Examining Associations of HIV and Iron Status with Nutritional and Inflammatory Status, Anemia, and Dietary Intake in South African Schoolchildren
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Socio-Demographic and Anthropometric Indicators
2.3. Biochemical Measurements
2.4. Dietary Intake Assessment
2.5. Data Management and Definitions
2.6. Statistical Analyses
3. Results
3.1. Participant Characteristics and Socio-Demographic Indicators
3.2. Anthropometric Status
3.3. Micronutrient Deficiencies and Inflammation
3.4. Anemia
3.5. Selected Nutrient Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Regimen | HIV+ and Low Iron Stores 1 | HIV+ and Iron Sufficient Non-Anemic | Total | |
---|---|---|---|---|
n = 43 | n = 41 | n = 84 | ||
ABC-3TC-LPV/r | 23 (53) | 18 (44) | 41 (49) | |
ABC-3TC-EFV | 14 (33) | 5 (12) | 19 (23) | |
AZT-3TC-LPV/r | 5 (12) | 11 (27) | 16 (19) | |
AZT-3TC-NVP | 0 | 3 (7) | 3 (4) | |
ABC-3TC-ATV/r | n (%) | 0 | 1 (2) | 1 (1) |
AZT-3TC-EFV | 0 | 1 (2) | 1 (1) | |
3TC-EFV-LPV/r | 0 | 1 (2) | 1 (1) | |
TDF-FTC-EFV | 0 | 1 (2) | 1 (1) | |
TDF-FTC-LPV/r | 1 (2) | 0 | 1 (1) |
Appendix B
Rank | Ranked by Proportion of Children | Ranked by Mean Daily Intake | ||||
---|---|---|---|---|---|---|
Item | Proportion of Children Who Reported Consumption (%) | Mean Daily Intake Per Person (g) | Item | Proportion of Children Who Reported Consumption (%) | Mean Daily Intake per Person (g) | |
1 | Bread, white and brown | 100 | 180 | Maize meal porridge, cooked | 94 | 232 |
Potato | 100 | 88 | ||||
2 | Chicken | 99 | 20 | Bread, white and brown | 100 | 180 |
3 | Milk | 98 | 159 | Milk | 98 | 159 |
4 | Apple | 96 | 62 | Orange, peeled | 59 | 96 |
5 | Maize meal porridge, cooked | 94 | 232 | Potato | 100 | 88 |
6 | Egg | 90 | 20 | Soup (vegetable or bean) | 67 | 72 |
Baked beans | 90 | 18 | ||||
7 | Tinned fish | 87 | 19 | Mageu 2 | 23 | 64 |
8 | Carrots | 86 | 7 | Apple | 96 | 62 |
9 | Peanut butter | 84 | 17 | Tangerine, peeled | 39 | 61 |
Polony 1 | 84 | 16 | ||||
Fresh or frozen fish | 84 | 8 | ||||
10 | Cabbage | 82 | 9 | Oats, cooked | 32 | 47 |
References
- Joint United Nations Programme on HIV/AIDS (UNAIDS). UNAIDS Data. 2019. Available online: https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf (accessed on 26 January 2021).
- World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection. 2016. Available online: https://www.who.int/hiv/pub/arv/arv-2016/en/ (accessed on 26 January 2021).
- South African National Department of Health. National Consolidated Guidelines for the Prevention of Mother-to-Child Transmission of HIV (PMTCT), and the Management of HIV in Children, Adolescents and Adults. 2015. Available online: https://sahivsoc.org/Files/ARTGuidelines15052015.pdf (accessed on 26 January 2021).
