Untargeted Plasma Metabolomics Unravels a Metabolic Signature for Tissue Sensitivity to Glucocorticoids in Healthy Subjects: Its Implications in Dietary Planning for a Healthy Lifestyle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Healthy Subject Cohort Description—Selection of the Most Glucocorticoid-Sensitive and Most Glucocorticoid-Resistant Subgroups
2.2. Ethical Considerations
2.3. Sample Collection
2.4. Assays
2.5. Sequencing of the NR3C1 Gene
2.6. Metabolic Profile Acquisition, Normalization & Filtering
2.7. Multivariate Analysis of the Metabolomic Dataset
2.8. Statistical Analyses
3. Results
3.1. Clinical Characteristics, Biochemical and Endocrinologic Parameters of the Participants
3.2. NR3C1 Gene Sequencing Revealed No Polymorphisms or Mutations in the 22 Subjects
3.3. Metabolic Profiling Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicolaides, N.C.; Charmandari, E.; Chrousos, G.P.; Kino, T. Circadian endocrine rhythms: The hypothalamic-pituitary-adrenal axis and its actions. Ann. N. Y. Acad. Sci. 2014, 1318, 71–80. [Google Scholar] [CrossRef]
- Nicolaides, N.C.; Charmandari, E.; Kino, T.; Chrousos, G.P. Stress-related and circadian secretion and target tissue actions of glucocorticoids: Impact on health. Front. Endocrinol. 2017, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Galata, Z.; Kino, T.; Chrousos, G.P.; Charmandari, E. The human glucocorticoid receptor: Molecular basis of biologic function. Steroids 2010, 75, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolaides, N.C.; Charmandari, E. Novel insights into the molecular mechanisms underlying generalized glucocorticoid resistance and hypersensitivity syndromes. Hormones 2017, 16, 124–138. [Google Scholar] [PubMed] [Green Version]
- Chrousos, G.P.; Kino, T. Intracellular Glucocorticoid Signaling: A Formerly Simple System Turns Stochastic. Sci. Signal. 2005, 2005, pe48. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Kino, T.; Roberts, M.L.; Katsantoni, E.; Sertedaki, A.; Moutsatsou, P.; Psarra, A.-M.G.; Chrousos, G.P.; Charmandari, E. The Role of S-Palmitoylation of the Human Glucocorticoid Receptor (hGR) in Mediating the Nongenomic Glucocorticoid Actions. J. Mol. Biochem. 2017, 6, 3–12. [Google Scholar]
- Rhen, T.; Cidlowski, J.A. Anti-inflammatory Action of Glucocorticoids—New Mechanisms for Old Drugs. N. Engl. J. Med. 2005, 353, 1711–1723. [Google Scholar] [CrossRef] [Green Version]
- Quax, R.A.; Maneschijn, L.; Koper, J.W.; Hazes, J.M.; Lamberts, S.W.J.; Van Rossum, E.F.C.; Feelders, R.A. Glucocorticoid sensitivity in health and disease. Nat. Rev. Endocrinol. 2013, 9, 670–686. [Google Scholar] [CrossRef]
- Cain, D.W.; Cidlowski, J.A. Specificity and sensitivity of glucocorticoid signaling in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.Z.; Cidlowski, J.A. Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol. Cell 2005, 18, 331–342. [Google Scholar] [CrossRef]
- Wang, H.; Gou, X.; Jiang, T.; Ouyang, J. The effects of microRNAs on glucocorticoid responsiveness. J. Cancer Res. Clin. Oncol. 2017, 143, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, A.; Candussio, L.; Iudicibus, S.; Decorti, G.; Martelossi, S.; Pelin, M.; Tommasini, A.; Ventura, A.; Lucafo, M.; Piscianz, E. Long Noncoding RNA GAS5: A Novel Marker Involved in Glucocorticoid Response. Curr. Mol. Med. 2015, 15, 94–99. [Google Scholar]
- Dunford, E.C.; Riddell, M.C. The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise. Metabolites 2016, 6, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Lugt, T.; Weseler, A.R.; Vrolijk, M.F.; Opperhuizen, A.; Bast, A. Dietary advanced glycation endproducts decrease glucocorticoid sensitivity in vitro. Nutrients 2020, 12, 441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.; Davey, H.M.; Broadhurst, D.; Heald, J.K.; Rowland, J.J.; Oliver, S.G.; Kell, D.B. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat. Biotechnol. 2003, 21, 692–696. [Google Scholar] [CrossRef]
- Giera, M.; Spilker, M.E.; Siuzdak, G. Metabolomics: The Superglue of Omics. Fields and Applications: Metabolomics & Lipidomics. 2 December 2018. Available online: https://theanalyticalscientist.com/fields-applications/metabolomics-the-superglue-of-omics.
