Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ratsika, A.; Codagnone, M.C.; O’Mahony, S.; Stanton, C.; Cryan, J.F. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients 2021, 13, 423. [Google Scholar] [CrossRef] [PubMed]
- Boudry, G.; Charton, E.; Le Huerou-Luron, I.; Ferret-Bernard, S.; Le Gall, S.; Even, S.; Blat, S. The Relationship between Breast Milk Components and the Infant Gut Microbiota. Front. Nutr. 2021, 8, 629740. [Google Scholar] [CrossRef] [PubMed]
- Moubareck, C.A. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.E.; Virmani, M.D.; Rosa, F.; Munblit, D.; Matazel, K.S.; Elolimy, A.A.; Yeruva, L. Role of Human Milk Bioactives on Infants’ Gut and Immune Health. Front. Immunol. 2021, 12, 604080. [Google Scholar] [CrossRef] [PubMed]
- Mohandas, S.; Pannaraj, P.S. Beyond the Bacterial Microbiome: Virome of Human Milk and Effects on the Developing Infant. Nestle Nutr. Inst. Workshop Ser. 2020, 94, 86–93. [Google Scholar]
- Stewart, C.J.; Ajami, N.J.; O’Brien, J.L.; Hutchinson, D.S.; Smith, D.P.; Wong, M.C.; Ross, M.C.; Lloyd, R.E.; Doddapaneni, H.; Metcalf, G.A.; et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018, 562, 583–588. [Google Scholar] [CrossRef]
- Ho, N.T.; Li, F.; Lee-Sarwar, K.A.; Tun, H.M.; Brown, B.P.; Pannaraj, P.S.; Bender, J.M.; Azad, M.B.; Thompson, A.L.; Weiss, S.T.; et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat. Commun. 2018, 9, 4169. [Google Scholar] [CrossRef]
- Fernández, L.; Pannaraj, P.S.; Rautava, S.; Rodríguez, J.M. The Microbiota of the Human Mammary Ecosystem. Front. Cell Infect. Microbiol. 2020, 10, 586667. [Google Scholar] [CrossRef]
- Vemuri, R.; Shankar, E.M.; Chieppa, M.; Eri, R.; Kavanagh, K. Beyond Just Bacteria: Functional Biomes in the Gut Ecosystem Including Virome, Mycobiome, Archaeome and Helminths. Microorganisms 2020, 8, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amenyogbe, N.; Kollmann, T.R.; Ben-Othman, R. Early-life host-microbiome Interphase: The key frontier for immune development. Front. Pediatr. 2017, 5, 111. [Google Scholar] [CrossRef] [Green Version]
- Moossavi, S.; Sepehri, S.; Robertson, B.; Bode, L.; Goruk, S.; Field, C.J.; Lix, L.M.; de Souza, R.J.; Becker, A.B.; Mandhane, P.J.; et al. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe 2019, 25, 324–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannaraj, P.S.; Li, F.; Cerini, C.; Bender, J.M.; Yang, S.; Rollie, A.; Adisetiyo, H.; Zabih, S.; Lincez, P.J.; Bittinger, K.; et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 2017, 171, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhya, I.; Segal, J.P.; Carding, S.R.; Hart, A.L.; Hold, G.L. The gut virome: The ‘missing link’ between gut bacteria and host immunity? Therap. Adv. Gastroenterol. 2019, 12, 1756284819836620. [Google Scholar] [CrossRef]
- Lim, E.S.; Zhou, Y.; Zhao, G.; Bauer, I.K.; Droit, L.; Ndao, I.M.; Warner, B.B.; Tarr, P.I.; Wang, D.; Holtz, L.R. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 2015, 21, 1228–1234. [Google Scholar] [CrossRef]
- Liang, G.; Zhao, C.; Zhang, H.; Mattei, L.; Sherrill-Mix, S.; Bittinger, K.; Kessler, L.R.; Wu, G.D.; Baldassano, R.N.; DeRusso, P.; et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 2020, 581, 470–474. [Google Scholar] [CrossRef]
- Pannaraj, P.S.; Ly, M.; Cerini, C.; Saavedra, M.; Aldrovandi, G.M.; Saboory, A.A.; Johnson, K.M.; Pride, D.T. Shared and Distinct Features of Human Milk and Infant Stool Viromes. Front. Microbiol. 2018, 9, 1162. [Google Scholar] [CrossRef] [PubMed]
- Duranti, S.; Lugli, G.A.; Mancabelli, L.; Armanini, F.; Turroni, F.; James, K.; Ferretti, P.; Gorfer, V.; Ferrario, C.; Milani, C.; et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome 2017, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; et al. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 2016, 34, 6047–6056. [Google Scholar]
- Villar, J.; Cheikh Ismail, L.; Victora, C.G.; Ohuma, E.O.; Bertino, E.; Altman, D.G.; Lambert, A.; Papageorghiou, A.T.; Carvalho, M.; Jaffer, Y.A.; et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 2014, 384, 857–868. [Google Scholar] [CrossRef]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 2, 863–864. [Google Scholar] [CrossRef] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A fast phage search tool. Nucleic Acids Res. 2011, 39, W347–W352. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: http://www.R-project.org/ (accessed on 7 May 2018).
