Risk of Low Energy Availability in National and International Level Paralympic Athletes: An Exploratory Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. EI and EEE Estimates
2.3. Questionnaires: Eating Attitudes and Behaviors and Menstrual Status
2.4. Bone Mineral Density and Anthropometrics
2.5. Hormones
2.6. Statistical Analysis
3. Results
3.1. Energy Availability
3.2. Qualitative Questionnaires
3.3. BMD and Reproductive/Metabolic Function
4. Discussion
4.1. Measured Energy Availability in Para-Athletes
4.2. BMD Indicators of RED-S
4.3. Reproductive/Metbaolic Function in Para-Athletes
4.4. Questionnaire Based Assessment of RED-S
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.M.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC consensus statement: Beyond the female athlete triad—Relative energy deficiency in sport (RED-S). Br. J. Sports Med. 2014, 48, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.; Meyer, N.; et al. International Olympic Committee (IOC) consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 316–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loucks, A.B.; Thuma, J.R. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J. Clin. Endocrin. Metab. 2003, 88, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Elliott-Sale, K.J.; Tenforde, A.S.; Parziale, A.L.; Holtzman, B.; Ackerman, K.E. Endocrine effects of relative energy deficiency in sport. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Heikura, I.A.; Uusitalo, A.L.T.; Stellingwerff, T.; Bergland, D.; Mero, A.; Burke, L. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 403–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanker, C.L.; Swaine, I.L. Responses of bone turnover markers to repeated endurance running in humans under conditions of energy balance or energy restriction. Eur. J. Appl. Phys. 2000, 83, 434–440. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Barrack, M.T.; Nattiv, A.; Fredericson, M. Parallels with the female athlete triad in male athletes. Sports Med. 2016, 46, 171–182. [Google Scholar] [CrossRef]
- Loucks, A.B. Low energy availability in the marathon and other endurance sports. Sports Med. 2007, 37, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Melin, A.; Lundy, B. Pitfalls and problems with measuring energy availability. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Fagerberg, P. Negative consequences of low energy availability in natural male bodybuilding: A review. Int. J. Sport Nutr. Exerc. Metab. 2017, 28, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Blauwet, C.A.; Brook, E.M.; Tenforde, A.S.; Broad, E.; Hu, C.H.; Abdu-Glass, E.; Matzkin, E.G. Low energy availability, menstrual dysfunction, and low bone mineral density in individuals with a disability: Implications for the para athlete population. Sports Med. 2017, 47, 1697–1708. [Google Scholar] [CrossRef]
- Figel, K.; Pritchett, K.; Pritchett, R.; Broad, E. Energy and nutrient issues in athletes with spinal cord injury: Are they at risk for low energy availability? Nutrients 2018, 10, 1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, A.C.; McGillivray, C.F.; Pencharz, P.B. Differences in resting metabolic rate between paraplegic and able-bodied subjects are explained by differences in body composition. Am. J. Clin. Nutr. 2003, 77, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Egger, T.; Flueck, J.L. Energy availability in male and female elite wheelchair athletes over seven consecutive training days. Nutrients 2020, 12, 3262. [Google Scholar] [CrossRef] [PubMed]
