Effects of Low-Carbohydrate versus Mediterranean Diets on Weight Loss, Glucose Metabolism, Insulin Kinetics and β-Cell Function in Morbidly Obese Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Protocol
2.3. Dietary Interventions
2.4. OGTT
2.5. Body Composition
2.6. Indirect Calorimetry
2.7. Mathematical Modelling and Calculations
2.8. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Body Weight and Composition
3.3. Glucose Tolerance and Insulin Sensitivity
3.4. B-Cell Function and Insulin Clearance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition therapy for adults with diabetes or prediabetes: A consensus report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, M.L.; Raheem, D.; Ramos, F.; Carrascosa, C.; Saraiva, A.; Raposo, A. highlights of current dietary guidelines in five continents. Int. J. Environ. Res. Public Health 2021, 18, 2814. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome. JAMA 2004, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covas, M.-I.; Nyyssönen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.-J.F.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Bäumler, H.; et al. The effect of polyphenols in olive oil on heart disease risk factors. Ann. Intern. Med. 2006, 145. [Google Scholar] [CrossRef]
- Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.; Witkow, S.; Greenberg, I.; Golan, R.; Fraser, D.; Bolotin, A.; Vardi, H.; et al. Weight loss with a low-carbohydrate, mediterranean, or low-Fat diet. N. Engl. J. Med. 2008, 359, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Fernández-Ballart, J.; Ros, E.; Martínez-González, M.-A.; Fitó, M.; Estruch, R.; Corella, D.; Fiol, M.; Gómez-Gracia, E.; Arós, F.; et al. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status. Arch. Intern. Med. 2008, 168. [Google Scholar] [CrossRef] [Green Version]
- Elhayany, A.; Lustman, A.; Abel, R.; Attal-Singer, J.; Vinker, S. A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: A 1-year prospective randomized intervention study. Diabetes Obes. Metab. 2010, 12, 204–209. [Google Scholar] [CrossRef]
- Salas-Salvado, J.; Bullo, M.; Babio, N.; Martinez-Gonzalez, M.A.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Aros, F.; et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Basterra-Gortari, F.J.; Ruiz-Canela, M.; Martinez-Gonzalez, M.A.; Babio, N.; Sorli, J.V.; Fito, M.; Ros, E.; Gomez-Gracia, E.; Fiol, M.; Lapetra, J.; et al. Effects of a Mediterranean eating plan on the need for glucose-lowering medications in participants with type 2 diabetes: A subgroup analysis of the PREDIMED trial. Diabetes Care 2019, 42, 1390–1397. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402S–1406S. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; Ngo de la Cruz, J.; Bach-Faig, A.; Donini, L.M.; Medina, F.-X.; Belahsen, R.; et al. Updating the Mediterranean diet pyramid towards sustainability: Focus on environmental concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, M.A.; de la Fuente-Arrillaga, C.; Nunez-Cordoba, J.M.; Basterra-Gortari, F.J.; Beunza, J.J.; Vazquez, Z.; Benito, S.; Tortosa, A.; Bes-Rastrollo, M. Adherence to Mediterranean diet and risk of developing diabetes: Prospective cohort study. BMJ 2008, 336, 1348–1351. [Google Scholar] [CrossRef] [Green Version]
