Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Evaluation
2.2. TMS Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Main Findings
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hadjivassiliou, M.; Duker, A.P.; Sanders, D.S. Gluten-related neurologic dysfunction. Handb. Clin. Neurol. 2014, 120, 607–619. [Google Scholar] [CrossRef]
- Hopper, A.D.; Hadjivassiliou, M.; Butt, S.; Sanders, D.S. Adult coeliac disease. BMJ 2007, 335, 558–562. [Google Scholar] [CrossRef]
- Green, P.H.R.; Rostami, K.; Marsh, M.N. Diagnosis of coeliac disease. Best Pract. Res. Clin. Gastroenterol. 2005, 19, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Hadjivassiliou, M.; Grünewald, R.A.; Davies-Jones, G.A.B. Gluten sensitivity as a neurological illness. J. Neurol. Neurosurg. Psychiatry 2002, 72, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Hadjivassiliou, M.; Sanders, D.S.; Grünewald, R.A.; Woodroofe, N.; Boscolo, S.; Aeschlimann, D. Gluten sensitivity: From gut to brain. Lancet Neurol. 2010, 9, 318–330. [Google Scholar] [CrossRef]
- Briani, C.; Zara, G.; Alaedini, A.; Grassivaro, F.; Ruggero, S.; Toffanin, E.; Albergoni, M.P.; Luca, M.; Giometto, B.; Ermani, M.; et al. Neurological complications of celiac disease and autoimmune mechanisms: A prospective study. J. Neuroimmunol. 2008, 195, 171–175. [Google Scholar] [CrossRef]
- Hadjivassiliou, M.; Croall, I.D.; Zis, P.; Sarrigiannis, P.G.; Sanders, D.S.; Aeschlimann, P.; Grünewald, R.A.; Armitage, P.A.; Connolly, D.; Aeschlimann, D.; et al. Neurologic deficits in patients with newly diagnosed celiac disease are frequent and linked with autoimmunity to transglutaminase 6. Clin. Gastroenterol. Hepatol. 2019, 17, 2678–2686.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currie, S.; Hadjivassiliou, M.; Clark, M.J.R.; Sanders, D.S.; Wilkinson, I.D.; Griffiths, P.D.; Hoggard, N. Should we be “nervous” about coeliac disease? Brain abnormalities in patients with coeliac disease referred for neurological opinion. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Vinciguerra, L.; Lanza, G.; Puglisi, V.; Fisicaro, F.; Pennisi, M.; Bella, R.; Cantone, M. Update on the neurobiology of vascular cognitive impairment: From lab to clinic. Int. J. Mol. Sci. 2020, 21, 2977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantone, M.; Lanza, G.; Vinciguerra, L.; Puglisi, V.; Ricceri, R.; Fisicaro, F.; Vagli, C.; Bella, R.; Ferri, R.; Pennisi, G.; et al. Age, Height, And sex on motor evoked potentials: Translational data from a large italian cohort in a clinical environment. Front. Hum. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [PubMed]
- Lanza, G.; Bella, R.; Giuffrida, S.; Cantone, M.; Pennisi, G.; Spampinato, C.; Giordano, D.; Malaguarnera, G.; Raggi, A.; Pennisi, M. Preserved Transcallosal inhibition to transcranial magnetic stimulation in nondemented elderly patients with leukoaraiosis. BioMed Res. Int. 2013, 2013, 351680. [Google Scholar] [CrossRef]
- Fisicaro, F.; Lanza, G.; Cantone, M.; Ferri, R.; Pennisi, G.; Nicoletti, A.; Zappia, M.; Bella, R.; Pennisi, M. Clinical and electrophysiological hints to TMS in de novo patients with Parkinson’s disease and progressive supranuclear palsy. J. Pers. Med. 2020, 10, 274. [Google Scholar] [CrossRef]