- Conger, S.A.; Bassett, D.R. A compendium of energy costs of physical activities for individuals who use manual wheelchairs. Adapt. Phys. Act. Q. 2011, 28, 310–325. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, J.J. Body composition as a determinant of energy expenditure: A synthetic review and a proposed general prediction equation. Am. J. Clin Nutr. 1991, 54, 963–969. [Google Scholar] [CrossRef]
- Melin, A.; Thornberg, A.B.; Skouby, S.; Faber, J.; Christian, R.; Sjodin, A.; Sundgot-Borgen, J. The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. Br. J. Sports Med. 2014, 48, 540–545. [Google Scholar] [CrossRef]
- Fairburn, C.; Beglin, S. Eating disorder examination. In Cognitive Behavior Therapy and Eating Disorders; Guillford Press: New York, NY, USA, 2008. [Google Scholar]
- Luce, K.H.; Crowther, J.H.; Pole, M. Eating disorder examination questionnaire (EDE-Q): Norms for undergraduate women. Int. J. Eat. Dis. 2008, 41, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.S.; Vaewsorn, A.; Rosselli-Navarra, F.; Wilson, G.; Weissman, R. Test-retest reliability of the eating disorder examination-questionnaire (EDE-Q) in a college sample. J. Eat. Dis. 2013, 1, 42. [Google Scholar] [CrossRef]
- Jennings, K.M.; Phillips, K.E. Eating disorder examination–questionnaire (EDE–Q): Norms for a clinical sample of males. Arch. Psych. Nutr. 2017, 31, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.E.; Mason, T.B.; Murray, S.B.; Griffiths, S.; Leonard, R.; Wetterneck, C.; Smith, B.; Farrell, N.; Reimann, B.; Lavender, J. Male clinical norms and sex differences on the eating disorder inventory (EDI) and Eating Disorder Examination Questionnaire (EDE-Q). Int. J. Eat. Dis. 2017, 50, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, L.M.; Smith, K.E.; Leonard, R.; Wetterneck, C.; Smith, B.; Farrel, N.; Reimann, B.C.; Frederick, D.A.; Schaumberg, K.; Klump, K.L.; et al. Identifying a male clinical cutoff on the eating disorder examination-questionnaire (EDE-Q). Int. J. Eat. Dis. 2018, 51, 1357–1360. [Google Scholar] [CrossRef]
- The International Society for Clinical Densitometry. 2019 ISCD Official Positions—Adult. Available online: https://www.iscd.org/official-positions/2019-iscd-official-positions-adult/ (accessed on 17 April 2020).
- Keil, M.; Totosy de Zepetnek, J.O.; Brooke-Wavell, K.; Goosey-Tolfrey, V.L. Measurement precision of body composition variables in elite wheelchair athletes, using dual-energy X-ray absorptiometry. Eur. J. Sport Sci. 2016, 16, 65–71. [Google Scholar] [CrossRef]
- Flueck, J.L. Body composition in swiss elite wheelchair athletes. Front. Nutr. 2020, 7, 1. [Google Scholar] [CrossRef]
- ZRT Labratories. ZRT Labratory Blood Spot Specification Sheet. Available online: www.zrtlab.com (accessed on 20 March 2019).
