Risk of Low Energy Availability among Female and Male Elite Runners Competing at the 26th European Cross-Country Championships
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. The Low Energy Availability in Females Questionnaire (LEAF-Q)
2.3. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Risk of Low Energy Availability
3.3. Association Between Risk of Low Energy Availability and Characteristics
3.4. The Low Energy Availability in Females Questionnaire (LEAF-Q): Answers per Section
4. Discussion
4.1. Risk of Low Energy Availability
4.2. Association Between Risk of Low Energy Availability and Sample Characteristics
4.3. Consequences of Low Energy Availability
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loucks, A.B. Energy Balance and Energy Availability. In The Encyclopaedia of Sports Medicine: An IOC Medical Commission Publication, 1st ed.; Maughan, R.J., Ed.; John Wiley & Sons: New York, NY, USA, 2014; Volume 19, pp. 72–87. [Google Scholar]
- Melin, A.K.; Heikura, I.A.; Tenforde, A.; Mountjoy, M. Energy Availability in Athletics: Health, Performance, and Physique. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 152–164. [Google Scholar] [CrossRef]
- De Souza, M.J.; Nattiv, A.; Joy, E.; Misra, M.; Williams, N.I.; Mallinson, R.J.; Gibbs, J.C.; Olmsted, M.; Goolsby, M.; Matheson, G.; et al. 2014 Female Athlete Triad Coalition Consensus Statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br. J. Sports Med. 2014, 48, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mountjoy, M.; Sundgot-Borgen, J.K.; Burke, L.M.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.K.; Meyer, N.L.; et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br. J. Sports Med. 2018, 52, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC consensus statement: Beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S). Br. J. Sports Med. 2014, 48, 491–497. [Google Scholar] [CrossRef]
- Burke, L.M.; Lundy, B.; Fahrenholtz, I.L.; Melin, A.K. Pitfalls of Conducting and Interpreting Estimates of Energy Availability in Free-Living Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Melin, A.; Tornberg, A.B.; Skouby, S.; Faber, J.; Ritz, C.; Sjodin, A.; Sundgot-Borgen, J. The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. Br. J. Sports Med. 2014, 48, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Slater, J. Low Energy Availability in New Zealand Recreational Athletes. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2015. [Google Scholar]
- Beermann, B.L.; Lee, D.G.; Almstedt, H.C.; McCormack, W.P. Nutritional Intake and Energy Availability of Collegiate Distance Runners. J. Am. Coll. Nutr. 2020, 39, 747–755. [Google Scholar] [CrossRef]
- Sundgot-Borgen, J.; Meyer, N.L.; Lohman, T.G.; Ackland, T.R.; Maughan, R.J.; Stewart, A.D.; Muller, W. How to minimise the health risks to athletes who compete in weight-sensitive sports review and position statement on behalf of the Ad Hoc Research Working Group on Body Composition, Health and Performance, under the auspices of the IOC Medical Commission. Br. J. Sports Med. 2013, 47, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Melin, A.; Tornberg, A.B.; Skouby, S.; Moller, S.S.; Sundgot-Borgen, J.; Faber, J.; Sidelmann, J.J.; Aziz, M.; Sjodin, A. Energy availability and the female athlete triad in elite endurance athletes. Scand. J. Med. Sci. Sports 2015, 25, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Koehler, K.; Achtzehn, S.; Braun, H.; Mester, J.; Schaenzer, W. Comparison of self-reported energy availability and metabolic hormones to assess adequacy of dietary energy intake in young elite athletes. Appl. Physiol. Nutr. Metab. 2013, 38, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Heikura, I.A.; Uusitalo, A.L.T.; Stellingwerff, T.; Bergland, D.; Mero, A.A.; Burke, L.M. Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 403–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Postgrad. Med. 2002, 48, 206–208.
