43, 839–844. [Google Scholar] [CrossRef]
- Alasmari, F. Caffeine induces neurobehavioral effects through modulating neurotransmitters. Saudi Pharm. J. 2020, 28, 445–451. [Google Scholar] [CrossRef]
- Orbán, C.; Vásárhelyi, Z.; Bajnok, A.; Sava, F.; Toldi, G. Effects of caffeine and phosphodiesterase inhibitors on activation of neonatal T lymphocytes. Immunobiology 2018, 223, 627–633. [Google Scholar] [CrossRef]
- Daly, J.W. Caffeine analogs: Biomedical impact. Cell. Mol. Life Sci. 2007, 64, 2153–2169. [Google Scholar] [CrossRef] [Green Version]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.G.; Westerblad, H. The effects of caffeine on intracellular calcium, force and the rate of relaxation of mouse skeletal muscle. J. Physiol. 1995, 487, 331–342. [Google Scholar] [CrossRef]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, 399–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrett, B.E.; Griffiths, R.R. The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol. Biochem. Behav. 1997, 57, 533–541. [Google Scholar] [CrossRef]
- Jailani, M.; Mubarak, M.; Sarkhouh, M.; Al-Mahrezi, A.; Abdulnabi, H.; Naiser, M.; Alaradi, H.; Alabbad, A.; Hassan, M.; Kamal, A. The effect of low-doses of caffeine and taurine on convulsive seizure parameters in rats. Behav. Sci. 2020, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.; Herz, R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. Gen. Physiol. 1968, 52, 750–759. [Google Scholar] [CrossRef] [Green Version]
- Endo, M. Mechanism of Action of Caffeine on the Sarcoplasmic Reticulum of Skeletal Muscle. Proc. Jpn. Acad. 1975, 51, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Rossi, R.; Bottinelli, R.; Sorrentino, V.; Reggiani, C. Response to caffeine and ryanodine receptor isoforms in mouse skeletal muscles. Am. J. Physiol. Cell Physiol. 2001, 281, 585–594. [Google Scholar] [CrossRef]
- Tallis, J.; Higgins, M.F.; Cox, V.M.; Duncan, M.J.; James, R.S. Does a physiological concentration of taurine increase acute muscle power output, time to fatigue, and recovery in isolated mouse soleus (slow) muscle with or without the presence of caffeine? Can. J. Physiol. Pharmacol. 2013, 92, 42–49. [Google Scholar] [CrossRef] [Green Version]
- James, J.E. Critical Review of Dietary Caffeine and Blood Pressure: A Relationship that Should Be Taken More Seriously. Psychosom. Med. 2004, 66, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, S.; Piacentino, D.; Fineschi, V.; Frati, P.; Cipolloni, L.; Aromatario, M. Caffeine-related deaths: Manner of deaths and categories at risk. Nutrients 2018, 10, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, J.E.; Rogers, P.J. Effects of caffeine on performance and mood: Withdrawal reversal is the most plausible explanation. Psychopharmacology 2005, 182, 1–8. [Google Scholar] [CrossRef]
- Jackman, M.; Wendling, P.; Friars, D.; Graham, T.E. Metabolic, catecholamine, and endurance responses to caffeine during intense exercise. J. Appl. Physiol. 1996, 81, 1658–1663. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, M.P.; O’Brien, B.J.; Knez, W.L.; Paton, C.D. Caffeine has a small effect on 5-km running performance of well-trained and recreational runners. J. Sci. Med. Sport 2008, 11, 231–233. [Google Scholar] [CrossRef] [Green Version]
- Caballero, B. Humans against Obesity: Who Will Win? Adv. Nutr. 2019, 10, 4–9. [Google Scholar] [CrossRef]
