Effect of Maternal Nutritional Status and Mode of Delivery on Zinc and Iron Stores at Birth
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khayat, S.; Fanaei, H.; Ghanbarzehi, A. Minerals in Pregnancy and Lactation: A Review Article. J. Clin. Diagn. Res. 2017, 11, QE01–QE05. [Google Scholar] [CrossRef] [PubMed]
- Abu-Saad, K.; Fraser, D. Maternal Nutrition and Birth Outcomes. Epidemiologic Rev. 2010, 32, 5–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viteri, F.E. Iron endowment at birth: Maternal iron status and other influences. Nutr. Rev. 2011, 69, S3–S16. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, S.; Morimoto, N.; Hosokawa, S.; Matsushita, T. Associations of Maternal and Neonatal Serum Trace Element Concentrations with Neonatal Birth Weight. PLoS ONE 2013, 8, e75627. [Google Scholar] [CrossRef]
- Bermúdez, L.; Garcia-Vicent, C.; Lopez, J.; Torró, M.I.; Lurbe, E. Assessment of ten trace elements in umbilical cord blood and maternal blood: Association with birth weight. J. Transl. Med. 2015, 13, 291. [Google Scholar] [CrossRef] [Green Version]
- Gómez, T.; Bequer, L.; Mollineda, A.; González, O.; Diaz, M.; Fernández, D. Serum zinc levels of cord blood: Relation to birth weight and gestational period. J. Trace Elem. Med. Biol. 2015, 30, 180–183. [Google Scholar] [CrossRef]
- Daniali, S.S.; Shayegh, S.; Tajaddin, M.H.; Goodarzi-Khoigani, M.; Kelishadi, R. Association of Cord Blood Zinc Level and Birth Weight in a Sample of Iranian Neonates. Int. J. Prev. Med. 2020, 11, 3. [Google Scholar] [CrossRef]
- Akdas, S.; Yazihan, N. Cord blood zinc status effects on pregnancy outcomes and its relation with maternal serum zinc levels: A systematic review and meta-analysis. World J. Pediatr. 2019, 16, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Kilbride, J.; Baker, T.G.; Parapia, L.A.; Khoury, S.A.; Shuqaidef, S.W.; Jerwood, D. Anaemia during pregnancy as a risk factor for iron-deficiency anaemia in infancy: A case-control study in Jordan. Int. J. Epidemiol. 1999, 28, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Siddappa, A.M.; Rao, R.; Long, J.D.; Widness, J.A.; Georgieff, M.K. The Assessment of Newborn Iron Stores at Birth: A Review of the Literature and Standards for Ferritin Concentrations. Neonatology 2007, 92, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Kaciroti, N.; Jiang, Y.; Li, X.; Xu, G.; Richards, B.; Li, M.; Lozoff, B. Inadequate iron stores in early term neonates. J. Perinatol. 2018, 38, 1017–1021. [Google Scholar] [CrossRef]
- Shukla, A.K.; Srivastava, S.; Verma, G. Effect of maternal anemia on the status of iron stores in infants: A cohort study. J. Fam. Community Med. 2019, 26, 118–122. [Google Scholar] [CrossRef]
- El-Farrash, R.A.; Ismail, E.A.R.; Nada, A.S. Cord blood iron profile and breast milk micronutrients in maternal iron deficiency anemia. Pediatr. Blood Cancer 2011, 58, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Dumrongwongsiri, O.; Suthutvoravut, U.; Chatvutinun, S.; Phoonlabdacha, P.; Sangcakul, A.; Siripinyanond, A.; Thiengmanee, U.; Chongviriyaphan, N. Maternal zinc status is associated with breast milk zinc concentration and zinc status in breastfed infants aged 4-6 months. Asia Pac. J. Clin. Nutr. 2015, 24, 273–280. [Google Scholar] [PubMed]
- Wasantwisut, E.; Winichagoon, P.; Chitchumroonchokchai, C.; Yamborisut, U.; Boonpraderm, A.; Pongcharoen, T.; Sranacharoenpong, K.; Russameesopaphorn, W. Iron and Zinc Supplementation Improved Iron and Zinc Status, but Not Physical Growth, of Apparently Healthy, Breast-Fed Infants in Rural Communities of Northeast Thailand. J. Nutr. 2006, 136, 2405–2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumrongwongsiri, O.; Winichagoon, P.; Chongviriyaphan, N.; Suthutvoravut, U.; Grote, V.; Koletzko, B. Determining the Actual Zinc and Iron Intakes in Breastfed Infants: Protocol for a Longitudinal Observational Study. JMIR Res. Protoc. 2020, 9, e19119. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F.; Reidinger, C.J.; Robertson, A.D.; Hambidge, K. Growth and intakes of energy and zinc in infants fed human milk. J. Pediatr. 1994, 124, 32–39. [Google Scholar] [CrossRef]
