Mapping Geographical Differences and Examining the Determinants of Childhood Stunting in Ethiopia: A Bayesian Geostatistical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Outcome Variable
2.3. Study Variables
2.4. Analytical Strategy
2.5. Ethics
3. Results
3.1. Geographical Patterns of Stunting and Notable Subnational Variations
3.2. Factors Associated with Stunting among Children 0–23 Months of Age
3.3. Factors Associated with Stunting among Children 24–59 Months of Age
3.4. Model Validation
4. Discussion
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Black, R.E.; Laxminarayan, R.; Temmerman, M.; Walker, N. (Eds.) Infant and young child growth. In Reproductive, Maternal, Newborn, and Child Health: Disease Control Priorities; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Hoffman, D.; Arts, M.; Bégin, F. The “First 1,000 Days+” as Key Contributor to the Double Burden of Malnutrition. Ann. Nutr. Metab. 2019, 75, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Life Course Center. The First 2,000 Days and Child Skills: Evidence from a Randomized Experiment of Home Visiting; Institute for Social Science Research, The University of Queensland, UQ Long Pocket Precinct: Indooroopilly, QLD, Australia, 2017. [Google Scholar]
- Ahmed, K.Y.; Page, A.; Arora, A.; Ogbo, F.A.; Global Maternal Child Health Research collaboration (GLoMACH). Associations between infant and young child feeding practices and acute respiratory infection and diarrhoea in Ethiopia: A propensity score matching approach. PLoS ONE 2020, 15, e0230978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johns, T.; Eyzaguirre, P.B. Nutrition and the Environment; UN ACC/SCN: Geneva, Switzerland, 2002. [Google Scholar]
- UNICEF. Improving Child Nutrition: The Achievable Imperative for Global Progress; UNICEF: New York, NY, USA, 2013. [Google Scholar]
- Victora, C.G.; Bahl, R.; Barros, A.J.; França, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- De Onis, M.; Branca, F. Childhood stunting: A global perspective. Matern. Child Nutr. 2016, 12 (Suppl. 1), 12–26. [Google Scholar] [CrossRef]
- The World Bank. Population, Total—Ethiopia. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=ET (accessed on 26 November 2020).
- The World Bank. The World Bank in Ethiopia. Available online: https://www.worldbank.org/en/country/ethiopia/overview (accessed on 26 November 2020).
- Ethiopian Public Health Institute (EPHI) [Ethiopia]; ICF. Ethiopia Mini Demographic and Health Survey 2019: Key Indicators; EPHI; ICF: Rockville, MD, USA, 2019. [Google Scholar]
- Central Statistics Agency (CSA) [Ethiopia]; ORC Macro. Ethiopian Demographic and Health Survey 2000; CSA: Addis Ababa, Ethiopia; ORC Macro: Calverton, MD, USA, 2001. [Google Scholar]
- Tasic, H.; Akseer, N.; Gebreyesus, S.H.; Ataullahjan, A.; Brar, S.; Confreda, E.; Conway, K.; Endris, B.S.; Islam, M.; Keats, E.; et al. Drivers of stunting reduction in Ethiopia: A country case study. Am. J. Clin. Nutr. 2020, 112, 875S–893S. [Google Scholar] [CrossRef]
- Federal Ministry of Health Family Health Department Ethiopia. The Seqota Declaration Committed to Ending Stunting in Children under Two by 2030; Ethiopia Federal Ministry of Health: Addis Ababa, Ethiopia, 2016.
- Federal Democratic Republic of Ethiopia. National Nutrition Program: 2016–2020; Federal Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2016.
- Central Statistics Agency (CSA) [Ethiopia]; ICF International. Ethiopia Demographic and Health Survey 2016; CSA: Addis Ababa, Ethiopia; ICF International: Rockville, MD, USA, 2016.
- UNICEF-Ethiopia. Nutrition. Available online: https://www.unicef.org/ethiopia/nutrition (accessed on 26 November 2020).