- Gkourogianni, A.; Kosteria, I.; Telonis, A.G.; Margeli, A.; Mantzou, E.; Konsta, M.; Loutradis, D.; Mastorakos, G.; Papassotiriou, I.; Klapa, M.I.; et al. Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI. PLoS ONE 2014, 9, e94001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.P.; Park, Y.; Ziegler, T.R. Nutritional metabolomics: Progress in addressing complexity in diet and health. Annu. Rev. Nutr. 2012, 32, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Kanani, H.; Chrysanthopoulos, P.K.; Klapa, M.I. Standardizing GC-MS metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 871, 191–201. [Google Scholar] [CrossRef]
- Donn, R.; Berry, A.; Stevens, A.; Farrow, S.; Betts, J.; Stevens, R.; Clayton, C.; Wang, J.; Warnock, L.; Worthington, J.; et al. Use of gene expression profiling to identify a novel glucocorticoid sensitivity determining gene, BMPRII. FASEB J. 2007, 21, 402–414. [Google Scholar] [CrossRef] [Green Version]
- Nicolaides, N.C.; Polyzos, A.; Koniari, E.; Lamprokostopoulou, A.; Papageorgiou, I.; Golfinopoulou, E.; Papathanasiou, C.; Sertedaki, A.; Thanos, D.; Chrousos, G.P.; et al. Transcriptomics in tissue glucocorticoid sensitivity. Eur. J. Clin. Investig. 2019, 49, e13129. [Google Scholar] [CrossRef] [PubMed]
- Kanani, H.H.; Klapa, M.I. Data correction strategy for metabolomics analysis using gas chromatography-mass spectrometry. Metab. Eng. 2007, 9, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Papadimitropoulos, M.-E.P.; Vasilopoulou, C.G.; Maga-Nteve, C.; Klapa, M.I. Untargeted GC-MS metabolomics. Methods Mol. Biol. 2018, 1738, 133–147. [Google Scholar]
- Maga-Nteve, C.; Klapa, M.I. Streamlining GC-MS metabolomic analysis using the M-IOLITE software suite. IFAC-Pap. Line 2016, 49, 286–288. [Google Scholar] [CrossRef]
- Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.; Thiagarajan, M.; et al. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 2003, 34, 374–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, A.I.; Bhagabati, N.K.; Braisted, J.C.; Liang, W.; Sharov, V.; Howe, E.; Li, J.; Thiagarajan, M.; White, J.; Quackenbush, J. TM4 microarray software suite. Methods Enzymol. 2006, 411, 134–193. [Google Scholar] [PubMed]
- Chang, K.-C.; Snow, A.; LaBarbera, D.V.; Petrash, J.M. Aldose reductase inhibition alleviates hyperglycemic effects on human retinal pigment epithelial cells. Chem. Biol. Interact. 2015, 234, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Zawadzki, J.K.; Wolfe, R.R.; Mott, D.M.; Lillioja, S.; Howard, B.V.; Bogardus, C. Increased rate of Cori cycle in obese subjects with NIDDM and effect of weight reduction. Diabetes 1988, 37, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Lankinen, M.A.; Fauland, A.; Shimizu, B.; Ågren, J.; Wheelock, C.E.; Laakso, M.; Schwab, U.; Pihlajamäki, J. Inflammatory response to dietary linoleic acid depends on FADS1 genotype. Am. J. Clin. Nutr. 2019, 109, 165–175. [Google Scholar] [CrossRef]