- de Gonçalves, L.S.; de Painelli, V.S.; Yamaguchi, G.; de Oliveira, L.F.; Saunders, B.; da Silva, R.P.; Maciel, E.; Artioli, G.G.; Roschel, H.; Gualano, B. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J. Appl. Physiol. 2017, 123, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Graham, T.E. Caffeine, coffee and ephedrine: Impact on exercise performance and metabolism. Can. J. Appl. Physiol. 2001, 26, 103–119. [Google Scholar] [CrossRef]
- Kovacs, E.M.R.; Stegen, J.H.C.H.; Brouns, F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J. Appl. Physiol. 1998, 85, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Cox, G.R.; Desbrow, B.; Montgomery, P.G.; Anderson, M.E.; Bruce, C.R.; Macrides, T.A.; Martin, D.T.; Moquin, A.; Roberts, A.; Hawley, J.A.; et al. Effect of different protocols of caffeine intake on metabolism and endurance performance. J. Appl. Physiol. 2002, 93, 990–999. [Google Scholar] [CrossRef] [Green Version]
- Pallarés, J.G.; Fernández-Elías, V.E.; Ortega, J.F.; Muñoz, G.; Munoz-Guerra, J.; Mora-Rodríguez, R. Neuromuscular Responses to Incremental Caffeine Doses: Performance and Side Effects. Med. Sci. Sports Exerc. 2013, 45, 2184–2192. [Google Scholar] [CrossRef]
- Wilk, M.; Filip, A.; Krzysztofik, M.; Maszczyk, A.; Zajac, A. The Acute Effect of Various Doses of Caffeine on Power Output and Velocity during the Bench Press Exercise among Athletes Habitually Using Caffeine. Nutrients 2019, 11, 1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallis, J.; Duncan, M.J.; James, R.S. What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance? Br. J. Pharmacol. 2015, 172, 3703–3713. [Google Scholar] [CrossRef] [Green Version]
- Astorino, T.A.; Terzi, M.N.; Roberson, D.W.; Burnett, T.R. Effect of caffeine intake on pain perception during high-intensity exercise. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 27–32. [Google Scholar] [CrossRef]
- Judelson, D.A.; Armstrong, L.E.; Sökmen, B.; Roti, M.W.; Casa, D.J.; Kellogg, M.D. Effect of chronic caffeine intake on choice reaction time, mood, and visual vigilance. Physiol. Behav. 2005, 85, 629–634. [Google Scholar] [CrossRef] [PubMed]
- James, R.S.; Wilson, R.S.; Askew, G.N. Effects of caffeine on mouse skeletal muscle power output during recovery from fatigue. J. Appl. Physiol. 2004, 96, 545–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakosz, P.; Jakubowska-Lukanova, A.; Gnoiński, M. Tmg As a Prevention Method of Athletes Muscles, Ligaments and Joints Injuries. Pol. J. Sports Med. 2016, 32, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Alentorn-Geli, E.; Alvarez-Diaz, P.; Ramon, S.; Marin, M.; Steinbacher, G.; Rius, M.; Seijas, R.; Ares, O.; Cugat, R. Assessment of gastrocnemius tensiomyographic neuromuscular characteristics as risk factors for anterior cruciate ligament injury in male soccer players. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 2502–2507. [Google Scholar] [CrossRef]
- Tous-Fajardo, J.; Moras, G.; Rodríguez-Jiménez, S.; Usach, R.; Doutres, D.M.; Maffiuletti, N.A. Inter-rater reliability of muscle contractile property measurements using non-invasive tensiomyography. J. Electromyogr. Kinesiol. 2010, 20, 761–766. [Google Scholar] [CrossRef]
- Lohr, C.; Schmidt, T.; Medina-Porqueres, I.; Braumann, K.M.; Reer, R.; Porthun, J. Diagnostic accuracy, validity, and reliability of Tensiomyography to assess muscle function and exercise-induced fatigue in healthy participants. A systematic review with meta-analysis. J. Electromyogr. Kinesiol. 2019, 47, 65–87. [Google Scholar] [CrossRef]
