Could Vitamin D3 Deficiency Influence Malocclusion Development?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Group
2.2. Research Components
2.3. Statistical Analysis
3. Results
3.1. General Information and Habits
3.2. Skeletal and Dentoalveolar Status
3.3. Vitamin D Serum Level
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rapeepattana, S.; Thearmontree, A.; Suntornlohanakul, S. Etiology of Malocclusion and Dominant Orthodontic Problems in Mixed Dentition: A Cross-sectional Study in a Group of Thai Children Aged 8–9 Years. J. Int. Soc. Prev. Community Dent. 2019, 9, 383–389. [Google Scholar] [PubMed]
- Karłowska, I. Zarys Ortodoncji Współczesnej; PZWL: Warszawa, Poland, 2006; pp. 60–63. [Google Scholar]
- Proffit, W.R.; Fields, H.W., Jr.; Larson, B.E.; Sarver, D.M. Contemporary Orthodontics, 6th ed.; Elsevier: Philadelphia, PA, USA, 2019; pp. 107–136. [Google Scholar]
- Charzewska, J.; Chlebna-Sokół, D.; Chybicka, A.; Dobrzańska, A.; Helwich, E.; Książyk, J.B.; Lewiński, A.; Lorenc, R.S.; Lukas, W.; Łukaszkiewicz, J.; et al. Polskie zalecenia dotyczące profilaktyki niedoborȑw witaminy D. Klin. Perinatol. Ginekol. 2009, 2, 245–249. [Google Scholar]
- Hall, E.J. Guyton and Hall Textbook of Medical Physiology; Saunders Elsevier: Philadelphia, PA, USA, 2011. [Google Scholar]
- Napiórkowska, L.; Franek, E. Rola oznaczania witaminy D w praktyce klinicznej. Chor Serca Naczyn 2009, 6, 203–210. [Google Scholar]
- Holick, M.F. Sunlight and Vitamin D for Bone Health and Prevention of Autoimmune Diseases, Cancers, and Cardiovascular Disease. Am. J. Clin. Nutr. 2004, 80, 1678–1688. [Google Scholar] [CrossRef] [Green Version]
- Razzaque, M.S. Sunlight Exposure: Do Health Benefits Outweigh Harm? J. Steroid Biochem. Mol. Biol. 2018, 175, 44–48. [Google Scholar] [CrossRef]
- Akinkugbe, A.A.; Moreno, O.; Brickhouse, T.H. Serum Cotinine, Vitamin D Exposure Levels and Dental Caries Experience in U.S. Adolescents. Community Dent. Oral Epidemiol. 2018, 47, 185–192. [Google Scholar] [CrossRef]
- Chonkar, A.; Gupta, A.; Arya, V. Comparison of Vitamin D Level of Children with Severe Early Childhood Caries and Children with No Caries. Int. J. Clin. Pediatr. Dent. 2018, 11, 199–204. [Google Scholar] [CrossRef]
- Perayil, J.; Menon, K.S.; Kurup, S.; Thomas, A.E.; Fenol, A.; Vyloppillil, R.; Bhaskar, A.; Megha, S. Influence of Vitamin D & Calcium Supplementation in the Management of Periodontitis. J. Clin. Diagn. Res. 2015, 9, 35–38. [Google Scholar]
- Fretwurst, T.; Grunert, S.; Woelber, J.P.; Nelson, K.; Semper-Hogg, W. Vitamin D Deficiency in Early Implant Failure: Two Case Reports. Int. J. Implant. Dent. 2016, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, S.; Di Girolamo, M.; Necozione, S.; Continenza, M.A.; Cutilli, T. Antiresorptive drug-related osteonecrosis of the jaws, literature review and 5 years of experience. Musculoskelet Surg. 2019, 103, 47–53. [Google Scholar] [CrossRef]