- Yancy, W.S., Jr.; Olsen, M.K.; Guyton, J.R.; Bakst, R.P.; Westman, E.C. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: A randomized, controlled trial. Ann. Intern. Med. 2004, 140, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Foster, G.D.; Wyatt, H.R.; Hill, J.O.; McGuckin, B.G.; Brill, C.; Mohammed, B.S.; Szapary, P.O.; Rader, D.J.; Edman, J.S.; Klein, S. A randomized trial of a low-carbohydrate diet for obesity. N. Engl. J. Med. 2003, 348, 2082–2090. [Google Scholar] [CrossRef] [Green Version]
- Skov, A.R.; Toubro, S.; Rønn, B.; Holm, L.; Astrup, A. randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int. J. Obes. 1999, 23, 528–536. [Google Scholar] [CrossRef] [Green Version]
- McAuley, K.A.; Hopkins, C.M.; Smith, K.J.; McLay, R.T.; Williams, S.M.; Taylor, R.W.; Mann, J.I. Comparison of high-fat and high-protein diets with a high-carbohydrate diet in insulin-resistant obese women. Diabetologia 2004, 48, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M.S.; Nieuwenhuizen, A.; Tomé, D.; Soenen, S.; Westerterp, K.R. Dietary protein, weight loss, and weight maintenance. Annu. Rev. Nutr. 2009, 29, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Bray, G.A.; Smith, S.R.; de Jonge, L.; Xie, H.; Rood, J.; Martin, C.K.; Most, M.; Brock, C.; Mancuso, S.; Redman, L.M. Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating: A randomized controlled trial. JAMA 2012, 307, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Stentz, F.B.; Brewer, A.; Wan, J.; Garber, C.; Daniels, B.; Sands, C.; Kitabchi, A.E. Remission of pre-diabetes to normal glucose tolerance in obese adults with high protein versus high carbohydrate diet: Randomized control trial. BMJ Open Diabetes Res. Care 2016, 4, e000258. [Google Scholar] [CrossRef] [Green Version]
- Stentz, F.B.; Mikhael, A.; Kineish, O.; Christman, J.; Sands, C. High protein diet leads to prediabetes remission and positive changes in incretins and cardiovascular risk factors. Nutr. Metab. Cardiovasc Dis. 2020. [Google Scholar] [CrossRef]
- Trico, D.; Biancalana, E.; Solini, A. Protein and amino acids in nonalcoholic fatty liver disease. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Eisenstein, J.; Roberts, S.B.; Dallal, G.; Saltzman, E. High-protein weight-loss diets: Are they safe and do they work? A review of the experimental and epidemiologic data. Nutr. Rev. 2002, 60, 189–200. [Google Scholar] [CrossRef]
- Kitabchi, A.E.; McDaniel, K.A.; Wan, J.Y.; Tylavsky, F.A.; Jacovino, C.A.; Sands, C.W.; Nyenwe, E.A.; Stentz, F.B. Effects of high-protein versus high-carbohydrate diets on markers of beta-cell function, oxidative stress, lipid peroxidation, proinflammatory cytokines, and adipokines in obese, premenopausal women without diabetes: A randomized controlled trial. Diabetes Care 2013, 36, 1919–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Rojo, R.; Alcala-Diaz, J.F.; Wopereis, S.; Perez-Martinez, P.; Quintana-Navarro, G.M.; Marin, C.; Ordovas, J.M.; van Ommen, B.; Perez-Jimenez, F.; Delgado-Lista, J.; et al. The insulin resistance phenotype (muscle or liver) interacts with the type of diet to determine changes in disposition index after 2 years of intervention: The CORDIOPREV-DIAB randomised clinical trial. Diabetologia 2016, 59, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Mari, A.; Pacini, G.; Murphy, E.; Ludvik, B.; Nolan, J.J. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 2001, 24, 539–548. [Google Scholar] [CrossRef]