- Violari, A.; Cotton, M.F.; Gibb, D.M.; Babiker, A.G.; Steyn, J.; Madhi, S.A.; Jean-Philippe, P.; McIntyre, J.A. Early antiretroviral therapy and mortality among HIV-infected infants. N. Engl. J. Med. 2008, 359, 2233–2244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyun, V.; Technau, K.-G.; Eley, B.; Rabie, H.; Boulle, A.; Fatti, G.; Egger, M.; Tanser, F.; Wood, R.; Fairlie, L.; et al. Earlier antiretroviral therapy initiation and decreasing mortality among HIV-infected infants initiating antiretroviral therapy within 3 months of age in South Africa, 2006–2017. Pediatr. Infect. Dis. J. 2020, 39, 127–133. [Google Scholar] [CrossRef]
- Lowenthal, E.D.; Bakeera-Kitaka, S.; Marukutira, T.; Chapman, J.; Goldrath, K.; Ferrand, R.A. Perinatally acquired HIV infection in adolescents from sub-Saharan Africa: A review of emerging challenges. Lancet Infect. Dis. 2014, 14, 627–639. [Google Scholar] [CrossRef] [Green Version]
- Klatt, N.R.; Funderburg, N.T.; Brenchley, J.M. Microbial translocation, immune activation, and HIV disease. Trends Microbiol. 2013, 21, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Labadarios, D.; Steyn, N.P.; Maunder, E.; MacIntyre, U.; Gericke, G.; Swart, R.; Huskisson, J.; Dannhauser, A.; Vorster, H.H.; Nesmvuni, A.E.; et al. The National Food Consumption Survey (NFCS): South Africa, 1999. Public Health Nutr. 2005, 8, 533–543. [Google Scholar] [CrossRef] [PubMed]
- South African National Department of Health; South African Medical Research Council. OrcMacro South Africa Demographic and Health Survey 2003. 2007. Available online: https://dhsprogram.com/publications/publication-fr206-dhs-final-reports.cfm (accessed on 26 January 2021).
- Labadarios, D.; Swart, R.; Maunder, E.M.W.; Kruger, H.S.; Gericke, G.J.; Kuzwayo, P.M.N.; Ntsie, P.R.; Steyn, N.P.; Schloss, I.; Dhansay, M.A.; et al. Executive summary of the National Food Consumption Survey Fortification Baseline (NFCS-FB-I) South Africa, 2005. S. Afr. J. Clin. Nutr. 2008, 21, 245–300. [Google Scholar]
- Shisana, O.; Labadarios, D.; Rehle, T.; Simbayi, L.; Zuma, K.; Dhansay, A.; Reddy, P.; Parker, W.; Hoosain, E.; Naidoo, P.; et al. The South African National Health and Nutrition Examination Survey, 2012 (SANHANES-1). 2014. Available online: http://www.hsrc.ac.za/en/research-outputs/view/6493 (accessed on 26 January 2021).
- South African National Department of Health; Statistics South Africa; South African Medical Research Council and ICF. 2019. South Africa Demographic and Health Survey. 2016. Available online: https://dhsprogram.com/publications/publication-fr337-dhs-final-reports.cfm (accessed on 26 January 2021).
- United Nations Children’s Fund. Strategy for improved nutrition of children and women in developing countries. Indian J. Pediatr. 1990, 58, 13–24. [Google Scholar] [CrossRef]
- Anabwani, G.; Navario, P. Nutrition and HIV/AIDS in sub-Saharan Africa: An overview. Nutrition 2005, 21, 96–99. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets. 2020. Available online: http://www.fao.org/3/ca9692en/online/ca9692en.html (accessed on 26 January 2021).
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef]
- Kassebaum, N.J. The global burden of anemia. Hematol. Oncol. Clin. N. Am. 2016, 30, 247–308. [Google Scholar] [CrossRef] [Green Version]
- Ezeamama, A.E.; Sikorskii, A.; Bajwa, R.K.; Tuke, R.; Kyeyune, R.B.; Fenton, J.I.; Guwatudde, D.; Fawzi, W.W. Evolution of anemia types during antiretroviral therapy-implications for treatment outcomes and quality of life among HIV-infected adults. Nutrients 2019, 11, 755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redig, A.J.; Berliner, N. Pathogenesis and clinical implications of HIV-related anemia in 2013. Hematol. Am. Soc. Hematol. Educ. Progr. 2013, 2013, 377–381. [Google Scholar] [CrossRef]
- Ganz, T. Anemia of inflammation. N. Engl. J. Med. 2019, 381, 1148–1157. [Google Scholar] [CrossRef]
- Calis, J.C.J.; van Hensbroek, M.B.; De Haan, R.J.; Moons, P.; Brabin, B.J.; Bates, I. HIV-associated anemia in children: A systematic review from a global perspective. AIDS 2008, 22, 1099–1112. [Google Scholar] [CrossRef] [Green Version]
- Kufel, W.D.; Hale, C.M.; Sidman, E.F.; Orellana, C.E.; Miller, C.D. Nucleoside Reverse Transcriptase Inhibitor (NRTI) associated macrocytosis. Int. J. Virol. AIDS 2016, 3, 18. [Google Scholar] [CrossRef]
- Abioye, A.I.; Andersen, C.T.; Sudfeld, C.R.; Fawzi, W.W. Anemia, iron status, and HIV: A systematic review of the evidence. Adv. Nutr. 2020, 11, 1334–1363. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. 2020. Available online: https://www.who.int/publications/i/item/9789240000124 (accessed on 26 January 2021).