- 13 Fisicaro, F.; Lanza, G.; Bella, R.; Pennisi, M. “Self-neuroenhancement”: The last frontier of noninvasive brain stimulation? J. Clin. Neurol. 2020, 16, 158–159. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.; Classen, J.; Cohen, L.G.; Large, C.H.; Di Lazzaro, V.; Nitsche, M.; Pascual-Leone, A.; Rosenow, F.; Rothwell, J.C.; Ziemann, U. State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimulat. 2008, 1, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, U.; Reis, J.; Schwenkreis, P.; Rosanova, M.; Strafella, A.; Badawy, R.; Müller-Dahlhaus, F. TMS and drugs revisited 2014. Clin. Neurophysiol. 2015, 126, 1847–1868. [Google Scholar] [CrossRef]
- Lanza, G.; Ferri, R. The neurophysiology of hyperarousal in restless legs syndrome: Hints for a role of glutamate/GABA. Adv. Pharmacol. 2019, 84, 101–119. [Google Scholar] [CrossRef]
- Pellecchia, M.T.; Scala, R.; Perretti, A.; De Michele, G.; Santoro, L.; Filla, A.; Ciacci, C.; Barone, P. Cerebellar ataxia associated with subclinical celiac disease responding to gluten-free diet. Neurology 1999, 53, 1606–1608. [Google Scholar] [CrossRef] [PubMed]
- Tijssen, M.A.; Thom, M.; Ellison, D.W.; Wilkins, P.; Barnes, D.; Thompson, P.D.; Brown, P. Cortical myoclonus and cerebellar pathology. Neurology 2000, 54, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, G.; Lanza, G.; Giuffrida, S.; Vinciguerra, L.; Puglisi, V.; Cantone, M.; Pennisi, M.; D’Agate, C.C.; Naso, P.; Aprile, G.; et al. Excitability of the motor cortex in de novo patients with celiac disease. PLoS ONE 2014, 9, e102790. [Google Scholar] [CrossRef] [PubMed]
- Bella, R.; Lanza, G.; Cantone, M.; Giuffrida, S.; Puglisi, V.; Vinciguerra, L.; Pennisi, M.; Ricceri, R.; D’Agate, C.C.; Malaguarnera, G.; et al. Effect of a gluten-free diet on cortical excitability in adults with celiac disease. PLoS ONE 2015, 10, e0129218. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, M.; Lanza, G.; Cantone, M.; Ricceri, R.; Ferri, R.; D’Agate, C.C.; Pennisi, G.; Di Lazzaro, V.; Bella, R. Cortical involvement in celiac disease before and after long-term gluten-free diet: A transcranial magnetic stimulation study. PLoS ONE 2017, 12, e0177560. [Google Scholar] [CrossRef] [Green Version]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.; Kurppa, K.; Mearin, M.L.; Ribes-Koninckx, C.; Shamir, R.; Troncone, R.; Auricchio, R.; Castillejo, G.; et al. European Society paediatric gastroenterology, hepatology and nutrition guidelines for diagnosing coeliac disease 2020. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 141–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and recommendations for TMS Use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.B.; George, M.S.; et al. Non-Invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic Principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. committee. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar] [CrossRef]
- van den Bos, M.A.J.; Geevasinga, N.; Menon, P.; Burke, D.; Kiernan, M.C.; Vucic, S. Physiological processes influencing motor-evoked potential duration with voluntary contraction. J. Neurophysiol. 2017, 117, 1156–1162. [Google Scholar] [CrossRef]
- Hupfeld, K.E.; Swanson, C.W.; Fling, B.W.; Seidler, R.D. TMS-induced silent periods: A review of methods and call for consistency. J. Neurosci. Methods 2020, 346, 108950. [Google Scholar] [CrossRef]