- Araya, A.; Stroosnijder, L. Assessing Drought Risk and Irrigation Need in Northern Ethiopia. Agric. For. Meteorol. 2011, 151, 425–436. [Google Scholar] [CrossRef]
- The World Bank Group. Climate Risk Country Profile: Ethiopia; The World Bank Group: Washington, DC, USA, 2020. [Google Scholar]
- Rajkumar, A.S.; Gaukler, C.; Tilahun, J. Combating Malnutrition in Ethiopia: An Evidence-Based Approach for Sustained Results; The World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Ashraf, S.; Iftikhar, M.; Shahbaz, B.; Khan, G.A.; Luqman, M. Impacts of flood on livelihoods and food security of rural communities: A case study of southern Punjab, Pakistan. Pak. J. Agric. Sci. 2013, 50, 751–758. [Google Scholar]
- Food and Agriculture Organization of the United Nations. The Impact of Disasters and Crises on Agriculture and Food Security; FAO: Rome, Italy, 2017. [Google Scholar]
- Bahwere, P. Severe acute malnutrition during emergencies: Burden management, and gaps. Food Nutr. Bull. 2014, 35, S47–S51. [Google Scholar] [CrossRef]
- Kousky, C. Impacts of Natural Disasters on Children. Future Child. 2016, 26, 73–92. [Google Scholar] [CrossRef]
- Gaire, S.; Delbiso, T.D.; Pandey, S.; Guha-Sapir, D. Impact of disasters on child stunting in Nepal. Risk Manag. Healthc. Policy 2016, 9, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Darsene, H.; Geleto, A.; Gebeyehu, A.; Meseret, S. Magnitude and predictors of undernutrition among children aged six to fifty nine months in Ethiopia: A cross sectional study. Arch. Public Health 2017, 75, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagne, A.H.; Anteneh, K.T.; Badi, M.B.; Adhanu, H.H.; Ahunie, M.A.; Tebeje, H.M.D.; Aynalem, G.L. Appropriate complementary feeding practice and associated factors among mothers having children aged 6–24 months in Debre Tabor Hospital, North West Ethiopia, 2016. BMC Res. Notes 2019, 12, 215. [Google Scholar] [CrossRef] [Green Version]
- Abate, K.H.; Belachew, T. Chronic Malnutrition among Under Five Children of Ethiopia May Not Be Economic. A Systematic Review and Meta-Analysis. Ethiop. J. Health Sci. 2019, 29, 265–277. [Google Scholar] [PubMed]
- Abdulahi, A.; Shab-Bidar, S.; Rezaei, S.; Djafarian, K. Nutritional Status of Under Five Children in Ethiopia: A Systematic Review and Meta-Analysis. Ethiop. J. Health Sci. 2017, 27, 175–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulu, E.; Mengistie, B. Household food insecurity and its association with nutritional status of under five children in Sekela District, Western Ethiopia: A comparative cross-sectional study. BMC Nutr. 2017, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Berra, W.G. Household Food Insecurity Predicts Childhood Undernutrition: A Cross-Sectional Study in West Oromia (Ethiopia). J. Environ. Public Health 2020, 2020, 5871980. [Google Scholar] [CrossRef] [Green Version]
- Hailu, B.A.; Bogale, G.G.; Beyene, J. Spatial heterogeneity and factors influencing stunting and severe stunting among under-5 children in Ethiopia: Spatial and multilevel analysis. Sci. Rep. 2020, 10, 16427. [Google Scholar] [CrossRef]
- Farah, A.M.; Endris, B.S.; Gebreyesus, S.H. Maternal undernutrition as proxy indicators of their offspring’s undernutrition: Evidence from 2011 Ethiopia demographic and health survey. BMC Nutr. 2019, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- USAID. Food Assistance Fact Sheet—Ethiopia. Available online: https://www.usaid.gov/ethiopia/food-assistance (accessed on 25 November 2020).
- Croft, T.N.; Marshall, A.; Allen, C.; Arnold, F.; Assaf, S.; Balian, S.; Bekele, Y.; Dieu, J.d.; Bizimana; Burgert, C.; et al. Guide to DHS Statistics; ICF: Rockville, MD, USA, 2018. [Google Scholar]
- Central Statistics Agency (CSA) [Ethiopia]; ICF International. Ethiopia Demographic and Health Survey 2011; CSA: Addis Ababa, Ethiopia; ICF International: Calverton, MD, USA, 2012.
- Central Statistics Agency (CSA) [Ethiopia]; ORC Macro. Ethiopia Demographic and Health Survey 2005; CSA: Addis Ababa, Ethiopia; ORC Macro: Calverton, MD, USA, 2006.
- Central Statistics Agency (CSA). Summary and Statistical Report of the 2007: Population and Housing Census Results; CSA: Addis Ababa, Ethiopia, 2008.