- Lafontan, M.; Langin, D. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 2009, 48, 275–297. [Google Scholar] [CrossRef]
- Alwashih, M.A.; Watson, D.G.; Andrew, R.; Stimson, R.H.; Alossaimi, M.; Blackburn, G.; Walker, B.R. Plasma metabolomic profile varies with glucocorticoid dose in patients with congenital adrenal hyperplasia. Sci. Rep. 2017, 7, 17092. [Google Scholar] [CrossRef] [Green Version]
- Chantzichristos, D.; Svensson, P.A.; Garner, T.; Glad, C.A.; Walker, B.R.; Bergthorsdottir, R.; Ragnarsson, O.; Trimpou, P.; Stimson, R.H.; Borresen, S.W.; et al. Identification of human glucocorticoid response markers using integrated multi-omic analysis from a randomized crossover trial. Elife 2021, 10, e62236. [Google Scholar] [CrossRef]
- Rosenzweig, A.; Blenis, J.; Gomes, A.P. Beyond the Warburg Effect: How Do Cancer Cells Regulate One-Carbon Metabolism? Front. Cell Dev. Biol. 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppedè, F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic. Biol. Med. 2020. [Google Scholar] [CrossRef]
- Burgess, K.; Bennett, C.; Mosnier, H.; Kwatra, N.; Bethel, F.; Jadavji, N.M. The Antioxidant Role of One-Carbon Metabolism on Stroke. Antioxidants 2020, 9, 1141. [Google Scholar] [CrossRef]
- Pan, S.; Fan, M.; Liu, Z.; Li, X.; Wang, H. Serine, glycine and one-carbon metabolism in cancer (Review). Int. J. Oncol. 2021, 58, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Charmandari, E. Primary generalized glucocorticoid resistance and hypersensitivity: The end-organ involvement in the stress response. Sci. Signal. 2012, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Charmandari, E. Primary generalized glucocorticoid resistance and hypersensitivity. Horm. Res. Paediatr. 2011, 76, 145–155. [Google Scholar] [CrossRef]
- Dobson, M.G.; Redfern, C.P.; Unwin, N.; Weaver, J.U. The N363S polymorphism of the glucocorticoid receptor: Potential contribution to central obesity in men and lack of association with other risk factors for coronary heart disease and diabetes mellitus. J. Clin. Endocrinol. Metab. 2001, 86, 2270–2274. [Google Scholar]
- Lin, R.C.; Wang, X.L.; Morris, B.J. Association of coronary artery disease with glucocorticoid receptor N363S variant. Hypertension 2003, 41, 404–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rossum, E.F.; Lamberts, S.W. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Recent Prog. Horm. Res. 2004, 59, 333–357. [Google Scholar] [CrossRef] [PubMed]
- Kino, T. Single Nucleotide Variations of the Human GR Gene Manifested as Pathologic Mutations or Polymorphisms. Endocrinology 2018, 159, 2506–2519. [Google Scholar] [CrossRef] [PubMed]
- Manenschijn, L.; van den Akker, E.L.; Lamberts, S.W.; van Rossum, E.F. Clinical features associated with glucocorticoid receptor polymorphisms. An overview. Ann. N. Y. Acad. Sci. 2009, 1179, 179–198. [Google Scholar] [CrossRef]