- Van Cauter, E.; Mestrez, F.; Sturis, J.; Polonsky, K.S. Estimation of insulin secretion rates from C-peptide levels. Comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes 1992, 41, 368–377. [Google Scholar] [CrossRef]
- Trico, D.; Galderisi, A.; Mari, A.; Santoro, N.; Caprio, S. One-hour post-load plasma glucose predicts progression to prediabetes in a multi-ethnic cohort of obese youths. Diabetes Obes. Metab. 2019, 21, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Trico, D.; Natali, A.; Mari, A.; Ferrannini, E.; Santoro, N.; Caprio, S. Triglyceride-rich very low-density lipoproteins (VLDL) are independently associated with insulin secretion in a multiethnic cohort of adolescents. Diabetes Obes. Metab. 2018, 20, 2905–2910. [Google Scholar] [CrossRef] [PubMed]
- Mari, A.; Ferrannini, E. Beta-cell function assessment from modelling of oral tests: An effective approach. Diabetes Obes. Metab. 2008, 10 (Suppl. 4), 77–87. [Google Scholar] [CrossRef]
- Trico, D.; Mengozzi, A.; Nesti, L.; Hatunic, M.; Gabriel Sanchez, R.; Konrad, T.; Lalic, K.; Lalic, N.M.; Mari, A.; Natali, A.; et al. Circulating palmitoleic acid is an independent determinant of insulin sensitivity, beta cell function and glucose tolerance in non-diabetic individuals: A longitudinal analysis. Diabetologia 2020, 63, 206–218. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2020, 44, S15–S33. [Google Scholar] [CrossRef]
- Trico, D.; Natali, A.; Arslanian, S.; Mari, A.; Ferrannini, E. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corkey, B.E. Banting lecture 2011: Hyperinsulinemia: Cause or consequence? Diabetes 2012, 61, 4–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrannini, E. A journey in diabetes: From clinical physiology to novel therapeutics: The 2020 Banting Medal for Scientific Achievement Lecture. Diabetes 2021, 70, 338–346. [Google Scholar] [CrossRef]
- Bettini, S.; Belligoli, A.; Fabris, R.; Busetto, L. Diet approach before and after bariatric surgery. Rev. Endocr. Metab. Disord. 2020, 21, 297–306. [Google Scholar] [CrossRef]
- Paoli, A.; Bianco, A.; Grimaldi, K.A.; Lodi, A.; Bosco, G. Long term successful weight loss with a combination biphasic ketogenic Mediterranean diet and Mediterranean diet maintenance protocol. Nutrients 2013, 5, 5205–5217. [Google Scholar] [CrossRef]
- Sacks, F.M.; Bray, G.A.; Carey, V.J.; Smith, S.R.; Ryan, D.H.; Anton, S.D.; McManus, K.; Champagne, C.M.; Bishop, L.M.; Laranjo, N.; et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 2009, 360, 859–873. [Google Scholar] [CrossRef] [Green Version]
- Ferrannini, E.; Wahren, J.; Faber, O.K.; Felig, P.; Binder, C.; DeFronzo, R.A. Splanchnic and renal metabolism of insulin in human subjects: A dose-response study. Am. J. Physiol. 1983, 244, E517–E527. [Google Scholar] [CrossRef]
- Bergman, R.N.; Piccinini, F.; Kabir, M.; Kolka, C.M.; Ader, M. Hypothesis: Role of reduced hepatic insulin clearance in the pathogenesis of type 2 diabetes. Diabetes 2019, 68, 1709–1716. [Google Scholar] [CrossRef]
- Galderisi, A.; Polidori, D.; Weiss, R.; Giannini, C.; Pierpont, B.; Trico, D.; Caprio, S. Lower insulin clearance parallels a reduced insulin sensitivity in obese youths and is associated with a decline in beta-cell function over time. Diabetes 2019. [Google Scholar] [CrossRef] [PubMed]