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- McArdle, B.H.; Anderson, M.J. Fitting multivariate models to community data: A comment based on distance-based redundancy analysis. Ecology 2001, 82, 290–297. [Google Scholar] [CrossRef]
- Comitini, F.; Fanos, V. The dark matter of microbiome: The mother-infant pair virome. Minerva Pediatr. 2020. Available online: https://pubmed.ncbi.nlm.nih.gov/33107274/ (accessed on 27 October 2020). [CrossRef]
- Blohm, G.M.; Lednicky, J.A.; Márquez, M.; White, S.K.; Loeb, J.C.; Pacheco, C.A.; Nolan, D.J.; Paisie, T.; Salemi, M.; Rodríguez-Morales, A.J.; et al. Evidence for Mother-to-Child Transmission of Zika Virus Through Breast Milk. Clin. Infect Dis. 2018, 66, 1120–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Doare, K.; Holder, B.; Bassett, A.; Pannaraj, P.S. Mother’s Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front. Immunol. 2018, 9, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maqsood, R.; Reus, J.B.; Wu, L.I.; Holland, L.A.; Nduati, R.; Mbori-Ngacha, D.; Maleche-Obimbo, E.; Begnel, E.R.; Gantt, S.; Ojee, E.; et al. Breast Milk Virome and Bacterial Microbiome Resilience in Kenyan Women Living with HIV. mSystems 2021, 6, e01079-20. [Google Scholar] [CrossRef]
- Moossavi, S.; Azad, M.B. Origins of human milk microbiota: New evidence and arising questions. Gut Microbes 2020, 12, 1667722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, P.; Curtis, N. Breast milk microbiota: A review of the factors that influence composition. J. Infect. 2020, 81, 17–47. [Google Scholar] [CrossRef] [PubMed]
- Dinleyici, M.; Pérez-Brocal, V.; Arslanoglu, S.; Aydemir, O.; Ozumut, S.S.; Tekin, N.; Vandenplas, Y.; Moya, A.; Dinleyici, E.C. Human milk mycobiota composition: Relationship with gestational age, delivery mode, and birth weight. Benef. Microbes 2020, 11, 151–162. [Google Scholar] [CrossRef]
- Pärnänen, K.; Karkman, A.; Hultman, J.; Lyra, C.; Bengtsson-Palme, J.; Larsson, D.G.J.; Rautava, S.; Isolauri, E.; Salminen, S.; Kumar, H.; et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat. Commun. 2018, 9, 3891. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.S.; Wang, D.; Holtz, L.R. The bacterial microbiome and virome milestones of infant development. Trends Microbiol. 2016, 24, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Ojo-Okunola, A.; Nicol, M.; du Toit, E. Human Breast Milk Bacteriome in Health and Disease. Nutrients 2018, 10, 1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rautava, S. Early microbial contact, the breast milk microbiome and child health. J. Dev. Orig. Health Dis. 2016, 7, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, H.; Rodríguez, J.M.; Salminen, S.; Szajewska, H. Probiotics in human milk and probiotic supplementation in infant nutrition: A workshop report. Br. J. Nutr. 2014, 112, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- LeMay-Nedjelski, L.; Copeland, J.; Wang, P.W.; Butcher, J.; Unger, S.; Stintzi, A.; O’Connor, D.L. Methods and Strategies to Examine the Human Breastmilk Microbiome. Methods Mol. Biol. 2018, 1849, 63–86. [Google Scholar] [PubMed]