- Wood, D.E.; Dunkerley, A.L.; Tromans, A.M. Results from bone mineral density scans in twenty-two complete lesion paraplegics. Spinal Cord. 2001, 39, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Torstveit, M.K.; Sundgot-Borgen, J. Low bone mineral density is two to three times more prevalent in non-athletic premenopausal women than in elite athletes: A comprehensive controlled study. Br. J. Sports Med. 2005, 39, 282–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trabulsi, J.; Schoeller, D.A. Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake. Am. J. Phys. Endocrin. Metab. 2001, 281, E891–E899. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M.; Close, G.L.; Lundy, B.; Mooses, M.; Morton, J.P.; Tenforde, A.S. Relative energy deficiency in sport in male athletes: A commentary on its presentation among selected groups of male athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 364–374. [Google Scholar] [CrossRef]
- Larson-Meyer, D.E.; Woolf, K.; Burke, L. Assessment of nutrient status in athletes and the need for supplementation. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 139–158. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Elliott-Sale, K.J.; Parsons, A.; Tang, J.C.Y.; Greeves, J.P.; Fraser, W.D.; Sale, C. Effects of reduced energy availability on bone metabolism in women and men. Bone 2017, 5, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heikura, I.A.; Quod, M.; Strobel, N.; Palfreeman, R.; Civil, R.; Burke, L.M. Alternate-day low energy availability during spring classics in professional cyclists. Int. J. Sports Physiol. Perform. 2019, 14, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Brook, E.M.; Tenforde, A.S.; Broad, E.M.; Matzkin, E.G.; Yang, H.Y.; Collins, J.E.; Blauwet, C.A. Low energy availability, menstrual dysfunction, and impaired bone health: A survey of elite para athletes. Scand. J. Med. Sci. Sports 2019, 29, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Goktepe, A.S.; Bilge Yilmaz, B.; Alaca, R.; Ya, K. Bone density loss after spinal cord injury: Elite paraplegic basketball players vs. paraplegic sedentary persons. Am. J. Phys. Med. Rehab. 2004, 83, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, K.; Wang, D.H.; Mori, K.; Takahashi, K.; Miyatake, N.; Wang, B.L.; Takigawa, T.; Takaki, J.; Ogino, K. Effect of sports activity on bone mineral density in wheelchair athletes. J. Bone Min. Metab. 2008, 26, 101–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.; Sale, C.; Cooper, S.B.; Elliot-Sale, K.J. Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. Int. J. Sports Physiol. Perform. 2018, 13, 926–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otzel, D.M.; Lee, J.; Ye, F.; Borst, S.E.; Yarrow, J.F. Activity-based physical rehabilitation with adjuvant testosterone to promote neuromuscular recovery after spinal cord injury. Int. J. Mol. Sci. 2018, 19, 1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, S.D.; Nash, M.S.; Tefera, E.; Tinsley, E.; Blackman, M.R.; Groah, S. Prevalence and etiology of hypogonadism in young men with chronic spinal cord injury: A cross-sectional analysis from two university-based rehabilitation centers. Phys. Med. Rehab. 2017, 8, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Bauman, W.A.; Zhang, R.L.; Spungen, A.M. Provocative stimulation of growth hormone: A monozygotic twin study discordant for spinal cord injury. J. Spinal Cord. Med. 2007, 30, 467–472. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Gater, D.R. Insulin growth factors may explain relationship between spasticity and skeletal muscle size in men with spinal cord injury. J. Rehabil. Res. Dev. 2012, 49, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torstveit, M.K.; Fahrenholtz, I.L.; Lichtenstein, M.B.; Stenqvist, T.B.; Melin, A.K. Exercise dependence, eating disorder symptoms and biomarkers of relative energy deficiency in sports (RED-S) among male endurance athletes. BMJ Open Sport Exerc. Med. 2019, 5, e000439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Paralympic Committee. Summer Paralympic Games Overview. Available online: https://www.paralympic.org/paralympic-games/summer-overview (accessed on 11 November 2019).
Energy Intake (EI) |
|
Exercise Energy Expenditure (EEE) |
|
Energy Availability (EA) cutoff values |
|
Fat-free mass (FFM) |
|
Females (n = 9) | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean ± SD | |||||||
Age (yrs) | 27 | 29 | 21 | 32 | 24 | 19 | 24 | 25 | 41 | 27 ± 7 | ||||||
Height (cm) | 163 | 130 | 145 | 150 | 163 | 140 | 137 | 163 | 178 | 152 ± 15 | ||||||
Weight (kg) | 44.0 | 36.8 | 42.0 | 42.3 | 54.5 | 55.1 | 34.1 | 57.0 | 64.5 | 47.8 ± 10.3 | ||||||
Duration of injury (yrs) | 22 | 29 | 18 | 32 | 19 | 19 | 24 | 15 | 7 | 21 ± 7 | ||||||
Injury level/impairment | T-12 | T-4 | T-10 | L1-2 | L2-3 | L3-4 | L5 | T-11 | DAmp | n/a | ||||||
Body Fat (%) | 29.0 | 20.3 | 31.6 | 34.3 | 39.7 | 34.5 | 33.6 | 37.3 | 28.2 | 34.0 ± 5.7 | ||||||
EI (kcal·day−1) | 1661 | 2026 | 1807 | 1679 | 1286 | 1975 | 1263 | 1941 | 2168 | 1717 ± 280 | ||||||
CHO (g·kg−1·day−1) | 4.6 | 4.5 | 2.8 | 4.4 | 2.3 | 3.6 | 4.2 | 3.9 | 3.9 | 3.7 ± 0.8 | ||||||
PRO (g·kg−1·day−1) | 1.9 | 3.7 | 2.7 | 1.7 | 1.3 | 1.6 | 1.3 | 1.9 | 1.6 | 1.9 ± 0.9 | ||||||
Fat (%kcal·day−1) | 34 | 43 | 47 | 36 | 39 | 41 | 34 | 29 | 33 | 38 ± 1 | ||||||
Fiber (g·day−1) | 30 | 24 | 9 | 17 | 21 | 15 | 10 | 21 | 22 | 18 ± 7 | ||||||
EEE (kcal·day−1) | 110 | 78 | 113 | 41 | 191 | 580 | 40 | 233 | 549 | 216 ± 196 | ||||||
EA (kcal·kg−1 FFM·day−1) | 49 | 67 | 59 | 59 | 33 | 40 | 54 | 49 | 41 | 50 ± 11 | ||||||
Males (n = 9) | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean ± SD | |||||||
Age (yrs) | 23 | 29 | 35 | 23 | 20 | 25 | 32 | 25 | 45 | 27 ± 8 | ||||||
Height (cm) | 168 | 168 | 183 | 180 | 175 | 163 | 142 | 175 | 160 | 166 ± 5 | ||||||
Weight (kg) | 60.3 | 51.9 | 74.2 | 63.2 | 64.8 | 71.3 | 75.0 | 52.0 | 68.2 | 64.5 ± 8.7 | ||||||
Duration of Injury (yrs) | 23 | 29 | 13 | 4 | 20 | 25 | 32 | 5 | 41 | 21 ± 12 | ||||||
Injury level/impairment | SB | T10 | T11 | T4/T6 | L3/L4 | SB | CP | C6/C7 | Poliy | n/a | ||||||
Body fat (%) | 34.5 | 27.3 | 26.3 | 16.5 | 25.1 | 21.5 | 26.6 | 18.9 | 31.6 | 25.4 ± 5.7 | ||||||
EI (kcal·day−1) | 2459 | 2257 | n/a | n/a | 3695 | 2033 | 2390 | n/a | n/a | 2566 ± 651 | ||||||
CHO (g·kg−1·day−1) | 6.0 | 4.6 | n/a | n/a | 3.5 | 3.1 | 3.1 | n/a | n/a | 4.1 ± 1.3 | ||||||
PRO (g·kg−1·day−1) | 1.5 | 1.9 | n/a | n/a | 4.2 | 1.6 | 1.9 | n/a | n/a | 2.2 ± 1.1 | ||||||
Fat (%kcal·day−1) | 24 | 38 | n/a | n/a | 46 | 34 | 21 | n/a | n/a | 33 ± 10 | ||||||