- Mayala, B.; Fish, T.D.; Eitelberg, D.; Dontamsetti, T. The DHS Program Geospatial Covariate Datasets Manual, 2nd ed.; ICF: Rockville, MD, USA, 2018. [Google Scholar]
- Burgert, C.R.; Colston, J.; Roy, T.; Zachary, B. Geographic Displacement Procedure and Georeferenced Data Release Policy for the Demographic and Health Surveys; ICF International: Calverton, MD, USA, 2013. [Google Scholar]
- Gething, P.W.; Burgert-Brucker, C.R. The DHS Program Modeled Map Surfaces: Understanding the Utility of Spatial Interpolation for Generating Indicators at Subnational Administrative Levels; ICF: Rockville, MD, USA, 2017. [Google Scholar]
- WHO. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Frison, S.; Kerac, M.; Checchi, F.; Prudhon, C. Anthropometric indices and measures to assess change in the nutritional status of a population: A systematic literature review. BMC Nutr. 2016, 2, 76. [Google Scholar] [CrossRef] [Green Version]
- Dhami, M.V.; Ogbo, F.A.; Osuagwu, U.L.; Ugboma, Z.; Agho, K.E. Stunting and severe stunting among infants in India: The role of delayed introduction of complementary foods and community and household factors. Glob. Health Action 2019, 12, 1638020. [Google Scholar] [CrossRef] [Green Version]
- Akombi, B.J.; Agho, K.E.; Hall, J.J.; Merom, D.; Astell-Burt, T.; Renzaho, A.M.N. Stunting and severe stunting among children under-5 years in Nigeria: A multilevel analysis. BMC Pediatr. 2017, 17, 15. [Google Scholar] [CrossRef] [Green Version]
- WHO. Childhood Stunting: Contexts, Causes and Consequences; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Buisman, L.R.; Van de Poel, E.; O’Donnell, O.; van Doorslaer, E.K.A. What explains the fall in child stunting in Sub-Saharan Africa? SSM Popul. Health 2019, 8, 100384. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Santhya, K.G. Proximal and contextual correlates of childhood stunting in India: A geo-spatial analysis. PLoS ONE 2020, 15, e0237661. [Google Scholar] [CrossRef] [PubMed]
- Kinyoki, D.K.; Berkley, J.A.; Moloney, G.M.; Odundo, E.O.; Kandala, N.-B.; Noor, A.M. Environmental predictors of stunting among children under-five in Somalia: Cross-sectional studies from 2007 to 2010. BMC Public Health 2016, 16, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, G.; Tatem, A.; Bird, T.; Burgert-Brucker, C.R. Creating Spatial Interpolation: Surfaces with DHS Data DHS Spatial Analysis Reports No. 11; ICF International: Rockville, MD, USA, 2015. [Google Scholar]
- Tusting, L.S.; Bradley, J.; Bhatt, S.; Gibson, H.S.; Weiss, D.J.; Shenton, F.C.; Lindsay, S.W. Environmental temperature and growth faltering in African children: A cross-sectional study. Lancet Planet. Health 2020, 4, e116–e123. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Mayala, B.K.; Dontamsetti, T.; Fish, T.D.; Croft, T.N. Interpolation of DHS Survey Data at Subnational Administrative Level 2; ICF International: Rockville, MD, USA, 2019. [Google Scholar]
- Uwiringiyimana, V.; Veldkamp, A.; Amer, S. Stunting spatial pattern in Rwanda: An examination of the demographic, socio-economic and environmental determinants. Geospat. Health 2019, 14. [Google Scholar] [CrossRef]
- Vhurumuku, C. Factors Associated with Malnutrition among Children under Five Years of Age in Zimbabwe 2010/2011; University of the Witwatersrand: Johannesburg, South Africa, 2014. [Google Scholar]
- Khan, J.R.; Hossain, M.B.; Awan, N. Community-level environmental characteristics predictive of childhood stunting in Bangladesh—A study based on the repeated cross-sectional surveys. Int. J. Environ. Health Res. 2020. [Google Scholar] [CrossRef]
- Benedict, R.K.; Mayala, B.K.; Bizimana, J.d.; Cisse, I.; Diabaté, I.; Sidibe, K. Geospatial Modelling of Changes and Inequality in Nutrition Status among Children in Mali: Further Analysis of the Mali Demographic and Health Surveys 2006–2018; ICF International: Rockville, MD, USA, 2020. [Google Scholar]