- van Moorsel, D.; van Greevenbroek, M.M.J.; Schaper, N.C.; Henry, R.M.A.; Geelen, C.C.; van Rossum, E.F.C.; Nijpels, G.; Hart, L.M.; Schalkwijk, C.G.; van der Kallen, C.J.H.; et al. BclI glucocorticoid receptor polymorphism in relation to cardiovascular variables: The Hoorn and CODAM studies. Eur. J. Endocrinol. 2015, 173, 455–464. [Google Scholar] [CrossRef] [Green Version]
- Charmandari, E.; Ichijo, T.; Jubiz, W.; Baid, S.; Zachman, K.; Chrousos, G.P.; Kino, T. A novel point mutation in the amino terminal domain of the human glucocorticoid receptor (hGR) gene enhancing hGR-mediated gene expression. J. Clin. Endocrinol. Metab. 2008, 93, 4963–4968. [Google Scholar] [CrossRef] [Green Version]
- Iida, S.; Nakamura, Y.; Fujii, H.; Nishimura, J.; Tsugawa, M.; Gomi, M.; Fukata, J.; Tarui, S.; Moriwaki, K.; Kitani, T. A patient with hypocortisolism and Cushing’s syndrome-like manifestations: Cortisol hyperreactive syndrome. J. Clin. Endocrinol. Metab. 1990, 70, 729–737. [Google Scholar] [CrossRef]
- Krysiak, R.; Okopien, B. Glucocorticoid hypersensitivity syndrome—A case report. West Indian Med. J. 2012, 61, 844–846. [Google Scholar]
- Nicolaides, N.C.; Lamprokostopoulou, A.; Polyzos, A.; Kino, T.; Katsantoni, E.; Triantafyllou, P.; Christophoridis, A.; Katzos, G.; Dracopoulou, M.; Sertedaki, A.; et al. Transient generalized glucocorticoid hypersensitivity. Eur. J. Clin. Investig. 2015, 45, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Ferraù, F.; Korbonits, M. Metabolic Syndrome in Cushing’s Syndrome Patients. Front. Horm. Res. 2018, 49, 85–103. [Google Scholar] [PubMed]
- Nieman, L.K. Recent Updates on the Diagnosis and Management of Cushing’s Syndrome. Endocrinol. Metab. 2018, 33, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, E.F.; Russcher, H.; Lamberts, S.W. Genetic polymorphisms and multifactorial diseases: Facts and fallacies revealed by the glucocorticoid receptor gene. Trends Endocrinol. Metab. 2005, 16, 445–450. [Google Scholar] [CrossRef]
- Stevens, A.; Ray, D.W.; Zeggini, E.; John, S.; Richards, H.L.; Griffiths, C.E.; Donn, R. Glucocorticoid sensitivity is determined by a specific glucocorticoid receptor haplotype. J. Clin. Endocrinol. Metab. 2004, 89, 892–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rossum, E.F.; Koper, J.W.; Huizenga, N.A.; Uitterlinden, A.G.; Janssen, J.A.; Brinkmann, A.O.; Grobbee, D.E.; de Jong, F.H.; van Duyn, C.M.; Pols, H.A.; et al. A polymorphism in the glucocorticoid receptor gene, which decreases sensitivity to glucocorticoids in vivo, is associated with low insulin and cholesterol levels. Diabetes 2002, 51, 3128–3134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huizenga, N.A.; de Lange, P.; Koper, J.W.; de Herder, W.W.; Abs, R.; Kasteren, J.H.; de Jong, F.H.; Lamberts, S.W. Five patients with biochemical and/or clinical generalized glucocorticoid resistance without alterations in the glucocorticoid receptor gene. J. Clin. Endocrinol. Metab. 2000, 85, 2076–2081. [Google Scholar] [CrossRef] [Green Version]