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. 2011. Available online: https://www.who.int/vmnis/indicators/haemoglobin/en/ (accessed on 26 January 2021).
- World Health Organization. Training Course on Child Growth Assessment. 2008. Available online: https://www.who.int/nutrition/publications/childgrowthstandards_trainingcourse/en/ (accessed on 26 January 2021).
- Erhardt, J.G.; Estes, J.E.; Pfeiffer, C.M.; Biesalski, H.K.; Craft, N.E. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J. Nutr. 2004, 134, 3127–3132. [Google Scholar] [CrossRef] [Green Version]
- Brnić, M.; Wegmüller, R.; Zeder, C.; Senti, G.; Hurrell, R.F. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide. J. Nutr. 2014, 144, 1467–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goosen, C.; Blaauw, R. The development of a quantified food frequency questionnaire for assessing iron nutrition in schoolchildren from resource-limited settings in Cape Town, South Africa. Ecol. Food Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- South African Food Data System (SAFOODS). SAMRC Food Quantities Manual for South Africa, 3rd ed.; SAMRC: Cape Town, South Africa, 2018. [Google Scholar]
- South African Food Data System (SAFOODS). SAMRC Food Composition Tables for South Africa, 5th ed.; SAMRC: Cape Town, South Africa, 2017. [Google Scholar]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Namaste, S.M.L.; Ou, J.; Williams, A.M.; Young, M.F.; Yu, E.X.; Suchdev, P.S. Adjusting iron and vitamin A status in settings of inflammation: A sensitivity analysis of the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) approach. Am. J. Clin. Nutr. 2020, 112, 458S–467S. [Google Scholar] [CrossRef]
- McDonald, C.M.; Suchdev, P.S.; Krebs, N.F.; Hess, S.Y.; Wessells, K.R.; Ismaily, S.; Rahman, S.; Wieringa, F.T.; Williams, A.M.; Brown, K.H.; et al. Adjusting plasma or serum zinc concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2020, 111, 927–937. [Google Scholar] [CrossRef] [PubMed]
- De Pee, S.; Dary, O. Biochemical indicators of vitamin A deficiency: Serum retinol and serum retinol binding protein. J. Nutr. 2002, 132, 2895S–2901S. [Google Scholar] [CrossRef]
- International Zinc Nutrition Consultative Group (IZINCG). Assessing Population Zinc Status with Serum Zinc Concentration. 2012. Available online: https://www.izincg.org/technical-briefs (accessed on 26 January 2021).
- South African Food Data System (SAFOODS). Food Composition Database, Version 2019; SAMRC: Cape Town, South Africa, 2019. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes. 2006. Available online: https://www.nap.edu/catalog/11537/dietary-reference-intakes-the-essential-guide-to-nutrient-requirements (accessed on 26 January 2021).
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D. 2011. Available online: https://www.nap.edu/catalog/13050/dietary-reference-intakes-for-calcium-and-vitamin-d (accessed on 26 January 2021).