Fiber (g·day−1) | 19 | 34 | n/a | n/a | 14 | 20 | 10 | n/a | n/a | 22 ± 7 | ||||||
EEE (kcal·day−1) | 156 | n/a | n/a | 190 | n/a | 52 | n/a | n/a | 249 | 198 ± 47 | ||||||
EA (kcal·kg−1 FFM.day−1) | 58 | n/a | n/a | 27 | n/a | 35 | n/a | n/a | 43 | 41 ± 12 |
Females | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean ± SD | |
Hormones | ||||||||||
Estradiol (pg.mL−1) | 55 | 12 | 54 | 49 | 21 | 35 | 56 | 13 | 101 | 44 ± 28 |
Progesterone(nmol.mL−1) | 0.7 | 0.7 | 0.8 | 0.6 | 0.5 | 0.6 | 11.7 | 7.1 | 15.6 | 3.1 ± 4.1 |
IGF-1 (nmol.L−1) | 35.3 | 34.3 | 20.3 | 27.8 | 53.7 | 31.2 | 25.6 | 43.2 | 17.3 | 32.1 ± 11.3 |
fT3 (pg.mL−1) | 2.5 | 2.5 | 3.4 | 2.6 | 2.7 | 3.3 | 2.6 | 3.2 | 3.2 | 2.9 ± 0.4 |
Bone Characteristics | ||||||||||
Whole body (g.cm2−1) | 0.97 | 0.99 | 1.51 | 1.32 | 1.39 | 0.96 | 0.88 | 0.93 | 1.06 | 1.11 ± 0.22 |
Hip z-score | −2.2 | −2.7 | −1.0 | −0.1 | −2.1 | −0.9 | −3.3 | −2.4 | −0.6 | −1.6 ± 1.2 |
Qualitative Surveys | ||||||||||
LEAF-Q score | 3 | 15 | 12 | 9 | 8 | 2 | 9 | 10 | 12 | 9 ± 4 |
EDE-Q Global score | 0.72 | 0.24 | 0.09 | 0.08 | 4.15 | 0.48 | 0.09 | 2.3 | 0.27 | 0.93 ± 1.30 |
Males | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean ± SD | |
Hormones | ||||||||||
Estradiol (pg.mL−1) | n/a | 43 | 22 | <10 | 20 | 36 | 45 | 41 | 38 | 32 ± 13 |
IGF-1 (nmol.L−1) | 41.9 | n/a | 75 | 29.6 | 50.8 | 17.6 | 42.8 | 29.4 | 13.8 | 37.6 ± 19.7 |
fT3 (pg.mL−1) | 3.1 | 3.2 | 3 | 3.6 | 3.2 | 3 | 2.5 | 3 | 3.4 | 3.1 ± 0.3 |
TES (nmol.L−1) | 8.5 | 10 | 11 | 4.3 | 7.6 | 7.8 | 5.7 | 10.2 | 5.9 | 7.9 ± 2.3 |
Bone Characteristics | ||||||||||
Whole Body (g.cm2−1) | 1.15 | 1.45 | 1.09 | 1.3 | 0.97 | 1.44 | 1.18 | 1.2 | 1.16 | 1.22 ± 0.16 |
Hip Z-Score | −0.9 | −2.5 | −1.5 | −1.3 | n/a | −1.6 | −1.3 | −1.3 | −2.9 | −1.7 + 0.7 |
Qualitative Surveys | ||||||||||
EDE-Q Global score | 0.43 | 0.69 | n/a | 0 | 0 | 0.05 | 0.55 | 1.17 | 0.14 | 0.38 ± 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pritchett, K.; DiFolco, A.; Glasgow, S.; Pritchett, R.; Williams, K.; Stellingwerff, T.; Roney, P.; Scaroni, S.; Broad, E. Risk of Low Energy Availability in National and International Level Paralympic Athletes: An Exploratory Investigation. Nutrients 2021, 13, 979. https://doi.org/10.3390/nu13030979
Pritchett K, DiFolco A, Glasgow S, Pritchett R, Williams K, Stellingwerff T, Roney P, Scaroni S, Broad E. Risk of Low Energy Availability in National and International Level Paralympic Athletes: An Exploratory Investigation. Nutrients. 2021; 13(3):979. https://doi.org/10.3390/nu13030979
Chicago/Turabian StylePritchett, Kelly, Alicia DiFolco, Savannah Glasgow, Robert Pritchett, Katy Williams, Trent Stellingwerff, Patricia Roney, Susannah Scaroni, and Elizabeth Broad. 2021. "Risk of Low Energy Availability in National and International Level Paralympic Athletes: An Exploratory Investigation" Nutrients 13, no. 3: 979. https://doi.org/10.3390/nu13030979
APA StylePritchett, K., DiFolco, A., Glasgow, S., Pritchett, R., Williams, K., Stellingwerff, T., Roney, P., Scaroni, S., & Broad, E. (2021). Risk of Low Energy Availability in National and International Level Paralympic Athletes: An Exploratory Investigation. Nutrients, 13(3), 979. https://doi.org/10.3390/nu13030979