- Cantello, R.; Gianelli, M.; Civardi, C.; Mutani, R. Magnetic brain stimulation: The silent period after the motor evoked potential. Neurology 1992, 42, 1951–1959. [Google Scholar] [CrossRef]
- Fuhr, P.; Agostino, R.; Hallett, M. Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr. Clin. Neurophysiol. Potentials Sect. 1991, 81, 257–262. [Google Scholar] [CrossRef]
- Classen, J.; Benecke, R. Inhibitory phenomena in individual motor units induced by transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. Mot. Control 1995, 97, 264–274. [Google Scholar] [CrossRef]
- Inghilleri, M.; Berardelli, A.; Marchetti, P.; Manfredi, M. Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans. Exp. Brain Res. 1996, 109, 467–472. [Google Scholar] [CrossRef]
- Roick, H.; von Giesen, H.J.; Benecke, R. On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects. Exp. Brain Res. 1993, 94, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lozano, A.M.; Ashby, P. Mechanism of the silent period following transcranial magnetic stimulation. evidence from epidural recordings. Exp. Brain Res. 1999, 128, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Inghilleri, M.; Berardelli, A.; Cruccu, G.; Manfredi, M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J. Physiol. 1993, 466, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Schnitzler, A.; Benecke, R. The Silent Period after Transcranial Magnetic Stimulation Is of Exclusive Cortical Origin: Evidence from Isolated Cortical Ischemic Lesions in Man. Neurosci. Lett. 1994, 180, 41–45. [Google Scholar] [CrossRef]
- Siebner, H.R.; Dressnandt, J.; Auer, C.; Conrad, B. Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve 1998, 21, 1209–1212. [Google Scholar] [CrossRef]
- Werhahn, K.J.; Kunesch, E.; Noachtar, S.; Benecke, R.; Classen, J. Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J. Physiol. 1999, 517, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, E.M.; Fuhr, P.; Cohen, L.G.; Hallett, M. Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 1991, 41, 1795–1799. [Google Scholar] [CrossRef]
- Ferbert, A.; Priori, A.; Rothwell, J.C.; Day, B.L.; Colebatch, J.G.; Marsden, C.D. Interhemispheric inhibition of the human motor cortex. J. Physiol. 1992, 453, 525–546. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.U.; Röricht, S.; von Einsiedel, H.G.; Kruggel, F.; Weindl, A. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 1995, 118, 429–440. [Google Scholar] [CrossRef]
- Faro, A.; Giordano, D.; Kavasidis, I.; Pino, C.; Spampinato, C.; Cantone, M.G.; Lanza, G.; Pennisi, M. An Interactive tool for customizing clinical transacranial magnetic stimulation (TMS) experiments. In Proceedings of the XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010, Chalkidiki, Greece, 27–30 May 2010; pp. 200–203. [Google Scholar]
- Wendt, H.W. Dealing with a common problem in social science: A simplified rank-biserial coefficient of correlation based on the U statistic. Eur. J. Soc. Psychol. 1972, 2, 463–465. [Google Scholar] [CrossRef]
- Oberhuber, G. Histopathology of celiac disease. Biomed. Pharmacother. 2000, 54, 368–372. [Google Scholar] [CrossRef]
- Hoeppner, J.; Wegrzyn, M.; Thome, J.; Bauer, A.; Oltmann, I.; Buchmann, J.; Teipel, S. Intra- and Inter-cortical motor excitability in Alzheimer’s disease. J. Neural Transm. 2012, 119, 605–612. [Google Scholar] [CrossRef]