- Shet, A.; Bhavani, P.K.; Kumarasamy, N.; Arumugam, K.; Poongulali, S.; Elumalai, S.; Swaminathan, S. Anemia, diet and therapeutic iron among children living with HIV: A prospective cohort study. BMC Pediatr. 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Feucht, U.D.; Van Bruwaene, L.; Becker, P.J.; Kruger, M. Growth in HIV-infected children on long-term antiretroviral therapy. Trop. Med. Int. Health 2016, 21, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Bobat, R.; Coovadia, H.; Moodley, D.; Coutsoudis, A.; Gouws, E. Growth in early childhood in a cohort of children born to HIV-1-infected women from Durban, South Africa. Ann. Trop. Paediatr. 2001, 21, 203–210. [Google Scholar] [CrossRef]
- Venkatesh, K.K.; Lurie, M.N.; Triche, E.W.; De Bruyn, G.; Harwell, J.I.; McGarvey, S.T.; Gray, G.E. Growth of infants born to HIV-infected women in South Africa according to maternal and infant characteristics. Trop. Med. Int. Health 2010, 15, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Report of the WHO Technical Reference Group, Paediatric HIV/ART Care Guideline Group Meeting. Available online: https://www.who.int/hiv/pub/paediatric/WHO_Paediatric_ART_guideline_rev_mreport_2008.pdf?ua=1 (accessed on 26 January 2021).
- Burton, R.; Giddy, J.; Stinson, K. Prevention of mother-to-child transmission in South Africa: An ever-changing landscape. Obstet. Med. 2015, 8, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Armitage, A.E.; Moretti, D. The importance of iron status for young children in low- and middle-income countries: A narrative review. Pharmaceuticals 2019, 12, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drakesmith, H.; Prentice, A.M. Hepcidin and the iron-infection axis. Science 2012, 338, 768–772. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- Labadarios, D.; Steyn, N.; Mgijima, C.; Daldla, N. Review of the South African nutrition policy 1994–2002 and targets for 2007: Achievements and challenges. Nutrition 2005, 21, 100–108. [Google Scholar] [CrossRef]
- Musakwa, N.; Feeley, A.; Magwete, M.; Patz, S.; McNamara, L.; Sanne, I.; Long, L.; Evans, D. Dietary intake among paediatric HIV-positive patients initiating antiretroviral therapy in Johannesburg, South Africa. Vulnerable Child. Youth Stud. 2020, 15, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Shiau, S.; Webber, A.; Strehlau, R.; Patel, F.; Coovadia, A.; Kozakowski, S.; Brodlie, S.; Yin, M.T.; Kuhn, L.; Arpadi, S.M. Dietary inadequacies in HIV-infected and uninfected school-aged children in Johannesburg, South Africa. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 332–337. [Google Scholar] [CrossRef]
- Beck, K.L.; Conlon, C.A.; Kruger, R.; Coad, J. Dietary determinants of and possible solutions to iron deficiency for young women living in industrialized countries: A review. Nutrients 2014, 6, 3747–3776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruger, H.S.; Balk, L.J.; Viljoen, M.; Meyers, T.M. Positive association between dietary iron intake and iron status in HIV-infected children in Johannesburg, South Africa. Nutr. Res. 2013, 33, 50–58. [Google Scholar] [CrossRef]
- Gibson, R.; Hotz, C.; Temple, L.; Yeudall, F.; Mtitimuni, B.; Ferguson, E. Dietary strategies to combat deficiencies of iron, zinc and vitamin A in developing countries: Development, implementation, monitoring and evaluation. Food Nutr. Bull. 2000, 21, 219–231. [Google Scholar] [CrossRef] [Green Version]
- McPherson, R.S.; Hoelscher, D.M.; Alexander, M.; Scanlon, K.S.; Serdula, M.K. Dietary assessment methods among school-aged children: Validity and reliability. Prev. Med. 2000, 31, S11–S33. [Google Scholar] [CrossRef]
- Gibson, R. (Ed.) Chapter 3: Measuring food consumption of individuals. In Principles of Nutritional Assessment; Oxford University Press: New York, NY, USA, 2005; pp. 41–64. [Google Scholar]
- World Health Organization. Nutrient Requirements for People Living with HIV/AIDS: Report of a Technical Consultation. 2003. Available online: https://www.who.int/nutrition/publications/Content_nutrient_requirements.pdf (accessed on 26 January 2021).