- Miller, P.D., Jr. A classification of marginal tissue recession. Int. J. Periodontics Restorative Dent. 1985, 5, 8–13. [Google Scholar]
- Cranney, A.; Horsley, T.; O’Donnell, S.; Weiler, H.; Puil, L.; Ooi, D.; Atkinson, S.; Ward, L.; Moher, D.; Hanley, D.; et al. Effectiveness and safety of vitamin D in relation to bone health. Evid. Rep. Technol. Assess. 2007, 1–235. [Google Scholar]
- Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1080–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatun, S.; Ozkan, B.; Orbak, Z.; Doneray, H.; Cizmecioglu, F.; Toprak, D.; Calikoglu, A.S. Vitamin D deficiency in early infancy. J. Nutr. 2005, 135, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Curtis, E.M.; Moon, R.J.; Harvey, N.C.; Cooper, C. Maternal vitamin D supplementation during pregnancy. Br. Med. Bull. 2018, 126, 57–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krall, E.A.; Wehler, C.; Garcia, R.I.; Harris, S.S.; Dawson-Hughes, B. Calcium and vitamin D supplements reduce tooth loss in the elderly. Am. J. Med. 2001, 111, 452–456. [Google Scholar] [CrossRef]
- Zhan, Y.; Samietz, S.; Holtfreter, B.; Hannemann, A.; Meisel, P.; Nauck, M.; Völzke, H.; Wallaschofski, H.; Dietrich, T.; Kocher, T. Prospective Study of Serum 25-hydroxy Vitamin D and Tooth Loss. J. Dent. Res. 2014, 93, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Singleton, R.; Day, G.; Thomas, T.; Schroth, R.; Klejka, J.; Lenaker, D.; Berner, J. Association of Maternal Vitamin D Deficiency with Early Childhood Caries. J. Dent. Res. 2019, 98, 549–555. [Google Scholar] [CrossRef]
- Schroth, R.J.; Levi, J.A.; Sellers, E.A.; Friel, J.; Kliewer, E.; Moffatt, M.E. Vitamin D status of children with severe early childhood caries: A case-control study. BMC Pediatr. 2013, 13, 174. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, L.; Clarke, L.; Khalilidehkordi, E.; Butzkueven, H.; Taylor, B.; Broadley, S.A. Vitamin D for the treatment of multiple sclerosis: A meta-analysis. J. Neurol. 2018, 265, 2893–2905. [Google Scholar] [CrossRef]
- Tehranchi, A.; Sadighnia, A.; Younessian, F.; Abdi, A.H.; Shirvani, A. Correlation of Vitamin D status and orthodontic-induced external apical root resorption. Dent. Res. J. 2017, 14, 403–411. [Google Scholar]
- Bianchi, S.; Bernardi, S.; Belli, M.; Varvara, G.; Macchiarelli, G. Exposure to persistent organic pollutants during tooth formation: Molecular mechanisms and clinical findings. Rev. Environ. Health 2020, 35, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Shaik-Dasthagirisaheb, Y.B.; Varvara, G.; Murmura, G.; Saggini, A.; Caraffa, A.; Antinolfi, P.; Tete’, S.; Tripodi, D.; Conti, F.; Cianchetti, E.; et al. Role of vitamins D, E and C in immunity and inflammation. J. Biol. Regul. Homeost Agents 2013, 27, 291–295. [Google Scholar]
- Di Stadio, A.; Della Volpe, A.; Korsch, F.M.; De Lucia, A.; Ralli, M.; Martines, F.; Ricci, G. Difensil Immuno Reduces Recurrence and Severity of Tonsillitis in Children: A Randomized Controlled Trial. Nutrients 2020, 12, 1637. [Google Scholar] [CrossRef] [PubMed]