- Gastaldelli, A.; Abdul Ghani, M.; DeFronzo, R.A. Adaptation of insulin clearance to metabolic demand is a key determinant of glucose tolerance. Diabetes 2021, 70, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Trico, D.; Galderisi, A.; Mari, A.; Polidori, D.; Galuppo, B.; Pierpont, B.; Samuels, S.; Santoro, N.; Caprio, S. Intrahepatic fat, irrespective of ethnicity, is associated with reduced endogenous insulin clearance and hepatic insulin resistance in obese youths: A cross-sectional and longitudinal study from the Yale Pediatric NAFLD cohort. Diabetes Obes. Metab. 2020, 22, 1628–1638. [Google Scholar] [CrossRef] [PubMed]
- Gastaldelli, A.; Cusi, K.; Pettiti, M.; Hardies, J.; Miyazaki, Y.; Berria, R.; Buzzigoli, E.; Sironi, A.M.; Cersosimo, E.; Ferrannini, E.; et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 2007, 133, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Reaven, G.M.; Kim, S.H. Dissecting the relationship between obesity and hyperinsulinemia: Role of insulin secretion and insulin clearance. Obesity (Silver Spring) 2017, 25, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Valera Mora, M.E.; Scarfone, A.; Calvani, M.; Greco, A.V.; Mingrone, G. Insulin clearance in obesity. J. Am. Coll. Nutr. 2003, 22, 487–493. [Google Scholar] [CrossRef]
- Umano, G.R.; Shabanova, V.; Pierpont, B.; Mata, M.; Nouws, J.; Trico, D.; Galderisi, A.; Santoro, N.; Caprio, S. A low visceral fat proportion, independent of total body fat mass, protects obese adolescent girls against fatty liver and glucose dysregulation: A longitudinal study. Int. J. Obes. 2019, 43, 673–682. [Google Scholar] [CrossRef]
- Matsubayashi, Y.; Yoshida, A.; Suganami, H.; Ishiguro, H.; Yamamoto, M.; Fujihara, K.; Kodama, S.; Tanaka, S.; Kaku, K.; Sone, H. Role of fatty liver in the association between obesity and reduced hepatic insulin clearance. Diabetes Metab. 2018, 44, 135–142. [Google Scholar] [CrossRef]
- Trico, D.; Caprio, S.; Rosaria Umano, G.; Pierpont, B.; Nouws, J.; Galderisi, A.; Kim, G.; Mata, M.M.; Santoro, N. Metabolic features of nonalcoholic fatty liver (NAFL) in Obese Adolescents: Findings from a multiethnic cohort. Hepatology 2018, 68, 1376–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotronen, A.; Juurinen, L.; Tiikkainen, M.; Vehkavaara, S.; Yki-Jarvinen, H. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 2008, 135, 122–130. [Google Scholar] [CrossRef]
- den Biggelaar, L.; Eussen, S.; Sep, S.J.S.; Mari, A.; Ferrannini, E.; van Greevenbroek, M.M.; van der Kallen, C.J.; Schalkwijk, C.G.; Arts, I.C.W.; Stehouwer, C.D.A.; et al. Prospective associations of dietary carbohydrate, fat, and protein intake with beta-cell function in the CODAM study. Eur. J. Nutr. 2019, 58, 597–608. [Google Scholar] [CrossRef]
- Trico, D.; Baldi, S.; Tulipani, A.; Frascerra, S.; Macedo, M.P.; Mari, A.; Ferrannini, E.; Natali, A. Mechanisms through which a small protein and lipid preload improves glucose tolerance. Diabetologia 2015, 58, 2503–2512. [Google Scholar] [CrossRef]
- Nesti, L.; Mengozzi, A.; Trico, D. Impact of nutrient type and sequence on glucose tolerance: Physiological insights and therapeutic implications. Front. Endocrinol. (Lausanne) 2019, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Carr, R.D.; Larsen, M.O.; Winzell, M.S.; Jelic, K.; Lindgren, O.; Deacon, C.F.; Ahren, B. Incretin and islet hormonal responses to fat and protein ingestion in healthy men. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E779–E784. [Google Scholar] [CrossRef] [PubMed]