- Zimmermann, M.B.; Hurrell, R.F. Nutritional iron deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
HIV+ and Low Iron Stores 1 | HIV+ and Iron Sufficient Non-Anemic | HIV-ve and Low Iron Stores | HIV-ve and Iron Sufficient Non-Anemic | p-Value 2 | ||
---|---|---|---|---|---|---|
n = 43 | n = 41 | n = 45 | n = 45 | HIV | Iron Status | |
Male/female, n (%) | 20 (47)/23 (54) | 27 (66)/14 (34) | 22 (49)/23 (51) | 24 (53)/21 (47) | 0.51 | 0.12 |
Age,3 y | 12 (10–12) | 11 (11–12) | 11 (10–12) | 10 (9–12) | 0.04 | 0.85 |
Age at antiretroviral therapy start,4 y | 1 (0–2.5) | 1 (0–1) | - | - | - | 0.75 |
Zidovudine-containing antiretroviral regimen, n (%) | 5 (12) | 15 (37) | - | - | - | 0.01 |
Menstruating females, n (%) | 7 (30) | 0 | 2 (9) | 5 (24) | 0.77 | 0.56 |
Access school nutrition program, n (%) | 40 (93) | 34 (83) | 38 (84) | 26 (58) | 0.006 | 0.003 |
Formal/informal housing,5 n (%) | 26 (61)/17 (40) | 23 (56)/18 (44) | 31 (69)/14 (31) | 31 (69)/14 (31) | 0.15 | 0.77 |
Number of household members | 5 (4–6) | 5 (4–6) | 5 (4–7) | 6 (5–7) | 0.02 | 0.27 |
Primary caregiver single/in partnership, n (%) | 24 (56)/19 (44) | 16 (39)/25 (61) | 20 (44)/25 (56) | 12 (27)/33 (73) | 0.11 | 0.02 |
Breadwinner permanent employment, n (%) | 13 (30) | 9 (22) | 17 (38) | 19 (42) | 0.05 | 0.81 |
Breadwinner temporary employment, n (%) | 10 (23) | 15 (37) | 6 (13) | 12 (27) | 0.13 | 0.04 |
Breadwinner unemployed, n (%) | 20 (47) | 17 (42) | 22 (49) | 14 (31) | 0.60 | 0.12 |
Household receives government grant, n (%) | 39 (91) | 39 (95) | 41 (91) | 38 (84) | 0.27 | 0.77 |
HIV+ and Low Iron Stores 1 | HIV+ and Iron Sufficient Non-Anemic | HIV-ve and Low Iron Stores | HIV-ve and Iron Sufficient Non-Anemic | p-Value 2 | ||
---|---|---|---|---|---|---|
n = 43 | n = 41 | n = 45 | n = 45 | HIV | Iron Status | |
Height-for-age Z-score 3 | −1.4 ± 1 a | −1.1 ± 0.9 ab | −0.7 ± 1 bc | −0.4 ± 0.9 c | <0.001 | 0.02 |
Stunted,4 n (%) | 13 (30) | 6 (15) | 6 (13) | 4 (9) | 0.12 | 0.07 |
Body-mass-index-for-age Z-score | −0.4 ± 1 | −0.5 ± 0.9 | −0.3 ± 1.1 | −0.1 ± 1 | 0.06 | 0.38 |
Underweight,5 n (%) | 1 (2) | 1 (2) | 4 (9) | 0 | 0.44 | 0.11 |
Overweight,5 n (%) | 4 (9) | 2 (5) | 6 (13) | 6 (13) | 0.13 | 0.89 |
HIV+ and Low Iron Stores 1 | HIV+ and Iron Sufficient Non-Anemic | HIV-ve and Low Iron Stores | HIV-ve and Iron Sufficient Non-Anemic | p-Value 2 | ||
---|---|---|---|---|---|---|
n = 43 | n = 41 | n = 45 | n = 45 | HIV | Iron Status | |
Plasma ferritin (unadjusted),3 µg/L | 18 (14–27) b | 45 (36–72) a | 20 (15–26) b | 41 (30–60) a | 0.28 | <0.001 |