- Burgert-Brucker, C.R.; Dontamsetti, T.; Marshall, A.M.J.; Gething, P.W. Guidance for Use of the DHS Program Modeled Map Surfaces. DHS Spatial Analysis Reports No. 14; ICF International: Rockville, MD, USA, 2016. [Google Scholar]
- Moraga, P. Geostatistical data. In Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny; Chapman & Hall/CRC Biostatistics Series: London, UK, 2019. [Google Scholar]
- Kang, S.Y.; Battle, K.E.; Gibson, H.S.; Ratsimbasoa, A.; Randrianarivelojosia, M.; Ramboarina, S.; Zimmerman, P.A.; Weiss, D.J.; Cameron, E.; Gething, P.W.; et al. Spatio-temporal mapping of Madagascar’s Malaria Indicator Survey results to assess Plasmodium falciparum endemicity trends between 2011 and 2016. BMC Med. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Samadoulougou, S.; Maheu-Giroux, M.; Kirakoya-Samadoulougou, F.; De Keukeleire, M.; Castro, M.C.; Robert, A. Multilevel and geo-statistical modeling of malaria risk in children of Burkina Faso. Parasites Vectors 2014, 7, 350. [Google Scholar] [CrossRef] [Green Version]
- Adigun, A.B.; Gajere, E.N.; Oresanya, O.; Vounatsou, P. Malaria risk in Nigeria: Bayesian geostatistical modelling of 2010 malaria indicator survey data. Malar. J. 2015, 14, 156. [Google Scholar] [CrossRef] [Green Version]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Gómez-Rubio, V.; Bivand, R.S.; Rue, H. Spatial Models Using Laplace Approximation Methods. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–16. [Google Scholar]
- Horton, R. Offline: In defence of precision public health. Lancet 2018, 392, 1504. [Google Scholar] [CrossRef] [Green Version]
- Menon, P.; Headey, D.; Avula, R.; Nguyen, P.H. Understanding the geographical burden of stunting in India: A regression-decomposition analysis of district-level data from 2015–16. Matern. Child Nutr. 2018, 14, e12620. [Google Scholar] [CrossRef]
- Hemalatha, R.; Pandey, A.; Kinyoki, D.; Ramji, S.; Lodha, R.; Kumar, G.A.; Kassebaum, N.J.; Borghi, E.; Agrawal, D.; Gupta, S.S.; et al. Mapping of variations in child stunting, wasting and underweight within the states of India: The Global Burden of Disease Study 2000–2017. EClinicalMedicine 2020, 22, 100317. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, A.J.; Humphrey, J.H. The stunting syndrome in developing countries. Paediatr. Int. Child Health 2014, 34, 250–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walls, H.; Johnston, D.; Vecchione, E.; Adam, A.; Parkhurst, J. The Role of Evidence in Nutrition Policymaking in Ethiopia: Institutional Structures and Issue Framing. In Evidence Use in Health Policy Making: An International Public Policy Perspective; Parkhurst, J., Ettelt, S., Hawkins, B., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 51–73. [Google Scholar]
- Meze-Hausken, E. Contrasting climate variability and meteorological drought with perceived drought and climate change in northern Ethiopia. Climate Res. 2004, 27, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, R.; Ausman, L.M.; Agho, K.E. Determinants of stunting and severe stunting among under-fives: Evidence from the 2011 Nepal Demographic and Health Survey. BMC Pediatr. 2014, 14, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cetthakrikul, N.; Topothai, C.; Suphanchaimat, R.; Tisayaticom, K.; Limwattananon, S.; Tangcharoensathien, V. Childhood stunting in Thailand: When prolonged breastfeeding interacts with household poverty. BMC Pediatr. 2018, 18, 395. [Google Scholar] [CrossRef]
- WHO; UNICEF. Indicators for Assessing Infant and Young Child Feeding Practices Part 1 Definitions; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- WHO. Interventions for Improving Complementary Feeding Practices; WHO: Geneva, Swizerland, 2017. [Google Scholar]
- Dewey, K.G. Reducing stunting by improving maternal, infant and young child nutrition in regions such as South Asia: Evidence, challenges and opportunities. Matern. Child Nutr. 2016, 12 (Suppl. 1), 27–38. [Google Scholar] [CrossRef]