- Arman, S. What are the effects of vitamin D supplementation for term breastfed infants to prevent vitamin D deficiency and improve bone health?—A Cochrane Review summary with commentary. J. Musculoskelet Neuronal Interact. 2021, 21, 193–195. [Google Scholar]
Feature | n (%) |
---|---|
Bite assessment—right side | |
● Angle I class | 56 (49.1%) |
● Angle II class | 20 (17.5%) |
● Angle III class | 14 (12.3%) |
● No assessment/not applicable | 24 (21.1%) |
Bite assessment—right side | |
● Canine I class | 76 (66.7%) |
● Canine II class | 23 (20.2%) |
● Canine III class | 8 (7.0%) |
● No assessment/not applicable | 7 (6.1%) |
Bite assessment—left side | |
● Angle I class | 53 (46.5%) |
● Angle II class | 20 (17.5%) |
● Angle III class | 17 (14.9%) |
● No assessment/not applicable | 24 (21.1%) |
Bite assessment—left side | |
● Canine I class | 77 (67.5%) |
● Canine II class | 23 (20.2%) |
● Canine III class | 8 (7.0%) |
● No assessment/not applicable | 6 (5.3%) |
Malocclusions | |
● Distoclussion | 10 (8.8%) |
● Retrogenia | 18 (15.8%) |
● Mesioclussion | 4 (3.5%) |
● Progenia | 6 (5.3%) |
● Anterior open bite | 5 (4.4%) |
● Lateral open bite | 1 (0.9%) |
● Deep bite | 23 (20.2%) |
● Tete-a-tete | 10 (8.8%) |
● Crossbite | 20 (17.5%) |
● Lingual crossbite | 2 (1.8%) |
● Narrow upper arch | 35 (30.7%) |
● Widened upper arch | 3 (2.6%) |
● Shortened upper arch | 4 (3.5%) |
● Spaced upper arch | 14 (12.3%) |
● Narrow lower arch | 14 (12.3%) |
● Widened lower arch | 6 (5.3%) |
● Shortened lower arch | 3 (2.6%) |
● Spaced lower arch | 8 (7.0%) |
Feature | Supp. YES n = 29 | Supp. NO = 85 | Y vs. n (p) |
---|---|---|---|
Vitamin D levels (ng/mL) | n% | n% | |
Deficit (up to 30.0 ng/mL) | 12, 41.4% | 74 87.1% | <0.001 |
Optimal (above 30.0 mg/mL) | 17, 59.6% | 11 12.9% | |
Vitamin D levels (ng/mL): | |||
M ± SD | 33.36 ± 11.89 | 20.25 ± 7.47 | |
Me (Q1; Q3) | 33.0 (23.6; 39.9) | 19.1 (15.2; 25.5) | 0.001 |
Min—Max | 11.5–57.0 | 7.8–41.9 |
Risk Factors | Vitamin D Deficiency | Test of Independence | OR (95% PU) | |
---|---|---|---|---|
YES n = 86 | NO n = 28 | |||
Age—up to 28 years | 31 (36.0%) | 4 (14.3%) | p = 0.035 | 3.38 (1.05; 9.89) |
Sex—male | 57 (66.3%) | 4 (14.3%) | p < 0.001 | 11.8 (3.74; 37.2) |
Lack of vitamin D supplementation | 74 (86.0%) | 10 (35.7%) | p < 0.001 | 11.1 (4.07; 28.6) |
Unfavorable factors | 57 (66.3%) | 17 (60.7%) | p = 0.529 | 1.27 (0.53; 3.06) |
Holidays in the sunlight | 18 (20.9%) | 8 (28.6%) | p = 0.388 | 0.66 (0.25; 1.71) |
Vegetarianism | 3 (3.5%) | 1 (3.6%) | p = 1.000 | 0.98 (0.10; 7.00) |
Cardiovascular diseases | 3 (3.5%) | 2 (7.1%) | p = 0.595 | 0.59 (0.08; 2.64) |
Gastrointestinal diseases | 6 (7.0%) | 4 (14.3%) | p = 0.257 | 0.45 (0.12; 1.65) |
Autoimmune disorders | 8 (9.3%) | 7 (25.0%) | p = 0.031 | 0.31 (0.10; 0.93) |
Metabolic disorders | 0 (0%) | 1 (3.6%) | p = 0.246 | - |
Proper hygienic habits | 30 (34.9%) | 10 (35.7%) | p = 0.936 | 0.96 (0.40; 2.32) |