Plasma ferritin (adjusted),4 µg/L | 17 (13–25) b | 44 (35–70) a | 20 (14–26) b | 40 (29–57) a | 0.50 | <0.001 |
Iron deficiency,5 n (%) | 16 (37) a | 0 b | 14 (31) a | 1 (2) b | 0.91 | <0.001 |
Plasma soluble transferrin receptor, mg/L | 7.0 (5.6–8.2) a | 6.8 (5.7–8.3) ab | 6.4 (5.4–7.4) b | 6.0 (5.0–7.0) b | 0.003 | 0.07 |
Iron deficient erythropoiesis,6 n (%) | 9 (21) | 10 (24) | 5 (11) | 4 (9) | 0.04 | 0.99 |
Plasma retinol binding protein (unadjusted), µmol/L | 0.95 (0.8–1.1) | 0.97 (0.8–1.1) | 0.96 (0.8–1.2) | 0.87 (0.8–1.1) | 0.80 | 0.81 |
Plasma retinol binding protein (adjusted),7 µmol/L | 0.99 (0.8–1.1) | 1.03 (0.9–1.1) | 0.96 (0.8–1.2) | 0.89 (0.8–1.2) | 0.40 | 0.62 |
Vitamin A deficiency,8 n (%) | 6 (14) | 3 (7) | 3 (7) | 5 (11) | 0.68 | 0.75 |
Vitamin A mild deficiency,8 n (%) | 19 (44) | 20 (49) | 24 (53) | 24 (53) | 0.50 | 0.94 |
Plasma zinc (unadjusted), µg/dL | 72 (65–80) | 68 (60–76) | 69 (63–76) | 72 (63–76) | 0.53 | 0.44 |
Plasma zinc (adjusted),9 µg/dL | 72 (65–81) | 70 (61–76) | 70 (63–75) | 72 (65–76) | 0.41 | 0.43 |
Zinc deficiency,10 n (%) | 16 (37) | 21 (51) | 22 (49) | 19 (42) | 0.74 | 0.62 |
Plasma C-reactive protein, mg/L | 0.1 (0.02–0.9) ab | 0.1 (0.02–1.5) b | 0.03 (0.01–0.05) a | 0.04 (0.02–0.3) ab | 0.003 | 0.03 |
Plasma C-reactive protein 0.05–4.99 mg/L,11 n (%) | 23 (54) a | 15 (37) ab | 11 (24) b | 11 (24)b | 0.004 | 0.17 |
Plasma C-reactive protein ≥5 mg/L, n (%) | 1 (2) | 6 (15) | 0 | 3 (7) | 0.11 | 0.02 |
Plasma α-1-acid glycoprotein, g/L | 0.5 (0.5–0.8) ab | 0.7 (0.5–0.8) a | 0.5 (0.4–0.6) b | 0.6 (0.4–0.7) ab | 0.03 | 0.04 |
Plasma α-1-acid glycoprotein >1 g/L, n (%) | 5 (12) | 5 (12) | 0 | 5 (11) | 0.10 | 0.17 |
HIV+ and Low Iron Stores 1 | HIV+ and Iron Sufficient Non-Anemic | HIV-ve and Low Iron Stores | HIV-ve and Iron Sufficient Non-Anemic | p-Value 2 | ||
---|---|---|---|---|---|---|
n = 43 | n = 41 | n = 45 | n = 45 | HIV | Iron Status | |
Hemoglobin,3 g/L | 120 (10) b | 126 (7) a | 125 (12) ab | 128 (6) a | 0.02 | 0.001 |
Total anemia,4 n (%) | 15 (35) a | 1 (2) b | 8 (18) ab | 1 (2) b | 0.11 | <0.001 |
Moderate anemia,4 n (%) | 4 (9) | 0 | 3 (7) | 0 | 0.64 | 1.00 |
Mild anemia,4 n (%) | 11 (26) a | 1 (2) b | 5 (11) ab | 1 (2) b | 0.14 | 0.003 |
Iron deficiency anemia,5 n (%) | 10 (23) | 0 | 5 (11) | 0 | 0.17 | 1.00 |
Mean corpuscular volume,6 fL | 94 (10) b | 100 (10) a | 87 (4) c | 87 (6) c | <0.001 | 0.02 |
Microcytosis,7 n (%) | 3 (7) | 0 | 0 | 2 (4) | 0.48 | 0.73 |
Normocytosis,7 n (%) | 14 (33) b | 11 (27) b | 39 (87) a | 35 (78) a | <0.001 | 0.17 |