- Swann, C.; Moran, A.; Piggott, D. Defining elite athletes: Issues in the study of expert performance in sport psychology. Psychol. Sport Exerc. 2014, 16, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Roelofs, E.J.; Smith-Ryan, A.E.; Melvin, M.N.; Wingfield, H.L.; Trexler, E.T.; Walker, N. Muscle size, quality, and body composition: Characteristics of division I cross-country runners. J. Strength Cond. Res. 2015, 29, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Mathisen, T.F.; Heia, J.; Raustol, M.; Sandeggen, M.; Fjellestad, I.; Sundgot-Borgen, J. Physical health and symptoms of relative energy deficiency in female fitness athletes. Scand. J. Med. Sci. Sports 2020, 30, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Staal, S.; Sjodin, A.; Fahrenholtz, I.; Bonnesen, K.; Melin, A.K. Low RMRratio as a Surrogate Marker for Energy Deficiency, the Choice of Predictive Equation Vital for Correctly Identifying Male and Female Ballet Dancers at Risk. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 412–418. [Google Scholar] [CrossRef]
- Logue, D.M.; Madigan, S.M.; Heinen, M.; McDonnell, S.J.; Delahunt, E.; Corish, C.A. Screening for risk of low energy availability in athletic and recreationally active females in Ireland. Eur. J. Sport Sci. 2019, 19, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Folscher, L.-L.; Grant, C.C.; Fletcher, L.; Van Rensberg, D.C.J. Ultra-Marathon Athletes at Risk for the Female Athlete Triad. Sports Med. Open 2015, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Condo, D.; Lohman, R.; Kelly, M.; Carr, A. Nutritional Intake, Sports Nutrition Knowledge and Energy Availability in Female Australian Rules Football Players. Nutrients 2019, 11, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, K.; Qiu, J.; Benardot, D.; Carr, A.; Yi, L.; Wang, J.; Liang, Y. The risk of low energy availability in Chinese elite and recreational female aesthetic sports athletes. J. Int. Soc. Sports Nutr. 2020, 17, 13. [Google Scholar] [CrossRef] [Green Version]
- Black, K.; Slater, J.; Brown, R.C.; Cooke, R. Low Energy Availability, Plasma Lipids, and Hormonal Profiles of Recreational Athletes. J. Strength Cond. Res. 2018, 32, 2816–2824. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.J.; Koltun, K.J.; Williams, N.I. The Role of Energy Availability in Reproductive Function in the Female Athlete Triad and Extension of its Effects to Men: An Initial Working Model of a Similar Syndrome in Male Athletes. Sports Med. 2019, 49, 125–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascherini, G.; Castizo-Olier, J.; Irurtia, A.; Petri, C.; Galanti, G. Differences between the sexes in athletes’ body composition and lower limb bioimpedance values. Muscle Ligaments Tendons J. 2017, 7, 573–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Null, N. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Saunier, J.; Chapurlat, R. Stress fracture in athletes. Jt. Bone Spine 2018, 85, 307–310. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.; Meyer, N.; et al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Brinkworth, G.D.; Noakes, M.; Clifton, P.M.; Bird, A.R. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br. J. Nutr. 2009, 101, 1493–1502. [Google Scholar] [CrossRef] [Green Version]
- Shaw, D.; Gohil, K.; Basson, M.D. Intestinal mucosal atrophy and adaptation. World J. Gastroenterol. 2012, 18, 6357–6375. [Google Scholar] [CrossRef]
- Nattiv, A.; Loucks, A.B.; Manore, M.M.; Sanborn, C.F.; Sundgot-Borgen, J.; Warren, M.P. American College of Sports Medicine position stand. The female athlete triad. Med. Sci. Sports Exerc. 2007, 39, 1867–1882. [Google Scholar] [CrossRef]
- Ackerman, K.E.; Holtzman, B.; Cooper, K.M.; Flynn, E.F.; Bruinvels, G.; Tenforde, A.S.; Popp, K.L.; Simpkin, A.J.; Parziale, A.L. Low energy availability surrogates correlate with health and performance consequences of Relative Energy Deficiency in Sport. Br. J. Sports Med. 2019, 53, 628–633. [Google Scholar] [CrossRef]