- Bureau of Nutrition, Department of Health, Ministry of Public Health. Dietary Reference Intake for Thais 2020; AV Progressive: Bangkok, Thailand, 2020. [Google Scholar]
- King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Zinc Review. J. Nutr. 2015, 146, 858S–885S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Populations; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Bhutta, Z.A.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S.; Webb, P.; Lartey, A.; Black, R.E. Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet 2013, 382, 452–477. [Google Scholar] [CrossRef]
- Caulfield, L.E.; Zavaleta, N.; Shankar, A.H.; Merialdi, M. Potential contribution of maternal zinc supplementation during pregnancy to maternal and child survival. Am. J. Clin. Nutr. 1998, 68, 499S–508S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saleh, E.; Nandakumaran, M.; Al-Harmi, J.; Sadan, T.; Al-Enezi, H. Maternal-Fetal Status of Copper, Iron, Molybdenum, Selenium, and Zinc in Obese Pregnant Women in Late Gestation. Biol. Trace Elem. Res. 2006, 113, 113–124. [Google Scholar] [CrossRef]
- Sen, S.; Iyer, C.; Meydani, S.N. Obesity during pregnancy alters maternal oxidant balance and micronutrient status. J. Perinatol. 2013, 34, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Flynn, A.C.; Begum, S.; White, S.L.; Dalrymple, K.; Gill, C.; Alwan, N.A.; Kiely, M.; Latunde-Dada, G.; Bell, R.; Briley, A.L.; et al. Relationships between Maternal Obesity and Maternal and Neonatal Iron Status. Nutrients 2018, 10, 1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, R.K.; Tamayo-Ortiz, M.; Cantoral, A.; Schnaas, L.; Osorio-Valencia, E.; Wright, R.J.; Téllez-Rojo, M.M.; Wright, R.O. Maternal Prenatal Psychosocial Stress and Prepregnancy BMI Associations with Fetal Iron Status. Curr. Dev. Nutr. 2020, 4, nzaa018. [Google Scholar] [CrossRef]
- Dosch, N.C.; Guslits, E.F.; Weber, M.B.; Murray, S.E.; Ha, B.; Coe, C.L.; Auger, A.P.; Kling, P.J. Maternal Obesity Affects Inflammatory and Iron Indices in Umbilical Cord Blood. J. Pediatr. 2016, 172, 20–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, A.D.; Zhao, G.; Jiang, Y.-P.; Zhou, M.; Xu, G.; Kaciroti, N.; Zhang, Z.; Lozoff, B. Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status. Eur. J. Clin. Nutr. 2016, 70, 918–924. [Google Scholar] [CrossRef] [Green Version]
- Dao, M.C.; Sen, S.; Iyer, C.; Klebenov, D.; Meydani, S.N. Obesity during pregnancy and fetal iron status: Is Hepcidin the link? J. Perinatol. 2013, 33, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Valdes, L.; Campoy, C.; Hayes, H.H.; Florido, J.P.; Rusanova, I.; Miranda, M.T.; McArdle, H.J. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy. Int. J. Obes. 2015, 39, 571–578. [Google Scholar] [CrossRef]
- Flores-Quijano, M.E.; Vega-Sánchez, R.; Tolentino-Dolores, M.C.; López-Alarcón, M.G.; Flores-Urrutia, M.C.; López-Olvera, A.D.; Talavera, J.O. Obesity Is Associated with Changes in Iron Nutrition Status and Its Homeostatic Regulation in Pregnancy. Nutrients 2019, 11, 693. [Google Scholar] [CrossRef] [Green Version]