Macrocytosis,7 n (%) | 26 (61) a | 30 (73) a | 6 (13) b | 8 (18) b | <0.001 | 0.13 |
Microcytic anemia,8 n (%) | 2 (5) | 0 | 0 | 0 | 1.00 | 1.00 |
Normocytic anemia,8 n (%) | 3 (7) | 0 | 7 (16) | 1 (2) | 0.13 | 0.02 |
Macrocytic anemia,8 n (%) | 10 (23) a | 1 (2) b | 1 (2) b | 0 b | 0.01 | 0.01 |
Estimated Average Requirements (EAR) 1 | HIV+ and Low Iron Stores 2 | HIV+ and Iron Sufficient Non-Anemic | HIV-ve and Low Iron Stores | HIV-ve and Iron Sufficient Non-Anemic | p-Value 3 | |||
---|---|---|---|---|---|---|---|---|
n = 43 | n = 41 | n = 45 | n = 45 | HIV | Iron Status | HIV × Iron Status | ||
Total protein,4 g | 69 (53–76) ab | 62 (52–76) b | 80 (63–102) ab | 83 (66–103) a | 0.001 | 0.86 | 0.38 | |
Total protein <EAR, n (%) | 0.76 g/kg | 0 | 1 (2) | 0 | 0 | - | - | - |
Plant protein, g | 34 (29–45) | 37 (25–42) | 37 (30–44) | 34 (23–41) | 0.66 | 0.048 | 0.59 | |
Animal protein, g | 32 (22–39) bc | 27 (21–37) c | 41 (27–54) ab | 46 (35–64) a | <0.001 | 0.35 | 0.09 | |
Muscle protein, g | 21 (15–27) b | 20 (15–27) b | 28 (18–37) ab | 31 (24–49) a | <0.001 | 0.45 | 0.26 | |
Iron, mg | 16 (14–21) | 17 (14–21) | 18 (15–21) | 17 (13–21) | 0.69 | 0.22 | 0.94 | |
Iron < EAR, n (%) | Boys: 4.1/5.9 mgGirls: 4.1/5.7 mg | 0 | 0 | 0 | 0 | - | - | - |
Heme iron, mg | 2.3 (1.6–4.0) b | 2.0 (1.5–3.4) b | 3.3 (2.0–4.4) ab | 3.3 (2.5–5.2) a | <0.001 | 1.00 | 0.13 | |
Non-heme iron, mg | 13 (12–18) | 14 (11–17) | 15 (12–17) | 13 (10–17) | 0.49 | 0.15 | 0.70 | |
Iron from fortified foods, mg | 8.8 (7.0–12.6) a | 10.2 (6.8–12.8) a | 8.6 (5.2–12.1) a | 6.1 (4.1–8.6) b | 0.002 | 0.03 | 0.02 | |
Zinc, mg | 13 (11–15) | 13 (10–16) | 14 (11–18) | 13 (11–16) | 0.25 | 0.37 | 0.71 | |
Zinc from fortified foods, mg | 6.9 (4.7–8.9) a | 7.2 (4.4–10.3) a | 5.7 (4.1–8.7) a | 3.7 (2.5–5.9) b | <0.001 | 0.06 | 0.007 | |
Zinc < EAR, n (%) | 4.0/7.0 mg | 0 | 1 (2) | 1 (2) | 2 (4) | - | - | - |
Calcium, mg | 454 (311–582) bc | 399 (312–536) c | 584 (410–775) ab | 664 (522–951) a | <0.001 | 0.35 | 0.09 | |
Calcium < EAR, n (%) | 800/1100 mg | 42 (98) | 40 (98) | 43 (96) | 39 (87) | 0.13 | 0.21 | 0.54 |
Vitamin A, µg RAE 5 | 409 (239–820) b | 536 (284–1017) ab | 582 (354–990) ab | 809 (408–1486) a | 0.06 | 0.02 | 0.70 | |
Vitamin A < EAR, n (%) | Boys: 275/445 µg RAEGirls: 275/420 µg RAE | 23 (54) | 15 (37) | 14 (31) | 12 (27) | 0.049 | 0.11 | 0.34 |
Thiamin, mg | 1.7 (1.4–2.1) | 1.8 (1.4–2.1) | 2.1 (1.5–2.5) | 1.8 (1.3–2.4) | 0.25 | 0.27 | 0.37 | |
Thiamin < EAR, n (%) | 0.5/0.7 mg | 0 | 0 | 0 | 0 | - | - | - |
Riboflavin, mg | 1.3 (1.0–1.8) b | 1.2 (0.9–1.6) b | 1.6 (1.2–1.9) ab | 1.9 (1.2–2.4) a | <0.001 | 0.25 | 0.08 | |