- Ahmed, K.Y.; Page, A.; Arora, A.; Ogbo, F.A. Trends and factors associated with complementary feeding practices in Ethiopia from 2005 to 2016. Matern Child Nutr. 2020, 16, e12926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, K.Y.; Page, A.; Arora, A.; Ogbo, F.A. Trends and determinants of early initiation of breastfeeding and exclusive breastfeeding in Ethiopia from 2000 to 2016. Int. Breastfeed J. 2019, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Ogbo, F.A.; Agho, K.E.; Page, A. Determinants of suboptimal breastfeeding practices in Nigeria: Evidence from the 2008 demographic and health survey. BMC Public Health 2015, 15, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogbo, F.A.; Page, A.; Agho, K.E.; Claudio, F. Determinants of trends in breast-feeding indicators in Nigeria, 1999–2013. Public Health Nutr. 2015, 18, 3287–3299. [Google Scholar] [CrossRef] [Green Version]
- Demmelash, A.A.; Melese, B.D.; Admasu, F.T.; Bayih, E.T.; Yitbarek, G.Y. Hygienic Practice during Complementary Feeding and Associated Factors among Mothers of Children Aged 6–24 Months in Bahir Dar Zuria District, Northwest Ethiopia, 2019. J. Environ. Public Health 2020, 2020, 2075351. [Google Scholar] [CrossRef]
- Yitayih, G.; Belay, K.; Tsegaye, M. Assessment of Hygienic Practice on Complementary Food among Mothers with 6–24 Months Age Living Young Children in Mohoni Town, North Eastern Ethiopia, 2015. Res. Rev. J. Immunol. 2016, 6, 6–11. [Google Scholar]
- Chirande, L.; Charwe, D.; Mbwana, H.; Victor, R.; Kimboka, S.; Issaka, A.I.; Baines, S.K.; Dibley, M.J.; Agho, K.E. Determinants of stunting and severe stunting among under-fives in Tanzania: Evidence from the 2010 cross-sectional household survey. BMC Pediatr. 2015, 15, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkurunziza, S.; Meessen, B.; Van Geertruyden, J.-P.; Korachais, C. Determinants of stunting and severe stunting among Burundian children aged 6-23 months: Evidence from a national cross-sectional household survey, 2014. BMC Pediatr. 2017, 17, 176. [Google Scholar] [CrossRef] [Green Version]
- Nigatu, D.; Haile, D.; Gebremichael, B.; M Tiruneh, Y. Predictive accuracy of perceived baby birth size for birth weight: A cross-sectional study from the 2016 Ethiopian Demographic and Health Survey. BMJ Open 2019, 9, e031986. [Google Scholar] [CrossRef]
- Motta, M.E.; Silva, G.A.; Araújo, O.C.; Lira, P.I.; Lima, M.C. Does birth weight affect nutritional status at the end of first year of life? J. Pediatr. Rio J. 2005, 81, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Hviid, A.; Melbye, M. The impact of birth weight on infectious disease hospitalization in childhood. Am. J. Epidemiol. 2007, 165, 756–761. [Google Scholar] [CrossRef] [Green Version]
- Read, J.S.; Clemens, J.D.; Klebanoff, M.A. Moderate Low Birth Weight and Infectious Disease Mortality during Infancy and Childhood. Am. J. Epidemiol. 1994, 140, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Balci, M.M.; Acikel, S.; Akdemir, R. Low birth weight and increased cardiovascular risk: Fetal programming. Int. J. Cardiol. 2010, 144, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Katona, P.; Katona-Apte, J. The Interaction between Nutrition and Infection. Clin. Infect. Dis. 2008, 46, 1582–1588. [Google Scholar] [CrossRef]
- Rahman, M.S.; Mushfiquee, M.; Masud, M.S.; Howlader, T. Association between malnutrition and anemia in under-five children and women of reproductive age: Evidence from Bangladesh Demographic and Health Survey 2011. PLoS ONE 2019, 14, e0219170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, T.D.; Biggs, B.A.; Holton, S.; Nguyen, H.T.M.; Hanieh, S.; Fisher, J. Co-morbid anaemia and stunting among children of pre-school age in low- and middle-income countries: A syndemic. Public Health Nutr. 2019, 22, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Martorell, R.; Zongrone, A. Intergenerational influences on child growth and undernutrition. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. 1), 302–314. [Google Scholar] [CrossRef]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; de Onis, M.; Ezzati, M.; Mathers, C.; Rivera, J. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Branca, F.; Lartey, A.; Oenema, S.; Aguayo, V.; Stordalen, G.A.; Richardson, R.; Arvelo, M.; Afshin, A. Transforming the food system to fight non-communicable diseases. BMJ 2019, 364, l296. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Zaheer, S.; Safdar, N.F. Determinants of stunting, underweight and wasting among children <5 years of age: Evidence from 2012-2013 Pakistan demographic and health survey. BMC Public Health 2019, 19, 358. [Google Scholar]
- Bhowmik, B.; Siddique, T.; Majumder, A.; Mdala, I.; Hossain, I.A.; Hassan, Z.; Jahan, I.; Moreira, N.C.d.V.; Alim, A.; Basit, A.; et al. Maternal BMI and nutritional status in early pregnancy and its impact on neonatal outcomes at birth in Bangladesh. BMC Pregnancy Childbirth 2019, 19, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, N.T.; Nguyen, L.T.; Berde, Y.; Low, Y.L.; Tey, S.L.; Huynh, D.T.T. Maternal nutritional adequacy and gestational weight gain and their associations with birth outcomes among Vietnamese women. BMC Pregnancy Childbirth 2019, 19, 468. [Google Scholar] [CrossRef] [PubMed]
- Keino, S.; Plasqui, G.; Ettyang, G.; van den Borne, B. Determinants of stunting and overweight among young children and adolescents in sub-Saharan Africa. Food Nutr. Bull. 2014, 35, 167–178. [Google Scholar] [CrossRef]
- Debela, B.L.; Gehrke, E.; Qaim, M. Links between Maternal Employment and Child Nutrition in Rural Tanzania. Amer. J. Agr. Econ. 2020, 103, 812–830. [Google Scholar] [CrossRef]
- Ukwuani, F.A.; Suchindran, C.M. Implications of women’s work for child nutritional status in sub-Saharan Africa: A case study of Nigeria. Soc. Sci. Med. 2003, 56, 2109–2121. [Google Scholar] [CrossRef]
- Abuya, B.A.; Ciera, J.; Kimani-Murage, E. Effect of mother’s education on child’s nutritional status in the slums of Nairobi. BMC Pediatr. 2012, 12, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamabolo, R.L.; Alberts, M.; Mbenyane, G.X.; Steyn, N.P.; Nthangeni, N.G.; Delemarre-Van De Waal, H.A.; Levitt, N.S. Feeding practices and growth of infants from birth to 12 months in the central region of the Limpopo Province of South Africa. Nutrition 2004, 20, 327–333. [Google Scholar] [CrossRef]
- Nankinga, O.; Kwagala, B.; Walakira, E.J. Maternal employment and child nutritional status in Uganda. PLoS ONE 2019, 14, e0226720. [Google Scholar] [CrossRef]
- Amegbor, P.M.; Zhang, Z.; Dalgaard, R.; Sabel, C.E. Multilevel and spatial analyses of childhood malnutrition in Uganda: Examining individual and contextual factors. Sci. Rep. 2020, 10, 20019. [Google Scholar] [CrossRef]
- Cooper, M.W.; Brown, M.E.; Hochrainer-Stigler, S.; Pflug, G.; McCallum, I.; Fritz, S.; Silva, J.; Zvoleff, A. Mapping the effects of drought on child stunting. Proc. Natl. Acad. Sci. USA 2019, 116, 17219–17224. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, S.J.; Kovats, R.S.; Chalabi, Z. Climate Change, Crop Yields, and Undernutrition: Development of a Model to Quantify the Impact of Climate Scenarios on Child Undernutrition. Environ. Health Perspect. 2011, 119, 1817–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | 0–23 Months of Age | 24–59 Months of Age | p Interaction for Age |
---|---|---|---|
OR (95% Crl) | OR (95% Crl) | ||
Child feeding factors | |||
Early initiation of breastfeeding (EIBF) | |||
No | 1.00 | - | - |
Yes | 0.93 (0.77, 1.12) | - | - |
Minimum dietary diversity (MDD) | |||
No | 1.00 | - | - |
Yes | 0.86 (0.57, 1.30) | - | - |
Minimum meal frequency (MMF) | |||
No | 1.00 | - | - |
Yes | 1.02 (0.83, 1.25) | - | - |
Bottle feeding | |||
No | 1.00 | - | - |
Yes | 0.89 (0.70, 1.13) | - | - |