- Wegrzyn, M.; Teipel, S.J.; Oltmann, I.; Bauer, A.; Thome, J.; Großmann, A.; Hauenstein, K.; Höppner, J. Structural and functional cortical disconnection in Alzheimer’s disease: A combined study using diffusion tensor imaging and transcranial magnetic stimulation. Psychiatry Res. Neuroimaging 2013, 212, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Khedr, E.M.; Ahmed, M.A.; Darwish, E.S.; Ali, A.M. The relationship between motor cortex excitability and severity of alzheimer’s disease: A transcranial magnetic stimulation study. Neurophysiol. Clin. Neurophysiol. 2011, 41, 107–113. [Google Scholar] [CrossRef]
- Jung, P.; Beyerle, A.; Humpich, M.; Neumann-Haefelin, T.; Lanfermann, H.; Ziemann, U. Ipsilateral silent period: A marker of callosal conduction abnormality in early relapsing-remitting multiple sclerosis? J. Neurol. Sci. 2006, 250, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Schlaeger, R.; Hardmeier, M.; Fuhr, P. Superficial brain stimulation in multiple sclerosis. Handb. Clin. Neurol. 2013, 116, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Llufriu, S.; Blanco, Y.; Martinez-Heras, E.; Casanova-Molla, J.; Gabilondo, I.; Sepulveda, M.; Falcon, C.; Berenguer, J.; Bargallo, N.; Villoslada, P.; et al. Influence of corpus callosum damage on cognition and physical disability in multiple sclerosis: A multimodal study. PLoS ONE 2012, 7, e37167. [Google Scholar] [CrossRef] [PubMed]
- Nardone, R.; Venturi, A.; Buffone, E.; Covi, M.; Florio, I.; Lochner, P.; Psenner, K.; Tezzon, F. Transcranial magnetic stimulation shows impaired transcallosal inhibition in marchiafava-bignami syndrome. Eur. J. Neurol. 2006, 13, 749–753. [Google Scholar] [CrossRef]
- Lichtwark, I.T.; Newnham, E.D.; Robinson, S.R.; Gibson, P.R.; Yelland, G.W. Editorial: “brain fog” and coeliac disease—Evidence for its existence: Authors’ reply. Aliment. Pharmacol. Ther. 2014, 40, 566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yelland, G.W. Gluten-Induced cognitive impairment (“brain fog”) in coeliac disease. J. Gastroenterol. Hepatol. 2017, 32 (Suppl. 1), 90–93. [Google Scholar] [CrossRef] [Green Version]
- Lurie, Y.; Landau, D.A.; Pfeffer, J.; Oren, R. Celiac disease diagnosed in the elderly. J. Clin. Gastroenterol. 2008, 42, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Collin, P.; Pirttilä, T.; Nurmikko, T.; Somer, H.; Erilä, T.; Keyriläinen, O. Celiac disease, brain atrophy, and dementia. Neurology 1991, 41, 372–375. [Google Scholar] [CrossRef]
- Hu, W.T.; Murray, J.A.; Greenaway, M.C.; Parisi, J.E.; Josephs, K.A. Cognitive impairment and celiac disease. Arch. Neurol. 2006, 63, 1440–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casella, S.; Zanini, B.; Lanzarotto, F.; Ricci, C.; Marengoni, A.; Romanelli, G.; Lanzini, A. Cognitive performance is impaired in coeliac patients on gluten free diet: A case-control study in patients older than 65 years of age. Dig. Liver Dis. 2012, 44, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Croall, I.D.; Tooth, C.; Venneri, A.; Poyser, C.; Sanders, D.S.; Hoggard, N.; Hadjivassiliou, M. Cognitive impairment in coeliac disease with respect to disease duration and gluten-free diet adherence: A pilot study. Nutrients 2020, 12, 2028. [Google Scholar] [CrossRef]