Riboflavin < EAR, n (%) | 0.5/0.8 mg | 4 (9) | 3 (7) | 4 (9) | 4 (9) | 0.78 | 0.73 | 0.69 |
Niacin, mg | 26 (23–33) | 26 (21–35) | 31 (25–36) | 29 (22–34) | 0.18 | 0.31 | 0.92 | |
Niacin < EAR, n (%) | 6/9 mg | 0 | 0 | 0 | 0 | - | - | - |
Vitamin B6, mg | 4.6 (3.8–6.1) | 5.0 (3.4–6.1) | 4.7 (3.7–5.7) | 4.0 (3.0–5.6) | 0.21 | 0.13 | 0.51 | |
Vitamin B6 < EAR, n (%) | 0.5/0.8 mg | 0 | 0 | 0 | 0 | - | - | - |
Folate, µg | 426 (362–553) | 453 (335–609) | 458 (355–543) | 420 (295–531) | 0.39 | 0.33 | 0.46 | |
Folate < EAR, n (%) | 160/250 µg | 1 (2) | 2 (5) | 4 (9) | 6 (13) | 0.06 | 0.39 | 0.88 |
Vitamin B12, µg | 5.7 (3.5–9.0) b | 4.5 (3.5–7.7) b | 8.6 (4.7–12.4) ab | 9.7 (5.8–13.9) a | <0.001 | 0.72 | 0.31 | |
Vitamin B12 < EAR, n (%) | 1/1.5 µg | 0 | 0 | 0 | 1 (2) | - | - | - |
Vitamin C, mg | 59 (38–86) bc | 36 (28–52) c | 74 (29–158) ab | 85 (59–163) a | <0.001 | 0.96 | 0.004 | |
Vitamin C < EAR, n (%) | 22/39 mg | 11 (26) bc | 24 (59) a | 17 (38) ab | 4 (9) c | 0.20 | 0.003 | <0.001 |
Total fiber, g | 25 (20–31) | 25 (19–30) | 28 (22–37) | 25 (18–35) | 0.40 | 0.09 | 0.85 | |
Total fiber < AI,6 n (%) | Boys: 25/31 gGirls: 25/26 g | 26 (61) ab | 31 (76) a | 18 (40) b | 27 (60) ab | 0.04 | 0.03 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goosen, C.; Baumgartner, J.; Mikulic, N.; Barnabas, S.L.; Cotton, M.F.; Zimmermann, M.B.; Blaauw, R. Examining Associations of HIV and Iron Status with Nutritional and Inflammatory Status, Anemia, and Dietary Intake in South African Schoolchildren. Nutrients 2021, 13, 962. https://doi.org/10.3390/nu13030962
Goosen C, Baumgartner J, Mikulic N, Barnabas SL, Cotton MF, Zimmermann MB, Blaauw R. Examining Associations of HIV and Iron Status with Nutritional and Inflammatory Status, Anemia, and Dietary Intake in South African Schoolchildren. Nutrients. 2021; 13(3):962. https://doi.org/10.3390/nu13030962
Chicago/Turabian StyleGoosen, Charlene, Jeannine Baumgartner, Nadja Mikulic, Shaun L. Barnabas, Mark F. Cotton, Michael B. Zimmermann, and Renée Blaauw. 2021. "Examining Associations of HIV and Iron Status with Nutritional and Inflammatory Status, Anemia, and Dietary Intake in South African Schoolchildren" Nutrients 13, no. 3: 962. https://doi.org/10.3390/nu13030962
APA StyleGoosen, C., Baumgartner, J., Mikulic, N., Barnabas, S. L., Cotton, M. F., Zimmermann, M. B., & Blaauw, R. (2021). Examining Associations of HIV and Iron Status with Nutritional and Inflammatory Status, Anemia, and Dietary Intake in South African Schoolchildren. Nutrients, 13(3), 962. https://doi.org/10.3390/nu13030962