- Castonguay, T.W. Glucocorticoids as modulators in the control of feeding. Brain Res. Bull. 1991, 27, 423–428. [Google Scholar] [CrossRef]
- Pecoraro, N.; Reyes, F.; Gomez, F.; Bhargava, A.; Dallman, M.F. Chronic stress promotes palatable feeding, which reduces signs of stress: Feedforward and feedback effects of chronic stress. Endocrinology 2004, 145, 3754–3762. [Google Scholar] [CrossRef] [PubMed]
- Strack, A.M.; Schwartz, M.W.; Dallman, M.F. Glucocorticoids and insulin: Reciprocal signals for energy balance. Am. J. Physiol. 1995, 268, R141–R149. [Google Scholar] [CrossRef]
- Coutinho, A.E.; Campbell, J.E.; Fediuc, S.; Riddell, M.C. Effect of voluntary exercise on peripheral tissue glucocorticoid receptor content and the expression and activity of 11beta-hsd1 in the syrian hamster. J. Appl. Physiol. 2006, 100, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Sex | Weight (kg) | Height (m) | BMI (kg/m2) | Cortisol (nmol/L) | ACTH (pg/mL) | |
---|---|---|---|---|---|---|---|
Glucocorticoid-Sensitive (S) | 1 | F | 58 | 1.64 | 21.6 | 18.6 | <1.0 |
2 | F | 62 | 1.75 | 20.2 | 22.2 | 1.4 | |
3 | M | 70 | 1.77 | 22.3 | 23.1 | 6.2 | |
4 | F | 45 | 1.50 | 20,0 | 24.5 | <1.0 | |
5 | M | 70 | 1.85 | 20.5 | 26.2 | 2.9 | |
6 | F | 55 | 1.64 | 20.4 | 32.3 | <1.0 | |
7 | F | 48 | 1.57 | 19.5 | 34.2 | 5.1 | |
8 | M | 80 | 1.78 | 25.2 | 36.1 | <1.0 | |
9 | M | 70 | 1.82 | 21.1 | 39.7 | 2.0 | |
10 | M | 52 | 1.71 | 17.8 | 51.3 | <1.0 | |
11 | M | 81 | 1.87 | 23.2 | 69.5 | 7.6 | |
Mean Value ± SD | 21.1 ± 2.0 | 34.4 ± 15 | 2.8 ± 2.4 | ||||
Glucocorticoid-Resistant (R) | 1 | F | 52 | 1.59 | 20.6 | 834.0 | 35.3 |
2 | F | 56 | 1.68 | 19.8 | 720.9 | 38.1 | |
3 | F | 59 | 1.55 | 24.6 | 690.8 | 46.0 | |
4 | M | 93 | 1.86 | 26.9 | 644.2 | 42.2 | |
5 | M | 53 | 1.68 | 18.8 | 599.0 | 32.8 | |
6 | F | 47 | 1.54 | 19.8 | 597.9 | 23.7 | |
7 | F | 59 | 1.70 | 20.4 | 579.4 | 39.9 | |
8 | F | 58 | 1.65 | 21.3 | 565.3 | 16.1 | |
9 | F | 58 | 1.7 | 20.1 | 556.2 | 29.9 | |
10 | M | 70 | 1.72 | 23.7 | 537.4 | 30.9 | |
11 | M | 77 | 1.88 | 21.8 | 520.6 | 12.4 | |
Mean Value ± SD (1) | 21.6 ± 2.5 | 622.4 ± 93.7 | 31.6 ± 10.6 |
Glucocorticoid-Sensitive (S) | Glucocorticoid-Resistant (R) | p Value | |
---|---|---|---|
Age (years) | 25.3 ± 3.9 | 27.5 ± 6.7 | 0.478 |
Weight (kg) | 62.8 ± 12.3 | 62 ± 13.2 | 0.847 |
Height (cm) | 1.7 ± 0.1 | 1.7 ± 0.1 | 0.519 |
BMI (kg/m2) | 21.1 ± 2.0 | 21.6 ± 2.5 | 0.797 |
25-Hydroxy-Vitamin D (ng/mL) | 16.0 ± 7.9 | 14.0 ± 8.5 | 0.652 |
ACTH (pg/mL) | 33.2 ± 18.8 | 27.6 ± 15.4 | 0.519 |
Androstenedione (ng/mL) | 2.9 ± 0.9 | 3.2 ± 1.2 | 0.502 |
Anti-TG (IU/mL) | 20 ± 0.0 | 20 ± 0.0 | 0.999 |
Anti-TPO (IU/mL) | 10.4 ± 0.7 | 11.1 ± 2.6 | 0.652 |