- Croall, I.D.; Sanders, D.S.; Hadjivassiliou, M.; Hoggard, N. Cognitive deficit and white matter changes in persons with celiac disease: A population-based study. Gastroenterology 2020, 158, 2112–2122. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, M.; Bramanti, A.; Cantone, M.; Pennisi, G.; Bella, R.; Lanza, G. Neurophysiology of the “celiac brain”: Disentangling gut-brain connections. Front. Neurosci. 2017, 11, 498. [Google Scholar] [CrossRef]
- Lanza, G.; Bella, R.; Cantone, M.; Pennisi, G.; Ferri, R.; Pennisi, M. Cognitive impairment and celiac disease: Is transcranial magnetic stimulation a trait d’union between gut and brain? Int. J. Mol. Sci. 2018, 19, 2243. [Google Scholar] [CrossRef] [Green Version]
- Rossini, P.M.; Rossi, S.; Babiloni, C.; Polich, J. Clinical neurophysiology of aging brain: From normal aging to neurodegeneration. Prog. Neurobiol. 2007, 83, 375–400. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.; Petrichella, S.; Vollero, L.; Ponzo, D.; Pasqualetti, P.; Määttä, S.; Mervaala, E.; Könönen, M.; Bressi, F.; Iannello, G.; et al. Neurophysiological features of motor cortex excitability and plasticity in subcortical ischemic vascular dementia: A TMS mapping study. Clin. Neurophysiol. 2015, 126, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, G.; Bella, R.; Lanza, G. Motor cortex plasticity in subcortical ischemic vascular dementia: What can TMS say? Clin. Neurophysiol. 2015, 126, 851–852. [Google Scholar] [CrossRef] [PubMed]
- Obrenovich, M.E.M. Leaky gut, Leaky brain? Microorganisms 2018, 6, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slim, M.; Rico-Villademoros, F.; Calandre, E.P. Psychiatric comorbidity in children and adults with gluten-related disorders: A narrative review. Nutrients 2018, 10, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, H.; Reeves, S.; Jeanes, Y.M. Identifying and Improving adherence to the gluten-free diet in people with coeliac disease. Proc. Nutr. Soc. 2019, 78, 418–425. [Google Scholar] [CrossRef] [PubMed]
- van Hees, N.J.M.; Van der Does, W.; Giltay, E.J. Coeliac Disease, diet adherence and depressive symptoms. J. Psychosom. Res. 2013, 74, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.; Falkai, P.; Wobrock, T. Transcranial brain stimulation in schizophrenia: Targeting cortical excitability, connectivity and plasticity. Curr. Med. Chem. 2013, 20, 405–413. [Google Scholar]
- Ziemann, U. TMS and drugs. Clin. Neurophysiol. 2004, 115, 1717–1729. [Google Scholar] [CrossRef]
- Chen, R.; Samii, A.; Caños, M.; Wassermann, E.M.; Hallett, M. Effects of phenytoin on cortical excitability in humans. Neurology 1997, 49, 881–883. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, U.; Lönnecker, S.; Steinhoff, B.J.; Paulus, W. Effects of antiepileptic drugs on motor cortex excitability in humans: A transcranial magnetic stimulation study. Ann. Neurol. 1996, 40, 367–378. [Google Scholar] [CrossRef]
- Liepert, J.; Schwenkreis, P.; Tegenthoff, M.; Malin, J.P. The Glutamate antagonist riluzole suppresses intracortical facilitation. J. Neural Transm. 1997, 104, 1207–1214. [Google Scholar] [CrossRef]