- Završnik, J.; Pišot, R.; Šimunič, B.; Kokol, P.; Blažun Vošner, H. Biomechanical characteristics of skeletal muscles and associations between running speed and contraction time in 8- to 13-year-old children. J. Int. Med. Res. 2017, 45, 231–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Pérez, D.; Lopez-Samanes, A.; Centeno, A.; Esteve, J.; Diez-Vega, I. Relationship between running economy and mechanical characteristics of triceps surae assessed with tensiomyography: A pilot study. Kinesiology 2020, 52, 273–280. [Google Scholar] [CrossRef]
- Park, S. Theory and usage of tensiomyography and the analysis method for the patient with low back pain. J. Exerc. Rehabil. 2020, 16, 325–331. [Google Scholar] [CrossRef]
- Mora-Rodríguez, R.; García Pallarés, J.; López-Samanes, Á.; Ortega, J.F.; Fernández-Elías, V.E. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS ONE 2012, 7, e33807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora-Rodríguez, R.; Pallarés, J.G.; López-Gullón, J.M.; López-Samanes, Á.; Fernández-Elías, V.E.; Ortega, J.F. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J. Sci. Med. Sport 2015, 18, 338–342. [Google Scholar] [CrossRef]
- Martín-Rodríguez, S.; Loturco, I.; Hunter, A.M.; Rodríguez-Ruiz, D.; Munguía-Izquierdo, D. Reliability and measurement error of tensiomyography to assess mechanical muscle function: A systematic review. J. Strength Cond. Res. 2017, 31, 3524–3536. [Google Scholar] [CrossRef]
- Zubac, D.; Šimunič, B. Skeletal Muscle Contraction Time and Tone Decrease after 8 Weeks of Plyometric Training. J. Strength Cond. Res. 2017, 31, 1610–1619. [Google Scholar] [CrossRef]
- Evetovich, T.K.; Housh, T.J.; Stout, J.R.; Johnson, G.O.; Smith, D.B.; Ebersole, K.T. Mechanomyographic responses to concentric isokinetic muscle contractions. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 166–169. [Google Scholar] [CrossRef]
- Wickham, K.A.; Spriet, L.L. Administration of Caffeine in Alternate Forms. Sports Med. 2018, 48, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Tallis, J.; Yavuz, H.C.M. The effects of low and moderate doses of caffeine supplementation on upper and lower body maximal voluntary concentric and eccentric muscle force. Appl. Physiol. Nutr. Metab. 2018, 43, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.; Kiely, J. Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Bruce, C.R.; Anderson, M.E.; Fraser, S.F.; Stepto, N.K.; Klein, R.; Hopkins, W.G.; Hawley, J.A. Enhancement of 2000-m rowing performance after caffeine ingestion. Med. Sci. Sports Exerc. 2000, 32, 1958–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilk, M.; Krzysztofik, M.; Filip, A.; Zajac, A.; del Coso, J. The effects of high doses of caffeine on maximal strength and muscular endurance in athletes habituated to caffeine. Nutrients 2019, 11, 1912. [Google Scholar] [CrossRef] [Green Version]
- Sökmen, B.; Armstrong, L.E.; Kraemer, W.J.; Casa, D.J.; Dias, J.C.; Judelson, D.A.; Maresh, C.M. C Affeine U Se in S Ports: Considerations. J. Strength Cond. Res. 2008, 22, 978–986. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.G.; McLellan, T.M. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J. Appl. Physiol. 2002, 93, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Santos, V.G.F.; Santos, V.R.F.; Felippe, L.J.C.; Almeida, J.W.; Bertuzzi, R.; Kiss, M.A.P.D.M.; Lima-Silva, A.E. Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo. Nutrients 2014, 6, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Stuart, G.R.; Hopkins, W.G.; Cook, C.; Cairns, S.P. Multiple effects of caffeine on simulated high-intensity team-sport performance. Med. Sci. Sports Exerc. 2005, 37, 1998–2005. [Google Scholar] [CrossRef]