- van Loon, L.J.; Saris, W.H.; Verhagen, H.; Wagenmakers, A.J. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am. J. Clin. Nutr. 2000, 72, 96–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trico, D.; Filice, E.; Baldi, S.; Frascerra, S.; Mari, A.; Natali, A. Sustained effects of a protein and lipid preload on glucose tolerance in type 2 diabetes patients. Diabetes Metab. 2016, 42, 242–248. [Google Scholar] [CrossRef]
- Nuttall, F.Q.; Gannon, M.C. Plasma glucose and insulin response to macronutrients in nondiabetic and NIDDM subjects. Diabetes Care 1991, 14, 824–838. [Google Scholar] [CrossRef]
- Trico, D.; Frascerra, S.; Baldi, S.; Mengozzi, A.; Nesti, L.; Mari, A.; Natali, A. The insulinotropic effect of a high-protein nutrient preload is mediated by the increase of plasma amino acids in type 2 diabetes. Eur. J. Nutr. 2019, 58, 2253–2261. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Stevens, J.E.; Cukier, K.; Maddox, A.F.; Wishart, J.M.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care 2009, 32, 1600–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trico, D.; Filice, E.; Trifiro, S.; Natali, A. Manipulating the sequence of food ingestion improves glycemic control in type 2 diabetic patients under free-living conditions. Nutr. Diabetes 2016, 6, e226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
LC Diet (n = 17) | Med Diet (n = 15) | p | |
---|---|---|---|
Age (years) | 41.4 ± 10.5 | 46.9 ± 10.5 | ns |
Women (n; %) | 12; 70.6 | 10; 66.7 | ns |
Systolic Blood Pressure (mmHg) | 131 ± 9 | 143 ± 16 | 0.07 |
Diastolic Blood Pressure (mmHg) | 79 ± 6 | 83 ± 7 | ns |
Body Mass Index (kg/m2) | 48.9 ± 5.4 | 49.9 ± 8.8 | ns |
Body Weight (kg) | 137.0 ± 19.3 | 136.0 ± 34.6 | ns |
Waist Circumference (cm) | 131 ± 13 | 132 ± 15 | ns |
Waist-to-hip Ratio (ratio) | 1.07 ± 0.14 | 1.07 ± 0.12 | ns |
Fat mass (%) | 45.6 ± 3.2 | 44.1 ± 5.3 | ns |
BMR (calories/day) | 2350 ± 490 | 2490 ± 655 | ns |
HbA1c (mmol/mol) | 38 ± 5 | 38 ± 4 | ns |
Fasting glucose (mmol/L) | 5.5 ± 0.5 | 5.7 ± 0.7 | ns |
Total cholesterol (mg/dL) | 193 ± 41 | 178 ± 31 | ns |
HDL cholesterol (mg/dL) | 51 ± 9 | 57 ± 15 | ns |
LDL cholesterol (mg/dL) | 124 ± 33 | 93 ± 34 | 0.08 |
Triglycerides (mg/dL) | 114 ± 31 | 125 ± 63 | ns |
Alanine Aminotransferase (U/L) | 28 [16] | 24 [31] | ns |
Aspartate Aminotransferase (U/L) | 19 [14] | 19 [11] | ns |
γ-Glutamyl Transferase (U/L) | 22 [20] | 22 [15] | ns |
Creatinine (mg/dL) | 0.76 ± 0.19 | 0.76 ± 0.20 | ns |
eGFR (ml min−1 1.73 m2) | 108 ± 21 | 102 ± 17 | ns |
Urea (mg/dL) | 28.4 ± 5.9 | 30.7 ± 11.5 | ns |
LC Diet (n = 17) | Med Diet (n = 15) | p | |||||
---|---|---|---|---|---|---|---|
Day 0 | Day 28 | Day 0 | Day 28 | Diet | Time | Interaction | |
Body Mass Index (kg/m2) | 48.9 ± 5.4 | 46.1 ± 5.1 | 49.9 ± 8.8 | 48.0 ± 8.4 | ns | <0.001 | 0.005 |
Body Weight (kg) | 137.0 ± 19.3 | 129.0 ± 18.0 | 136.0 ± 34.6 | 131.0 ± 32.4 | ns | <0.001 | 0.01 |
Waist Circumference (cm) | 131 ± 13 | 124 ± 11 | 132 ± 15 | 127 ± 14 | ns | <0.001 | ns |
Waist-to-hip Ratio (ratio) | 1.07 ± 0.14 | 0.92 ± 0.11 | 1.07 ± 0.12 | 0.93 ± 0.10 | ns | 0.003 | ns |
Fat mass (%) | 45.6 ± 3.2 | 43.3 ± 2.9 | 44.1 ± 5.3 | 41.0 ± 5.7 | ns | <0.001 | ns |