- Ziemann, U.; Chen, R.; Cohen, L.G.; Hallett, M. Dextromethorphan decreases the excitability of the human motor cortex. Neurology 1998, 51, 1320–1324. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, U.; Tergau, F.; Bruns, D.; Baudewig, J.; Paulus, W. Changes in human motor cortex excitability induced by dopaminergic and anti-dopaminergic drugs. Electroencephalogr. Clin. Neurophysiol. 1997, 105, 430–437. [Google Scholar] [CrossRef]
- Ziemann, U.; Netz, J.; Szelényi, A.; Hömberg, V. Spinal and supraspinal mechanisms contribute to the silent period in the contracting soleus muscle after transcranial magnetic stimulation of human motor cortex. Neurosci. Lett. 1993, 156, 167–171. [Google Scholar] [CrossRef]
- Daskalakis, Z.J.; Christensen, B.K.; Chen, R.; Fitzgerald, P.B.; Zipursky, R.B.; Kapur, S. Evidence for Impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Arch. Gen. Psychiatry 2002, 59, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Khedr, E.M.; Elserogy, Y.; Fawzy, M.; Elnoaman, M.; Galal, A.M. Global cortical hypoexcitability of the dominant hemisphere in major depressive disorder: A transcranial magnetic stimulation study. Neurophysiol. Clin. 2020, 50, 175–183. [Google Scholar] [CrossRef]
- Radhu, N.; Ravindran, L.N.; Levinson, A.J.; Daskalakis, Z.J. Inhibition of the cortex using transcranial magnetic stimulation in psychiatric populations: Current and future directions. J. Psychiatry Neurosci. JPN 2012, 37, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigamonti, A.; Magi, S.; Venturini, E.; Morandi, L.; Ciano, C.; Lauria, G. Celiac Disease presenting with motor neuropathy: Effect of gluten free-diet. Muscle Nerve 2007, 35, 675–677. [Google Scholar] [CrossRef] [PubMed]
- Di Lazzaro, V.; Pilato, F.; Batocchi, A.P.; Restuccia, D.; Cammarota, G.; Profice, P. Tired legs—A gut diagnosis. Lancet Lond. Engl. 2010, 376, 1798. [Google Scholar] [CrossRef]
No. | Age (Years) | Sex | Family History | Clinical Symptoms | Co-Morbidities | Antibodies | Endoscopy | Histopathology |
---|---|---|---|---|---|---|---|---|
1 | 55 | F | + | Tiredness, dyspepsia, weight loss, iron deficiency anemia | - | tTG, EMA | Scalloped duodenal folds | 3c |
2 | 18 | F | + | Asthenia, iron deficiency anemia | - | tTG, EMA | Scalloped duodenal folds | 3c |
3 | 25 | F | + | Tiredness, iron deficiency anemia, dermatological manifestations | - | tTG, EMA | Scalloped duodenal folds | 3c |
4 | 18 | F | - | Headache, tiredness, belly pain, iron deficiency anemia | - | tTG, EMA | Scalloped duodenal folds | 3c |
5 | 29 | M | + | - (familial screening) | - | tTG, EMA | Scalloped duodenal folds | 3c |
6 | 45 | M | - | Tiredness, weight loss, headache, iron deficiency anemia, abdominal pain | - | tTG | Scalloped duodenal folds | 3c |
7 | 36 | F | - | Headache, tiredness, iron deficiency anemia, vitamin D deficiency weight loss | Autoimmune thyroiditis | tTG, EMA | Scalloped duodenal folds | 3c |
8 | 27 | F | - | Abdominal pain, diarrhea, tiredness, unsteadiness, weight loss, iron deficiency anemia | - | tTG, EMA | Scalloped duodenal folds | 3c |
9 | 35 | F | - | Abdominal pain, diarrhea, nausea, iron deficiency anemia, tiredness | - | tTG, EMA | Scalloped duodenal folds | 3c |
10 | 44 | F | + | Iron deficiency anemia, stipsis and diarrhea, headache, tiredness | Fibromyalgia, psoriasis | tTG | Scalloped duodenal folds | 3c |
11 | 45 | F | - | Diarrhea, abdominal discomfort, tiredness | Raynaud phenomenon | tTG | Moderate atrophic villi | 3b |