Duration of breastfeeding | |||
≤12 months | 1.00 | - | - |
>12 months | 2.03 (1.36, 3.06) | - | - |
Overall feeding status (in 24 h) | 0.275 | ||
Only breastmilk | 1.00 | 1.00 | |
Breastmilk + supplements | 0.87 (0.63, 1.19) | 0.50 (0.23, 1.10) | |
No breastmilk | 0.60 (0.39, 0.90) | 0.56 (0.47, 0.67) | |
Other child factors | |||
Mother’s perceived baby size at birth | 0.005 | ||
Larger than average | 1.00 | 1.00 | |
Average | 1.15 (0.92, 1.40) | 1.23 (1.07, 1.42) | |
Smaller than average | 1.35 (1.08, 1.70) | 1.68 (1.43, 1.97) | |
Diarrhoeal diseases | 0.735 | ||
No | 1.00 | 1.00 | |
Yes | 1.25 (0.99, 1.57) | 1.14 (0.92, 1.41) | |
Acute respiratory infection | 0.341 | ||
No | 1.00 | 1.00 | |
Yes | 1.02 (0.72, 1.46) | 1.12 (0.83, 1.51) | |
Childhood anaemia | <0.001 | ||
No | 1.00 | 1.00 | |
Yes | 1.18 (0.97, 1.44) | 1.72 (1.52, 1.96) | |
Maternal factors | |||
Maternal nutritional status | 0.298 | ||
Normal | 1.00 | 1.00 | |
Underweight | 1.36 (1.12, 1.65) | 1.19 (1.03, 1.37) | |
Overweight/obesity | 0.45 (0.30, 0.66) | 0.82 (0.64, 1.03) | |
Maternal educational status | 0.021 | ||
No schooling | 1.00 | 1.00 | |
Primary education | 1.00 (0.79, 1.24) | 0.99 (0.84, 1.16) | |
Secondary or higher education | 0.66 (0.44, 1.03) | 0.83 (0.60, 1.14) | |
Maternal employment status | 0.763 | ||
No employment | 1.00 | 1.00 | |
Formal employment | 0.70 (0.52, 0.92) | 0.95 (0.79, 1.14) | |
Informal employment | 1.11 (0.90, 1.36) | 1.07 (0.92, 1.25) | |
Health service factors | |||
Antenatal care visits | 0.300 | ||
None | 1.00 | 1.00 | |
1–3 visits | 1.16 (0.93, 1.44) | 0.87 (0.74, 1.02) | |
+4 visits | 0.92 (0.72, 1.17) | 0.95 (0.81, 1.12) | |
Place of birth | 0.652 | ||
Home | 1.00 | 1.00 | |
Health facility | 0.94 (0.75, 1.17) | 1.13 (0.95, 1.34) | |
Household factors | |||
Household wealth status | 0.001 | ||
Poor | 1.00 | 1.00 | |
Middle | 0.68 (0.53, 0.88) | 0.89 (0.74, 1.07) | |
Rich | 0.80 (0.62, 1.03) | 0.70 (0.58, 0.85) | |
Source of drinking water | 0.157 | ||
Not protected | 1.00 | 1.00 | |
Protected | 1.03 (0.85, 1.24) | 1.05 (0.91, 1.21) | |
Toilet system | 0.023 | ||
Not improved | 1.00 | 1.00 | |
Improved | 0.75 (0.55, 1.01) | 0.93 (0.75, 1.15) | |
Climatic factors | |||
Daytime land surface temperature | |||
<30 ° C | 1.00 | 1.00 | 0.784 |
30–34.99 °C | 0.94 (0.71, 1.22) | 1.15 (0.91, 1.46) | |
+35 °C | 0.99 (0.69, 1.43) | 1.13 (0.82, 1.56) | |
Annual average rainfall (in mm) | 0.863 | ||
<141 mm | 1.00 | 1.00 | |
142–1199 mm | 0.53 (0.25, 1.14) | 1.06 (0.50, 2.25) | |
≥1200 mm | 0.46 (0.21, 1.06) | 0.96 (0.43, 2.12) | |
Aridity | 0.138 | ||
Wet | 1.00 | 1.00 | |
Semi-arid | 1.67 (1.11, 2.49) | 1.32 (0.96, 1.81) | |
Arid | 2.21 (1.22, 4.02) | 2.40 (1.47, 3.93) | |
Number of wet days per year | 0.071 | ||
Low | 1.00 | 1.00 | |
Medium | 1.01 (0.68, 1.49) | 0.94 (0.65, 1.36) | |
High | 1.33 (0.82, 2.14) | 1.58 (1.02, 2.46) | |
In-sample model validation | |||
DIC | 3719.0 | 6851.9 | |
WAIC | 3719.7 | 6853.5 | |
Marginal likelihood | −2108.3 | −3687.1 |
Variables | 0–23 Months of Age | 24–59 Months of Age |
---|---|---|
OR (95% Crl) | OR (95% Crl) | |
Child feeding factors | ||
Early initiation of breastfeeding (EIBF) | ||
No | 1.00 | - |
Yes | 0.91 (0.76, 1.10) | - |
Minimum dietary diversity (MDD) | ||
No | 1.00 | - |
Yes | 0.86 (0.57, 1.30) | - |
Minimum meal frequency (MMF) | ||
No | 1.00 | - |
Yes | 1.02 (0.83, 1.25) | - |
Bottle feeding | ||
No | 1.00 | - |
Yes | 0.89 (0.69, 1.13) | - |
Duration of breastfeeding | ||
≤12 months | 1.00 | - |
>12 months | 2.03 (1.36, 3.05) | - |
Overall feeding status (in 24 h) | ||
Only breastmilk | 1.00 | 1.00 |
Breastmilk + supplements | 0.87 (0.63, 1.19) | 0.48 (0.22, 1.05) |
No breastmilk | 0.59 (0.39, 0.90) | 0.57 (0.48, 0.67) |
Other child factors | ||
Mother’s perceived baby size at birth | ||
Larger than average | 1.00 | 1.00 |
Average | 1.12 (0.91, 1.38) | 1.21 (1.05, 1.39) |
Smaller than average | 1.35 (1.08, 1.70) | 1.64 (1.39, 1.92) |