ApoA1 (mg/dL) | 158.4 ± 8.0 | 167.6 ± 15.0 | 0.237 |
ApoB (mg/dL) | 75.5 ± 14.4 | 71.4 ± 7.7 | 0.515 |
Total Cholesterol (mg/dL) | 157.4 ± 16.9 | 156. ± 15.0 | 0.965 |
Cortisol (nmol/L) | 638.2 ± 155.3 | 523.7 ± 280.0 | 0.270 |
DHEAS (μg/dL) | 238.6 ± 146.0 | 248.6 ± 115.0 | 0.562 |
FSH (mUI/mL) | 5.2 ± 2.7 | 4.0 ± 2.3 | 0.300 |
FT4 (ng/dL) | 1.1 ± 0.1 | 1.1 ± 0.1 | 0.261 |
Glucose (mg/dL) | 73.2 ± 6.3 | 74.7 ± 13.6 | 0.965 |
HDL (mg/dL) | 49.5 ± 7.0 | 52.9 ± 8.1 | 0.315 |
IGFBP-3 (μg/mL) | 5.3 ± 1.0 | 5.2 ± 1.2 | 0.562 |
IGF-I (ng/mL) | 259.2 ± 79.5 | 251.4 ± 66.8 | 0.699 |
Insulin (μUI/mL) | 6.7 ± 2.7 | 13.7 ± 1 | 0.116 |
LDL (mg/dL) | 90.7 ± 17.8 | 87.6 ± 13.5 | 0.762 |
LH (mUI/mL) | 10.1 ± 14.9 | 6.4 ± 2.3 | 0.699 |
Lp(a) (mg/dL) | 21.8 ± 37.4 | 25.8 ± 27.3 | 0.460 |
Prolactin (ng/mL) | 24.9 ± 8.8 | 21.5 ± 9.1 | 0.193 |
PTH (pg/mL) | 34.1 ± 15.2 | 38.5 ± 17.9 | 0.562 |
SHBG (nmol/L) | 65.1 ± 27.9 | 46.2 ± 15.3 | 0.175 |
T3 (ng/dL) | 102.3 ± 27.6 | 102.0 ± 23.8 | 0.982 |
Triglycerides (mg/dL) | 69.4 ± 30.0 | 74.2 ± 16 | 0.315 |
TSH (μUI/mL) | 2.8 ± 0.9 | 2.0 ± 1.1 | 0.101 |
Negatively Significant Metabolites in the S vs. the R Group in Decreasing Significance for FDR-Median = 23.5% (or 4.5 Metabolites)(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolaides, N.C.; Ioannidi, M.-K.; Koniari, E.; Papageorgiou, I.; Bartzeliotou, A.; Sertedaki, A.; Klapa, M.I.; Charmandari, E. Untargeted Plasma Metabolomics Unravels a Metabolic Signature for Tissue Sensitivity to Glucocorticoids in Healthy Subjects: Its Implications in Dietary Planning for a Healthy Lifestyle. Nutrients 2021, 13, 2120. https://doi.org/10.3390/nu13062120
Nicolaides NC, Ioannidi M-K, Koniari E, Papageorgiou I, Bartzeliotou A, Sertedaki A, Klapa MI, Charmandari E. Untargeted Plasma Metabolomics Unravels a Metabolic Signature for Tissue Sensitivity to Glucocorticoids in Healthy Subjects: Its Implications in Dietary Planning for a Healthy Lifestyle. Nutrients. 2021; 13(6):2120. https://doi.org/10.3390/nu13062120
Chicago/Turabian StyleNicolaides, Nicolas C., Maria-Konstantina Ioannidi, Eleni Koniari, Ifigeneia Papageorgiou, Anastasia Bartzeliotou, Amalia Sertedaki, Maria I. Klapa, and Evangelia Charmandari. 2021. "Untargeted Plasma Metabolomics Unravels a Metabolic Signature for Tissue Sensitivity to Glucocorticoids in Healthy Subjects: Its Implications in Dietary Planning for a Healthy Lifestyle" Nutrients 13, no. 6: 2120. https://doi.org/10.3390/nu13062120
APA StyleNicolaides, N. C., Ioannidi, M. -K., Koniari, E., Papageorgiou, I., Bartzeliotou, A., Sertedaki, A., Klapa, M. I., & Charmandari, E. (2021). Untargeted Plasma Metabolomics Unravels a Metabolic Signature for Tissue Sensitivity to Glucocorticoids in Healthy Subjects: Its Implications in Dietary Planning for a Healthy Lifestyle. Nutrients, 13(6), 2120. https://doi.org/10.3390/nu13062120