- Terefe, B.; Birhanu, A.; Nigussie, P.; Tsegaye, A. Effect of Maternal Iron Deficiency Anemia on the Iron Store of Newborns in Ethiopia. Anemia 2015, 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Lou, J.; Rao, R.; Georgieff, M.K.; Kaciroti, N.; Felt, B.T.; Zhao, Z.-Y.; Lozoff, B. Maternal Serum Ferritin Concentration Is Positively Associated with Newborn Iron Stores in Women with Low Ferritin Status in Late Pregnancy. J. Nutr. 2012, 142, 2004–2009. [Google Scholar] [CrossRef]
- Sangkhae, V.; Fisher, A.L.; Wong, S.; Koenig, M.D.; Tussing-Humphreys, L.; Chu, A.; Lelić, M.; Ganz, T.; Nemeth, E. Effects of maternal iron status on placental and fetal iron homeostasis. J. Clin. Investig. 2019, 130, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Cornock, R.; Gambling, L.; Langley-Evans, S.C.; McArdle, H.J.; McMullen, S. The effect of feeding a low iron diet prior to and during gestation on fetal and maternal iron homeostasis in two strains of rat. Reprod. Biol. Endocrinol. 2013, 11, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Elhadi, A.; Rayis, D.A.; Abdullahi, H.; Elbashir, L.M.; Ali, N.I.; Adam, I. Maternal and Umbilical Cord Blood Levels of Zinc and Copper in Active Labor Versus Elective Caesarean Delivery at Khartoum Hospital, Sudan. Biol. Trace Elem. Res. 2015, 169, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Lazer, T.; Paz-Tal, O.; Katz, O.; Aricha-Tamir, B.; Sheleg, Y.; Maman, R.; Silberstein, T.; Mazor, M.; Wiznitzer, A.; Sheiner, E. Trace elements’ concentrations in maternal and umbilical cord plasma at term gestation: A comparison between active labor and elective cesarean delivery. J. Matern. Neonatal Med. 2011, 25, 286–289. [Google Scholar] [CrossRef]
- McCarthy, E.K.; Kenny, L.C.; Hourihane, J.O.; Irvine, A.D.; Murray, D.M.; Kiely, M.E. Impact of maternal, antenatal and birth-associated factors on iron stores at birth: Data from a prospective maternal–infant birth cohort. Eur. J. Clin. Nutr. 2016, 71, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-B.; Li, H.-T.; Zhu, L.-P.; Liu, J.-M. Impact of cesarean section on placental transfusion and iron-related hematological indices in term neonates: A systematic review and meta-analysis. Placenta 2014, 35, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Xu, G.; Zhou, M.; Jiang, Y.; Richards, B.; Clark, K.M.; Kaciroti, N.; Georgieff, M.K.; Zhang, Z.; Tardif, T.; et al. Prenatal Iron Supplementation Reduces Maternal Anemia, Iron Deficiency, and Iron Deficiency Anemia in a Randomized Clinical Trial in Rural China, but Iron Deficiency Remains Widespread in Mothers and Neonates. J. Nutr. 2015, 145, 1916–1923. [Google Scholar] [CrossRef]
- O’Brien, K.O.; Zavaleta, N.; Abrams, S.A.; Caulfield, L.E. Maternal iron status influences iron transfer to the fetus during the third trimester of pregnancy. Am. J. Clin. Nutr. 2003, 77, 924–930. [Google Scholar] [CrossRef]
- McDonald, S.J.; Middleton, P.; Dowswell, T.; Morris, P.S. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst. Rev. 2013, 2013, CD004074. [Google Scholar] [CrossRef]
Characteristics | Mean ± SD | n (%) |
---|---|---|
Before & During pregnancy | ||
Maternal age (years) | 31.9 ± 5.6 | |
Pre-pregnant BMI (Kg/m2) | 22.0 ± 3.9 | |
<18.5 | 21 (17.9) | |
18.5–22.9 | 52 (44.5) | |
≥23 | 44 (37.6) | |
Zinc intake (mg): Diet Supplement Diet and supplement Iron intake (mg): Diet Supplement Diet and supplement | 8.5 ± 3.0 17.2 ± 5.8 25.7 ± 6.8 11.2 ± 5.0 63.8 ± 19.1 74.9 ± 20.1 | |
Education level | ||
high school | 20 (17.1) | |
bachelor degree | 74 (63.2) | |
higher | 23 (19.7) | |
Family income (baht/month) | ||
<10,000 | 5 (4.3) | |
10,000 – <30,000 | 39 (33.3) | |
>30,000 | 73 (62.4) | |
Birth order | ||
1st child | 70 (59.8) | |
2nd child | 41 (35.1) | |
3rd child | 6 (5.1) | |
Complication of pregnancy | ||
gestational diabetes (GDM) | 25 (21.4) | |
pregnancy induced hypertension/preeclampsia | 1 (0.9) | |
Mode of delivery | ||
vaginal delivery | 63 (53.8) | |