- Foskett, A.; Ali, A.; Gant, N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 410–423. [Google Scholar] [CrossRef]
Age | BMI (kg/m2) | Relative Fat Mass (%) | Weight (kg) | Height (cm) | |
---|---|---|---|---|---|
EXP (n = 20) | 23.3 ± 3.74 | 25.59 ± 3.74 | 18.89 ± 6.41 | 93.12 ± 17.51 | 190 ± 8.44 |
CON (n = 20) | 22.95 ± 3.35 | 26.19 ± 2.71 | 17.79 ± 9.43 | 98.02 ± 14.11 | 189 ± 6.84 |
X ± SD | P | |
---|---|---|
EXP | ||
Tc (ms) Before | 20.60 ± 2.58 | 0.001 |
Tc (ms) After | 18.43 ± 3.05 | |
Dm (mm) Before | 2.32 ± 0.80 | 0.001 |
Dm (mm) After | 1.69 ± 0.51 | |
CON | ||
Tc (ms) Before | 20.00 ± 3.74 | 0.648 |
Tc (ms) After | 19.87 ± 3.06 | |
Dm (mm) Before | 2.06 ± 0.66 | 0.070 |
Dm (mm) After | 1.97 ± 0.60 |
Sum of Squares | Df | Mean Square | F | P | η2p | |
---|---|---|---|---|---|---|
Time | 0.0137 | 1 | 0.01374 | 6.53 | 0.015 | 0.147 |
T*G | 0.0120 | 1 | 0.01203 | 5.72 | 0.022 | 0.131 |
Residual | 0.0799 | 38 | 0.00210 |
Comparison | ||||||||
---|---|---|---|---|---|---|---|---|
Time | Group | Time | Group | Mean Difference | SE | Df | T | Ptukey |
Pre | EXP | Pre | CON | 0.01563 | 0.0220 | 57.5 | 0.709 | 0.893 |
Post | EXP | 0.05074 | 0.0145 | 38.0 | 3.499 | 0.006 | ||
Post | CON | 0.01731 | 0.0220 | 57.5 | 0.786 | 0.861 | ||
CON | Post | EXP | 0.03511 | 0.0220 | 57.5 | 1.594 | 0.390 | |
Post | CON | 0.00168 | 0.0145 | 38.0 | 0.116 | 0.999 | ||
Post | EXP | Post | CON | −0.03343 | 0.0220 | 57.5 | −1.517 | 0.434 |
Sum of Squares | Df | Mean Square | F | P | η2p | |
---|---|---|---|---|---|---|
Time | 0.1191 | 1 | 0.11910 | 22.6 | <0.001 | 0.373 |
T*G | 0.0753 | 1 | 0.07533 | 14.3 | <0.001 | 0.274 |
Residual | 0.2000 | 38 | 0.00526 |
Comparison | ||||||||
---|---|---|---|---|---|---|---|---|
Time | Group | Time | Group | Mean Difference | SE | Df | T | Ptukey |
Pre | EXP | Pre | CON | 0.0584 | 0.0458 | 48.7 | 1.273 | 0.584 |
Post | EXP | 0.1385 | 0.0229 | 38.0 | 6.040 | < 0.001 | ||
Post | CON | 0.0742 | 0.0458 | 48.7 | 1.618 | 0.378 | ||
CON | Post | EXP | 0.0802 | 0.0458 | 48.7 | 1.749 | 0.310 | |
Post | CON | 0.0158 | 0.0229 | 38.0 | 0.689 | 0.901 | ||
Post | EXP | Post | CON | −0.0644 | 0.0458 | 48.7 | −1.405 | 0.503 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaszewski, P.; Pakosz, P.; Konieczny, M.; Bączkowicz, D.; Sadowska-Krępa, E. Caffeine-Induced Effects on Human Skeletal Muscle Contraction Time and Maximal Displacement Measured by Tensiomyography. Nutrients 2021, 13, 815. https://doi.org/10.3390/nu13030815
Domaszewski P, Pakosz P, Konieczny M, Bączkowicz D, Sadowska-Krępa E. Caffeine-Induced Effects on Human Skeletal Muscle Contraction Time and Maximal Displacement Measured by Tensiomyography. Nutrients. 2021; 13(3):815. https://doi.org/10.3390/nu13030815
Chicago/Turabian StyleDomaszewski, Przemysław, Paweł Pakosz, Mariusz Konieczny, Dawid Bączkowicz, and Ewa Sadowska-Krępa. 2021. "Caffeine-Induced Effects on Human Skeletal Muscle Contraction Time and Maximal Displacement Measured by Tensiomyography" Nutrients 13, no. 3: 815. https://doi.org/10.3390/nu13030815
APA StyleDomaszewski, P., Pakosz, P., Konieczny, M., Bączkowicz, D., & Sadowska-Krępa, E. (2021). Caffeine-Induced Effects on Human Skeletal Muscle Contraction Time and Maximal Displacement Measured by Tensiomyography. Nutrients, 13(3), 815. https://doi.org/10.3390/nu13030815