- Walsh, C.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. J. Funct. Foods 2020, 72, 104074. [Google Scholar] [CrossRef] [PubMed]
- García-López, R.; Pérez-Brocal, V.; Moya, A. Beyond cells—The virome in the human holobiont. Microb. Cell 2019, 6, 373–396. [Google Scholar] [CrossRef]
Maternal Age (Years) * | Delivery Mode (SV/CS) | Gestational Age (Weeks) * | Birth Weight (Gram) * | Gender (Boys/Girls) | Transient HM Sampling Time (Days) * | Mature HM Sampling Time (Days) * | |
---|---|---|---|---|---|---|---|
Total | 30 | 9/35 | 38 | 2840 | 18/26 | 8 | 51.5 |
(n = 44) | (18–44) | (32–41) | (1200–4600) | (7–14) | (45–70) | ||
NS-T | 33 | 8/0 | 38.5 | 3225 | 1/7 | 12 | 53.5 |
(n = 8) | (20–41) | (37–40) | (2880–3600) | (8–14) | (47–70) | ||
CS-T | 35 | 0/9 | 38 | 3080 | 5/8 | 8 | 55 |
(n = 9) | (25–44) | (37–41) | (2730–3600) | (7–13) | (45–70) | ||
PT | 30 | 0/13 | 35 | 2255 | 3/6 | 8 | 50 |
(n = 13) | (18–43) | (32–37) | (1200–2700) | (7–14) | (45–62) | ||
SGA | 34 | 1/6 | 37 | 2225 | 3/4 | 8 | 49 |
(n = 7) | (22–38) | (34–41) | (1670–2500) | (7–12) | (45–63) | ||
LGA | 30 | 0/7 | 39 | 4120 | 6/1 | 8 | 51 |
(n = 7) | (23–39) | (37–41) | (3505–4600) | (7–13) | (45–63) |
Transient Human Milk (7–15 Days) | Mature Human Milk (45–90 Days) | ||||||
---|---|---|---|---|---|---|---|
Group | Species | n | % | Group | Species | n | % |
NS-T (n = 432) | Picornavirinae | 240 | 55.5 | NS-T (n = 482) | Siphoviridae_n__uc | 170 | 35.2 |
Cp1virus__uc | 57 | 13.2 | Siphoviridae_n_n__uc | 69 | 14.3 | ||
Staphylococcus phage Andhra | 27 | 6.25 | Enterococcus phage EFC-1 | 30 | 6.2 | ||
Staphylococcus phage St 134 | 23 | 5.32 | Picovirinae__uc | 29 | 6.0 | ||
Halomonas phage phiHAP-1 | 14 | 3.24 | Human betaherpesvirus 5 | 25 | 5.2 | ||
Streptococcus virus Cp1 | 13 | 3.0 | Clostridium phage vB_CpeS-CP51 | 17 | 3.5 | ||
Vibrio phage VP882 | 9 | 2.0 | Brochothrix phage NF5 | 16 | 3.3 | ||
Human betaherpesvirus 5 | 9 | 2.0 | Sextaecvirus__uc | 14 | 2.9 | ||
CS-T (n = 397) | Sep1virus__uc | 144 | 36.2 | CS-T (n = 243) | Human betaherpesvirus 5 | 73 | 30.0 |
Picovirinae__uc | 51 | 12.8 | Sep1virus__uc | 67 | 27.5 | ||
Siphoviridae_n_n__uc32 | 32 | 8.1 | Siphoviridae_n_n__uc | 19 | 7.8 | ||
Streptococcus phage IPP62 | 25 | 6.3 | Myoviridae__uc | 8 | 3.2 | ||
Staphylococcus virus SEP1 | 20 | 5.0 | Staphylococcus virus SEP1 | 8 | 3.2 | ||
Siphoviridae_n__uc | 19 | 4.8 | Podoviridae__uc | 7 | 2.9 | ||