cesarean delivery | 54 (46.2) | |
Birth parameters | ||
Gestational age at delivery (weeks) | 38.5 ± 1.2 | |
Birth weight (g) | 3095 ± 394 | |
Birth length (cm) | 49.7 ± 2.1 | |
Low birth weight (<2500 g) | 8 (6.8%) | |
Infant sex | ||
Male | 63 (53.8) | |
Female | 54 (46.2) |
Laboratory Parameters | Total N | Mean ± SD | n (%) |
---|---|---|---|
During 1st trimester of pregnancy: | |||
Hb, g/dL | 116 | 12.2 ± 1.0 | - |
Prevalence of anemia, % 1 | 116 | - | 12 (10.3%) |
During 3rd trimester of pregnancy: | |||
Hb, g/dL | 117 | 11.7 ± 1.0 | - |
Prevalence of anemia, % 1 | 117 | - | 28 (23.9%) |
Prevalence of iron deficiency, % 3 | 117 | - | 17 (14.5%) |
Prevalence of iron deficiency anemia, % 4 | 117 | - | 6 (5.1%) |
Serum zinc, μmol/L | 117 | 11.1 ± 4.8 | - |
Prevalence of zinc deficiency, % 2 | 117 | - | 60 (51.3%) |
Serum ferritin, μg/L | 117 | 32.3 ± 21.1 | - |
Cord blood | |||
Cord blood zinc, μmol/L | 114 | 10.8 ± 2.6 | - |
Cord blood ferritin, μg/L 5 | 105 | 176.7 ± 75.6 | - |
Factors | Unadjusted Model | Adjusted Model | ||
---|---|---|---|---|
ß (95%CI) | p-Value | ß (95%CI) | p-Value | |
Pre-pregnancy BMI | 0.06 (−0.05, 0.19) | 0.30 | 0.15 (0.02, 0.28) | 0.023 * |
Mode of delivery 1 | 1.12 (0.18, 2.06) | 0.020 * | 1.38 (0.38, 2.38) | 0.007 * |
Maternal zinc status | 0.10 (0.005, 0.20) | 0.039 * | 0.12 (0.02, 0.21) | 0.023 * |
Maternal age | −0.05 (−0.13, 0.04) | 0.28 | −0.05 (−0.14, 0.04) | 0.30 |
Birth order 2 | −0.08 (−0.90, 0.72) | 0.84 | −0.05 (−0.91, 0.81) | 0.90 |
Gestational age at birth | −0.05 (−0.44, 0.35) | 0.80 | −0.16 (−0.56, 0.23) | 0.41 |
Infant sex 3 | −0.04 (−1.01, 0.92) | 0.92 | −0.32 (−1.28, 0.64) | 0.51 |
Dietary zinc intake | −0.05 (−0.21, 0.11) | 0.53 | −0.09 (−0.25, 0.07) | 0.28 |
Factors | Unadjusted Model | Adjusted Model | ||
---|---|---|---|---|
ß (95%CI) | p-Value | ß (95%CI) | p-Value | |
Pre-pregnancy BMI | −5.62 (−9.32, −1.92) | 0.003 * | −5.23 (−9.14, −1.33) | 0.009 * |
Mode of delivery 1 | 50.31 (22.54, 78.07) | 0.001 * | 32.96 (3.68, 62.24) | 0.028 * |
Gestational age at birth | 10.84 (−0.90, 22.58) | 0.07 | 9.44 (−2.10, 20.98) | 0.11 |
Maternal age | −1.75 (−4.44, 0.95) | 0.20 | 0.53 (−2.24, 3.29) | 0.71 |
Birth order 2 | −24.76 (−49.40, −0.12) | 0.049 * | −9.23 (−35.07, 16.61) | 0.48 |
Infant sex 3 | 28.91 (−0.10, 57.91) | 0.05 | −0.32 (−1.28, 0.64) | 0.51 |
Maternal serum ferritin | 0.20 (−0.48, 0.87) | 0.56 | 0.06 (−0.59, 0.71) | 0.86 |
Maternal Hb during 1st trimester | −0.88 (−15.72, 13.96) | 0.91 | −3.27 (−17.63, 11.09) | 0.65 |
Dietary iron intake | −0.38 (−3.33, 2.58) | 0.80 | −0.41 (−3.21, 2.40) | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumrongwongsiri, O.; Winichagoon, P.; Chongviriyaphan, N.; Suthutvoravut, U.; Grote, V.; Koletzko, B. Effect of Maternal Nutritional Status and Mode of Delivery on Zinc and Iron Stores at Birth. Nutrients 2021, 13, 860. https://doi.org/10.3390/nu13030860
Dumrongwongsiri O, Winichagoon P, Chongviriyaphan N, Suthutvoravut U, Grote V, Koletzko B. Effect of Maternal Nutritional Status and Mode of Delivery on Zinc and Iron Stores at Birth. Nutrients. 2021; 13(3):860. https://doi.org/10.3390/nu13030860
Chicago/Turabian StyleDumrongwongsiri, Oraporn, Pattanee Winichagoon, Nalinee Chongviriyaphan, Umaporn Suthutvoravut, Veit Grote, and Berthold Koletzko. 2021. "Effect of Maternal Nutritional Status and Mode of Delivery on Zinc and Iron Stores at Birth" Nutrients 13, no. 3: 860. https://doi.org/10.3390/nu13030860
APA StyleDumrongwongsiri, O., Winichagoon, P., Chongviriyaphan, N., Suthutvoravut, U., Grote, V., & Koletzko, B. (2021). Effect of Maternal Nutritional Status and Mode of Delivery on Zinc and Iron Stores at Birth. Nutrients, 13(3), 860. https://doi.org/10.3390/nu13030860