- Müller-Lissner, S.A.; Kamm, M.A.; Scarpignato, C.; Wald, A. Myths and misconceptions about chronic constipation. Am. J. Gastroenterol. 2005, 100, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Boilesen, S.N.; Tahan, S.; Dias, F.C.; Melli, L.C.F.L.; De Morais, M.B. Water and fluid intake in the prevention and treatment of functional constipation in children and adolescents: Is there evidence? J. Pediatr. 2017, 93, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Osterberg, K.L.; Horswill, C.A.; Baker, L.B. Pregame urine specific gravity and fluid intake by National Basketball Association players during competition. J. Athl. Train. 2009, 44, 53–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khodaee, M.; Olewinski, L.; Shadgan, B.; Kiningham, R.R. Rapid Weight Loss in Sports with Weight Classes. Curr. Sports Med. Rep. 2015, 14, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Selye, H. THE effect of adaptation to various damaging agents on the female sex organs in the rat. Endocrinol. 1939, 25, 615–624. [Google Scholar] [CrossRef]
- Klein, D.A.; Paradise, S.L.; Reeder, R.M. Amenorrhea: A Systematic Approach to Diagnosis and Management. Am. Fam. Physician 2019, 100, 39–48. [Google Scholar] [PubMed]
- Kapczuk, K. Elite athletes and pubertal delay. Minerva Pediatr. 2017, 69, 415–426. [Google Scholar] [CrossRef]
- Ackerman, K.E.; Misra, M. Amenorrhoea in adolescent female athletes. Lancet Child Adolesc. Health 2018, 2, 677–688. [Google Scholar] [CrossRef]
Whole Sample (n = 207) | Female (n = 83) | Male (n = 124) | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Range | Mean | SD | Range | Mean | SD | Range | ||
Age (years) | 22.1 | 4.0 | 18.0–35.0 | 21.8 | 4.0 | 18.0–35.0 | 22.3 | 4.1 | 18.0–35.0 | 0.320 |
Weight (kg) | 58.4 | 8.0 | 43.0–76.0 | 51.0 | 4.1 | 43.0–61.0 | 63.2 | 6.1 | 46.0–76.0 | <0.001 |
Height (cm) | 173.9 | 8.9 | 154.0–196.0 | 165.8 | 5.1 | 154.0–176.0 | 179.2 | 6.6 | 163.0–196.0 | <0.001 |
BMI (kg/m2) | 19.3 | 1.4 | 15.7–24.2 | 18.6 | 1.3 | 16.2–22.4 | 19.8 | 1.3 | 15.7–24.2 | <0.001 |
Years of practice | 7.2 | 4.3 | 0.0–20.0 | 7.0 | 4.1 | 0.0–20.0 | 7.4 | 4.3 | 0.0–19.0 | 0.508 |
Weekly practice (h) | 14.8 | 5.4 | 5.0–40.0 | 14.8 | 5.4 | 6.0–40.0 | 14.7 | 5.5 | 5.0–35.0 | 0.996 |
Internationalizations | 4.5 | 4.9 | 0.0–40.0 | 6.4 | 4.5 | 0.0–34.0 | 4.4 | 5.1 | 0.0–40.0 | 0.184 |
Whole Sample (n = 207) | Female(n = 83) | Male (n = 124) | p | ||||
---|---|---|---|---|---|---|---|
Mean (SD) | n (%) | Mean (SD) | n (%) | Mean (SD) | n (%) | ||
Injury section | 3.0 (2.2) | N/a | 3.1 (2.2) | 46 (55.6) | 2.9 (2.2) | N/a | 0.395 |
Gastrointestinal section | 3.9 (1.9) | N/a | 3.5 (2.1) | 62 (74.7) | 4.1 (1.7) | N/a | 0.038 |
Menstrual function and contraceptive use section | N/a | N/a | 5.4 (3.2) | 59 (71.1) | N/a | N/a | N/a |
Total | N/a | 133 (64.3) | 12.0 (4.4) | 66 (79.5) | 7.0 (2.9) | 67 (54.0) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus, F.; Castela, I.; Silva, A.M.; Branco, P.A.; Sousa, M. Risk of Low Energy Availability among Female and Male Elite Runners Competing at the 26th European Cross-Country Championships. Nutrients 2021, 13, 873. https://doi.org/10.3390/nu13030873
Jesus F, Castela I, Silva AM, Branco PA, Sousa M. Risk of Low Energy Availability among Female and Male Elite Runners Competing at the 26th European Cross-Country Championships. Nutrients. 2021; 13(3):873. https://doi.org/10.3390/nu13030873
Chicago/Turabian StyleJesus, Filipe, Inês Castela, Analiza M Silva, Pedro A. Branco, and Mónica Sousa. 2021. "Risk of Low Energy Availability among Female and Male Elite Runners Competing at the 26th European Cross-Country Championships" Nutrients 13, no. 3: 873. https://doi.org/10.3390/nu13030873
APA StyleJesus, F., Castela, I., Silva, A. M., Branco, P. A., & Sousa, M. (2021). Risk of Low Energy Availability among Female and Male Elite Runners Competing at the 26th European Cross-Country Championships. Nutrients, 13(3), 873. https://doi.org/10.3390/nu13030873