Teeth overloads | 45 (52.3%) | 13 (50.0%) | p = 0.835 | 1.10 (0.46; 2.62) |
Clinical attachment loss (CAL) | 52 (60.5%) | 9 (32.1%) | p = 0.010 | 3.23 (1.30; 7.77) |
Pathological periodontal pockets | 29 (33.7%) | 3 (10.7%) | p = 0.028 | 4.24 (1.15; 13.7) |
Past orthodontic treatment | 28 (32.6%) | 8 (28.6%) | p = 0.693 | 1.21 (0.52; 2.84) |
Skeletal malocclusions | 40 (46.5%) | 8 (30.8%) | p = 0.142 | 2.00 (0.78; 4.96) |
Crowding | 41 (47.7%) | 12 (42.9%) | p = 0.657 | 1.21 (0.52; 2.84) |
Bruxism | 31 (36.1%) | 9 (32.1%) | p = 0.707 | 1.19 (0.48; 2.89) |
Risk Factors | Vitamin D Deficiency | OR | OR (95% PU) | ||
---|---|---|---|---|---|
YES n = 86 | NO n = 28 | From | Up to | ||
skeletal malocclusions | 28 (32.6%) | 6 (21.4%) | 1.71 | 0.59 | 4.94 |
crowdings | 41 (47.7%) | 12 (42.9%) | 1.00 | 0.36 | 2.75 |
past orthodontic treatment | 28 (32.6%) | 8 (28.6%) | 1.75 | 0.62 | 4.94 |
malocclusion in Angle class. | 28 (32.6%) | 6 (21.4%) | 1.77 | 0.65 | 4.85 |
narrowed upper arch | 31 (36.0%) | 3 (10.7%) | 4.94 | 1.38 | 17.7 |
widened upper arch | 3 (3.5%) | 0 (0%) | - | - | - |
shortened upper arch | 2 (2.3%) | 2 (7.1%) | 0.32 | 0.05 | 2.30 |
spaced upper arch | 13 (15.1%) | 1 (3.6%) | 4.81 | 0.60 | 38.5 |
narrowed lower arch | 11 (12.8%) | 3 (10.7%) | 1.22 | 0.32 | 4.74 |
widened lower arch | 6 (7.0%) | 0 (0%) | - | - | - |
shortened lower arch | 1 (1.2%) | 2 (7.1%) | 0.15 | 0.01 | 1.76 |
spaced lower arch | 5 (5.8%) | 3 (10.7%) | 0.51 | 0.11 | 2.31 |
crowdings- upper arch | 32 (37.2%) | 3 (10.7%) | 4.94 | 1.38 | 17.7 |
crowdings- lower arch | 39 (45.3%) | 11 (39.3%) | 1.28 | 0.54 | 3.06 |
crossbite | 18 (20.9%) | 2 (7.1%) | 6.16 | 1.32 | 28.8 |
lingual crossbite | 2 (2.3%) | 0 (0%) | - | - | - |
anterior open bite | 3 (3.5%) | 2 (7.1%) | 0.47 | 0.07 | 2.97 |
lateral open bite | 1 (1.2%) | 0 (0%) | - | - | - |
deep bite | 19 (22.1%) | 4 (14.3%) | 1.70 | 0.53 | 5.51 |
mesiocclusion | 4 (4.7%) | 0 (0%) | - | - | - |
progenia | 5 (5.8%) | 1 (3.6%) | 1.67 | 0.19 | 14.9 |
tete-a-tete | 9 (10.5%) | 1 (3.6%) | 3.16 | 0.38 | 26.1 |
distoclussion | 7 (8.1%) | 3 (10.7%) | 0.74 | 0.18 | 3.07 |
retrogenia | 15 (17.4%) | 3 (10.7%) | 1.76 | 0.47 | 6.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leszczyszyn, A.; Hnitecka, S.; Dominiak, M. Could Vitamin D3 Deficiency Influence Malocclusion Development? Nutrients 2021, 13, 2122. https://doi.org/10.3390/nu13062122
Leszczyszyn A, Hnitecka S, Dominiak M. Could Vitamin D3 Deficiency Influence Malocclusion Development? Nutrients. 2021; 13(6):2122. https://doi.org/10.3390/nu13062122
Chicago/Turabian StyleLeszczyszyn, Anna, Sylwia Hnitecka, and Marzena Dominiak. 2021. "Could Vitamin D3 Deficiency Influence Malocclusion Development?" Nutrients 13, no. 6: 2122. https://doi.org/10.3390/nu13062122
APA StyleLeszczyszyn, A., Hnitecka, S., & Dominiak, M. (2021). Could Vitamin D3 Deficiency Influence Malocclusion Development? Nutrients, 13(6), 2122. https://doi.org/10.3390/nu13062122