Myoviridae__uc | 13 | 3.2 | Staphylococcus virus IPLAC1C | 5 | 2.0 | ||
Staphylococcus virus IPLAC1C | 11 | 2.7 | Picovirinae__uc | 5 | 2.0 | ||
PT (n = 462) | Picovirinae__uc | 208 | 45.0 | PT (n = 404) | Human betaherpesvirus 5 | 85 | 21.0 |
Sep1virus__uc | 60 | 12.9 | Siphoviridae_n__uc | 57 | 14.1 | ||
Staphylococcus phage St 134 | 34 | 7.35 | Siphoviridae_n_n__uc | 41 | 10.1 | ||
Human betaherpesvirus 5 | 26 | 5.6 | Picovirinae__uc | 19 | 4.7 | ||
Siphoviridae_n__uc | 24 | 5.2 | Lactobacillus phage iLp1308 17 | 17 | 4.2 | ||
Podoviridae__uc | 13 | 2.8 | Staphylococcus virus Sextaec | 15 | 3.7 | ||
Siphoviridae_n_n__uc | 13 | 2.8 | Listeria phage B054 | 12 | 2.9 | ||
Pseudomonas phage phiAH14b | 10 | 2.1 | Herpesviridae__uc | 12 | 2.9 | ||
SGA (n = 176) | Roseolovirus__uc | 64 | 36.3 | SGA (n = 481) | Human betaherpesvirus 5 | 133 | 27.6 |
Acinetobacter virus 133 | 35 | 19.8 | Siphoviridae_n_n__uc | 98 | 20.3 | ||
Siphoviridae_n__uc | 18 | 10.2 | Roseolovirus__uc | 84 | 17.4 | ||
Siphoviridae_n_n__uc | 10 | 5.7 | Siphoviridae_n__uc | 76 | 15.8 | ||
Human betaherpesvirus 6A | 8 | 4.5 | Streptococcus phage YMC-2011 | 15 | 3.1 | ||
Human betaherpesvirus 5 | 5 | 2.8 | Streptococcus phage 7201 | 10 | 2.0 | ||
Serratia phage BF | 4 | 2.3 | Human betaherpesvirus 6A | 10 | 2.0 | ||
LGA (n = 60) | Siphoviridae_n_n__uc | 16 | 26.6 | LGA (n = 158) | Siphoviridae_n_n__uc | 71 | 44.9 |
Lactobacillus phage phi jlb1 | 7 | 11.6 | Siphoviridae_n__uc | 18 | 11.3 | ||
Human betaherpesvirus 5 | 7 | 11.6 | Sep1virus__uc | 10 | 6.3 | ||
Lactobacillus phage phiPYB5 | 5 | 8.3 | Human betaherpesvirus 5 | 8 | 5.0 | ||
Lactobacillus phage KC5a | 4 | 6.6 | Streptococcus phage YMC-2011 | 5 | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinleyici, M.; Pérez-Brocal, V.; Arslanoglu, S.; Aydemir, O.; Sevuk Ozumut, S.; Tekin, N.; Vandenplas, Y.; Moya, A.; Dinleyici, E.C. Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage. Nutrients 2021, 13, 1779. https://doi.org/10.3390/nu13061779
Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Sevuk Ozumut S, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage. Nutrients. 2021; 13(6):1779. https://doi.org/10.3390/nu13061779
Chicago/Turabian StyleDinleyici, Meltem, Vicente Pérez-Brocal, Sertac Arslanoglu, Ozge Aydemir, Sibel Sevuk Ozumut, Neslihan Tekin, Yvan Vandenplas, Andrés Moya, and Ener Cagri Dinleyici. 2021. "Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage" Nutrients 13, no. 6: 1779. https://doi.org/10.3390/nu13061779
APA StyleDinleyici, M., Pérez-Brocal, V., Arslanoglu, S., Aydemir, O., Sevuk Ozumut, S., Tekin, N., Vandenplas, Y., Moya, A., & Dinleyici, E. C. (2021). Human Milk Virome Analysis: Changing Pattern Regarding Mode of Delivery, Birth Weight, and Lactational Stage. Nutrients, 13(6), 1779. https://doi.org/10.3390/nu13061779