Diarrhoeal diseases | ||
No | 1.00 | 1.00 |
Yes | 1.28 (1.02, 1.60) | 1.17 (0.95, 1.45) |
Acute respiratory infection | ||
No | 1.00 | 1.00 |
Yes | 1.05 (0.74, 1.48) | 1.10 (0.82, 1.48) |
Childhood anaemia | ||
No | 1.00 | 1.00 |
Yes | 1.17 (0.96, 1.43) | 1.73 (1.52, 1.96) |
Maternal factors | ||
Maternal nutritional status | ||
Normal | 1.00 | 1.00 |
Underweight | 1.36 (1.11, 1.65) | 1.21 (1.05, 1.40) |
Overweight/ obesity | 0.47 (0.31, 0.69) | 0.84 (0.66, 1.06) |
Maternal educational status | ||
No schooling | 1.00 | 1.00 |
Primary education | 0.98 (0.78, 1.24) | 0.99 (0.84, 1.17) |
Secondary or higher education | 0.67 (0.44, 1.01) | 0.86 (0.63, 1.18) |
Maternal employment status | ||
No employment | 1.00 | 1.00 |
Formal employment | 0.68 (0.51, 0.91) | 0.95 (0.79, 1.14) |
Informal employment | 1.05 (0.85, 1.30) | 1.00 (0.86, 1.17) |
Health service factors | ||
Antenatal care visits | ||
None | 1.00 | 1.00 |
1–3 visits | 1.16 (0.93, 1.45) | 0.86 (0.73, 1.00) |
+4 visits | 0.91 (0.71, 1.16) | 0.94 (0.80, 1.11) |
Place of birth | ||
Home | 1.00 | 1.00 |
Health facility | 0.93 (0.75, 1.16) | 1.12 (0.94, 1.33) |
Household factors | ||
Household wealth status | ||
Poor | 1.00 | 1.00 |
Middle | 0.68 (0.53, 0.89) | 0.90 (0.74, 1.08) |
Rich | 0.80 (0.62, 1.04) | 0.71 (0.59, 0.85) |
Source of drinking water | ||
Not protected | 1.00 | 1.00 |
Protected | 1.02 (0.84, 1.24) | 1.03 (0.90, 1.19) |
Toilet system | ||
Not improved | 1.00 | 1.00 |
Improved | 0.74 (0.54, 1.01) | 0.96 (0.77, 1.19) |
Climatic factors | ||
Daytime land surface temperature | ||
<30 °C | 1.00 | 1.00 |
30–34.99 °C | 0.91 (0.67, 1.22) | 1.12 (0.87, 1.45) |
+35 °C | 1.01 (0.66, 1.54) | 1.19 (0.82, 1.73) |
Annual average rainfall (in mm) | ||
<141 mm | 1.00 | 1.00 |
142–1199 mm | 0.53 (0.21, 1.41) | 0.91 (0.36, 2.31) |
≥1200 mm | 0.52 (0.19, 1.49) | 0.85 (0.32, 2.26) |
Aridity | ||
Wet | 1.00 | 1.00 |
Semi-arid | 1.67 (1.11, 2.49) | 1.33 (0.93, 1.91) |
Arid | 2.21 (1.22, 4.02) | 2.02 (1.11, 3.65) |
Number of wet days per year | ||
Low | 1.00 | 1.00 |
Medium | 0.96 (0.59, 1.54) | 1.25 (0.79, 1.98) |
High | 1.20 (0.67, 2.12) | 1.77 (1.05, 2.99) |
In-sample model validation | ||
DIC | 3687.5 | 6845.6 |
WAIC | 3691.5 | 6848.0 |
Marginal likelihood | −2115.9 | −3681.5 |
Spatial random effects | ||
Kappa | 7.33 (2.14, 11.86) | 6.43 (2.92, 10.65) |
Variance | 0.24 (0.10, 0.39) | 0.33 (0.21, 0.45) |
Range * (in km) | 52.2 (15.5, 98.8) | 54.4 (24.4, 87.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, K.Y.; Agho, K.E.; Page, A.; Arora, A.; Ogbo, F.A.; on behalf of the Global Maternal and Child Health Research Collaboration (GloMACH). Mapping Geographical Differences and Examining the Determinants of Childhood Stunting in Ethiopia: A Bayesian Geostatistical Analysis. Nutrients 2021, 13, 2104. https://doi.org/10.3390/nu13062104
Ahmed KY, Agho KE, Page A, Arora A, Ogbo FA, on behalf of the Global Maternal and Child Health Research Collaboration (GloMACH). Mapping Geographical Differences and Examining the Determinants of Childhood Stunting in Ethiopia: A Bayesian Geostatistical Analysis. Nutrients. 2021; 13(6):2104. https://doi.org/10.3390/nu13062104
Chicago/Turabian StyleAhmed, Kedir Y., Kingsley E. Agho, Andrew Page, Amit Arora, Felix Akpojene Ogbo, and on behalf of the Global Maternal and Child Health Research Collaboration (GloMACH). 2021. "Mapping Geographical Differences and Examining the Determinants of Childhood Stunting in Ethiopia: A Bayesian Geostatistical Analysis" Nutrients 13, no. 6: 2104. https://doi.org/10.3390/nu13062104
APA StyleAhmed, K. Y., Agho, K. E., Page, A., Arora, A., Ogbo, F. A., & on behalf of the Global Maternal and Child Health Research Collaboration (GloMACH). (2021). Mapping Geographical Differences and Examining the Determinants of Childhood Stunting in Ethiopia: A Bayesian Geostatistical Analysis. Nutrients, 13(6), 2104. https://doi.org/10.3390/nu13062104