12 | 41 | F | - | Dyspepsia, iron-deficiency anemia, diarrhea, weight loss, tiredness, diffuse pain | - | tTG, EMA | Scalloped duodenal folds | 3c |
13 | 49 | F | - | Alternate alvus, dyspepsia, asthenia, tiredness | - | tTG | Scalloped duodenal folds | 3c |
14 | 24 | F | - | Tiredness, dyspepsia, weight loss, iron deficiency anemia | - | tTG, EMA | Scalloped duodenal folds | 3c |
15 | 20 | F | - | Tiredness, iron deficiency anemia | - | tTG, EMA | Scalloped duodenal folds | 3c |
Variable | Celiac Disease (n = 15) | Healthy Controls (n = 15) | Mann–Whitney | Effect Size | |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | U | p | r | |
Age, years | 34.10 ± 12.03 | 34.90 ± 9.18 | 102 | NS | 0.093 |
Height, m | 1.60 ± 0.08 | 1.70 ± 0.09 | 70.5 | NS | 0.373 |
Weigh, Kg | 57.90 ± 17.38 | 61.10 ± 8.31 | 73 | NS | 0.351 |
BMI, Kg/m2 | 21.80 ± 5.99 | 21.80 ± 2.10 | 80 | NS | 0.289 |
Education, years | 14.60 ± 3.44 | 16.20 ± 3.97 | 69.5 | NS | 0.382 |
MoCA | 25.80 ± 2.40 | 28.00 ± 1.00 | 46 | 0.0062 * | 0.591 |
HDRS | 8.30 ± 6.30 | 2.90 ± 2.19 | 50.5 | 0.01 | 0.551 |
rMT, % | 37.10 ± 5.58 | 36.90 ± 6.42 | 109.5 | NS | 0.027 |
cSP duration, ms | 87.30 ± 26.85 | 123.10 ± 29.71 | 37 | 0.0019 * | 0.671 |
cSP latency, ms | 44.70 ± 3.81 | 44.10 ± 3.10 | 104.5 | NS | 0.071 |
iSP duration, ms | 20.50 ± 3.54 | 25.50 ± 3.32 | 33.5 | 0.0011 * | 0.702 |
iSP latency, ms | 32.90 ± 5.84 | 34.50 ± 4.80 | 82 | NS | 0.271 |
MEP latency, ms | 20.00 ± 1.24 | 20.30 ± 1.56 | 97.5 | NS | 0.133 |
MEP duration, ms (at rest) | 12.4 ± 1.42 | 13.4 ± 2.04 | 79.5 | NS | 0.293 |
MEP duration, ms (active) | 15.4 ± 2.43 | 15.7 ± 1.62 | 98.5 | NS | 0.124 |
CMCT, ms | 6.20 ± 0.85 | 6.50 ± 0.91 | 88.5 | NS | 0.213 |
MEP amplitude, mV | 4.50 ± 1.22 | 5.80 ± 1.65 | 56 | 0.02 | 0.502 |
CMAP amplitude, mV | 19.80 ± 4.19 | 22.30 ± 6.64 | 91.5 | NS | 0.187 |
CMAP latency, ms | 3.40 ± 0.37 | 4.00 ± 0.76 | 44 | NS | 0.609 |
A ratio (MEP/CMAP) | 0.24 ± 0.09 | 0.28 ± 0.11 | 74 | NS | 0.342 |
F-wave latency, ms | 27.00 ± 2.07 | 28.20 ± 2.83 | 92.5 | NS | 0.178 |
F-wave amplitude, mV | 0.10 ± 0.04 | 0.13 ± 0.06 | 80.5 | NS | 0.284 |
CMCT-F, ms | 5.20 ± 1.01 | 4.80 ± 0.90 | 85.5 | NS | 0.240 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fisicaro, F.; Lanza, G.; D’Agate, C.C.; Ferri, R.; Cantone, M.; Falzone, L.; Pennisi, G.; Bella, R.; Pennisi, M. Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients. Nutrients 2021, 13, 1530. https://doi.org/10.3390/nu13051530
Fisicaro F, Lanza G, D’Agate CC, Ferri R, Cantone M, Falzone L, Pennisi G, Bella R, Pennisi M. Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients. Nutrients. 2021; 13(5):1530. https://doi.org/10.3390/nu13051530
Chicago/Turabian StyleFisicaro, Francesco, Giuseppe Lanza, Carmela Cinzia D’Agate, Raffaele Ferri, Mariagiovanna Cantone, Luca Falzone, Giovanni Pennisi, Rita Bella, and Manuela Pennisi. 2021. "Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients" Nutrients 13, no. 5: 1530. https://doi.org/10.3390/nu13051530
APA StyleFisicaro, F., Lanza, G., D’Agate, C. C., Ferri, R., Cantone, M., Falzone, L., Pennisi, G., Bella, R., & Pennisi, M. (2021). Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients. Nutrients, 13(5), 1530. https://doi.org/10.3390/nu13051530