BMR (calories/day) | 2350 ± 490 | 2169 ± 317 | 2490 ± 655 | 2234 ± 671 | ns | 0.007 | ns |
LC Diet (n = 17) | Med Diet (n = 15) | p | |||||
---|---|---|---|---|---|---|---|
Day 0 | Day 28 | Day 0 | Day 28 | Diet | Time | Interaction | |
Glucose Control | |||||||
Fasting Glucose (mmol/L) | 5.5 ± 0.5 | 5.6 ± 0.5 | 5.7 ± 0.7 | 5.5 ± 0.7 | ns | ns | ns |
2-h Glucose (mmol/L) | 7.3 ± 1.6 | 7.4 ± 1.8 | 7.0 ± 1.5 | 7.4 ± 2.1 | ns | ns | ns |
Mean Glucose (mmol/L) | 7.3 ± 1.1 | 7.6 ± 1.2 | 7.3 ± 1.1 | 7.6 ± 1.7 | ns | ns | ns |
Fasting Insulin (pmol/L) | 139 [105] | 110 [75] | 137 [99] | 109 [67] | ns | 0.02 | ns |
Mean Insulin (pmol/L) | 473 [399] | 411 [183] | 447 [271] | 508 [512] | ns | ns | ns |
Insulin Sensitivity | |||||||
HOMA-IR (unit) | 5.42 [5.22] | 4.05 [2.94] | 5.79 [5.54] | 4.90 [4.64] | ns | 0.04 | ns |
OGIS (ml min−1 m−2) | 331 [90] | 320 [97] | 342 [93] | 306 [141] | ns | ns | ns |
Beta-cell Function | |||||||
Fasting ISR (pmol m−2 min−1) | 119 [58] | 135 [61] | 123 [147] | 130 [72] | ns | 0.0003 | ns |
Total ISR (nmol/m2) | 52 [25] | 60 [23] | 65 [48] | 66 [33] | ns | 0.05 | ns |
ISR@5 (pmol min−1 m−2) | 105 [59] | 106 [48] | 106 [90] | 119 [97] | ns | ns | ns |
β-GS (pmol min−1 m−2 mM−1) | 57 [80] | 82 [38] | 64 [53] | 86 [65] | ns | 0.03 | ns |
β-RS (nmol m−2 mM−1) | 1000 [898] | 898 [1067] | 1187 [1216] | 1019 [1055] | ns | ns | ns |
Potentiation Factor (ratio) | 1.15 [0.24] | 1.15 [0.48] | 1.42 [0.71] | 1.41 [0.76] | ns | ns | ns |
Incretin Hormones | |||||||
GLP-1 AUC (nmol/L × min) | 9.5 [4.8] | 7.3 [5.2] | 7.6 [4.6] | 6.3 [3.5] | ns | 0.002 | ns |
GIP AUC (nmol/L × min) | 36.6 [28.9] | 35.8 [25.8] | 43.2 [31.6] | 38.7 [42.2] | ns | ns | ns |
Insulin Clearance | |||||||
Fasting Clearance (l min−1 m−2) | 0.92 [0.50] | 1.26 [0.56] | 1.02 [0.66] | 1.15 [0.46] | ns | 0.005 | 0.06 |
OGTT Clearance (l min−1 m−2) | 0.62 [0.29] | 0.81 [0.30] | 0.74 [0.33] | 0.71 [0.29] | ns | 0.05 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tricò, D.; Moriconi, D.; Berta, R.; Baldi, S.; Quinones-Galvan, A.; Guiducci, L.; Taddei, S.; Mari, A.; Nannipieri, M. Effects of Low-Carbohydrate versus Mediterranean Diets on Weight Loss, Glucose Metabolism, Insulin Kinetics and β-Cell Function in Morbidly Obese Individuals. Nutrients 2021, 13, 1345. https://doi.org/10.3390/nu13041345
Tricò D, Moriconi D, Berta R, Baldi S, Quinones-Galvan A, Guiducci L, Taddei S, Mari A, Nannipieri M. Effects of Low-Carbohydrate versus Mediterranean Diets on Weight Loss, Glucose Metabolism, Insulin Kinetics and β-Cell Function in Morbidly Obese Individuals. Nutrients. 2021; 13(4):1345. https://doi.org/10.3390/nu13041345
Chicago/Turabian StyleTricò, Domenico, Diego Moriconi, Rossana Berta, Simona Baldi, Alfredo Quinones-Galvan, Letizia Guiducci, Stefano Taddei, Andrea Mari, and Monica Nannipieri. 2021. "Effects of Low-Carbohydrate versus Mediterranean Diets on Weight Loss, Glucose Metabolism, Insulin Kinetics and β-Cell Function in Morbidly Obese Individuals" Nutrients 13, no. 4: 1345. https://doi.org/10.3390/nu13041345
APA StyleTricò, D., Moriconi, D., Berta, R., Baldi, S., Quinones-Galvan, A., Guiducci, L., Taddei, S., Mari, A., & Nannipieri, M. (2021). Effects of Low-Carbohydrate versus Mediterranean Diets on Weight Loss, Glucose Metabolism, Insulin Kinetics and β-Cell Function in Morbidly Obese Individuals. Nutrients, 13(4), 1345. https://doi.org/10.3390/nu13041345