Metabolic Syndrome: Is It Time to Add the Central Nervous System?
Abstract
:1. Introduction
2. Metabolic Syndrome: Historical Aspects
3. Mild Cognitive Impairment and Metabolic Syndrome: Molecular Basis
3.1. From Metabolic Syndrome to Cognitive Impairment
3.1.1. Role of IR in the Formation of Amyloid-Beta Plaques
3.1.2. Metabolic Syndrome, Insulin Resistance, and Tau Proteins
3.1.3. Metabolic Syndrome, Leptin, Adiponectin, and Cognitive Disorders
3.1.4. Metabolic Syndrome, Microvasculature, and Cognitive Impairment
3.2. Exploring the Inverse Relationship—From Cognitive Impairment to Metabolic Syndrome
3.2.1. Tau Proteins and Deficits in Insulin Signaling
3.2.2. Amyloid β and Insulinemic Alterations
3.2.3. Amyloid β, Tau Protein, and Leptin
4. Mild Cognitive Impairment and Metabolic Syndrome: Epidemiological Basis
4.1. From Metabolic Syndrome to Cognitive Impairment
MS Component | Authors (REF) | Methodology | Results |
---|---|---|---|
High blood pressure | McDonald et al. [109] | Longitudinal cohort study of the association between cognitive function and BP variability in adults ≥65 years. | After 5 years of monitoring, diurnal systolic BP variability was independently associated with a greater decrease in total CAMCOG (CV: 3.205; p = 0.043) and MMSE (CV: 3.985; p = 0.020) scores. |
Haring et al. [111] | Prospective study in 6426 cognitively intact older women of the relationship between hypertension and cognitive impairment. | Hypertension was associated with an increased risk for cognitive decline (HR: 1.20; 95% CI: 1.04–1.39; p = 0.02). | |
Obesity | Sabia et al. [121] | Longitudinal cohort study of the association between BMI and mid-age cognition throughout adult life in 5131 individuals. | Late midlife obesity was associated with lower scores on the MMSE and on memory and executive function scores compared with normal-weight individuals (mean difference (95% CI): −0.99 (−1.78–0.21), −0.82 (−1.57–0.08), and −0.80 (−1.49–0.12), respectively (p < 0.05)). |
Beydoun et al. [122] | Meta-analysis of the association between obesity and major neurocognitive disorder in older adults. | A significant U-shaped association was found between BMI and major neurocognitive disorder (p = 0.034), with an increased risk of disorder (OR (95% CI): 1.42 (0.93–2.18)) and increased incidence of AD (OR (95% CI): 1.80 (1.00–3.29)) in obese individuals. | |
Dyslipidemias | de Frias et al. [124] | Longitudinal cohort study of the association between total cholesterol, triglycerides, and cognitive performance in older adults. | Hypertriglyceridemia was associated with a low score on the verbal memory tests (γ = −2.31; p < 0.05), while hypercholesterolemia was associated with a detrimental effect on facial recognition test score (γ = −2.13; p < 0.05). |
Singh-Manoux et al. [126] | Longitudinal cohort study of the relationship between HDL-c and verbal short-term memory in middle-aged adults. | After 5 years of monitoring, decreased HDL-C was associated with decreased verbal memory (OR = 1.61; 95% CI = 1.19–2.16). | |
DM | Elias et al. [117] | Longitudinal study of the effects of T2DM on cognitive performance of adult individuals. | The amount of time suffering from diabetes was associated with poorer cognitive performance (β = −0.02; p < 0.02). |
Kanaya et al. [137] | Longitudinal cohort study of changes in cognitive performance according to glucose tolerance status in older adults. | After 4 years, women with DM had a 4-fold increased risk of cognitive impairment (OR (95% CI): 4.38 (1.71–11.27); p = 0.02). | |
MS | Atti et al. [147] | Meta-analysis of the relationship between MS and progression to major neurocognitive disorder in individuals with MCI. | Having MS increased the risk of progression from MCI to major neurocognitive disorder (HR (95% CI): 2.69 (1.16–6.27); p < 0.05). |
Pal et al. [146] | Meta-analysis that quantified the relative risk of progression from MCI to major neurocognitive disorder in individuals with MS. | An increased risk of progression was found in individuals with MCI and SM (OR (95% CI): 2.95 (1.23–7.05) p < 0.05). |
Therapeutic Approach | Authors (REF) | Methodology | Results |
---|---|---|---|
Lifestyle changes | Karssemeijer et al. [157] | Meta-analysis of the effect of cognitive and physical exercise intervention in older adults with MCI or major neurocognitive disorder. | A positive effect of the combination of physical–cognitive interventions on global cognitive function was observed (MDS (95% CI) = 0.32 (0.17–0.47); p < 0.05). It was equally beneficial for individuals with MCI (MDS = 0.39 (0.15–0.63); p < 0.05), and for patients with major neurocognitive disorder (MDS = 0.36 (0.12–0.60); p < 0.001). |
Zhang et al. [165] | Meta-analysis of the association between risk of cognitive impairment and intake of fish and PUFAs. | Increased fish consumption was associated with decreased risk of major neurocognitive disorder (RR: 0.95; 95% CI: 0.90–0.99; p = 0.042). A significant curvilinear relationship was observed between PUFA consumption and MCI risk (p nonlinearity < 0.001). | |
Krikorian et al. [164] | Prospective study of the effect of a ketogenic diet in older individuals with MCI. | An improvement in verbal memory performance was observed in patients on a low-carbohydrate diet (p = 0.001). Memory performance was positively correlated with ketone levels (p = 0.04). | |
Antihypertensives | Tzourio et al. [110] | A longitudinal study of the effect of antihypertensive drugs on the risk of cognitive decline in older individuals. | The risk of cognitive impairment was higher in untreated subjects (OR = 6.0 (95% CI: 2.4–15.0)), compared with subjects treated with antihypertensives (OR = 1.3 (95% CI: 0.3–4.9)). |
Guo et al. [168] | Prospective study that evaluated whether the use of antihypertensives affected the appearance and progression of major neurocognitive disorders in older adults. | The risk of major neurocognitive disorder was reduced in subjects receiving antihypertensive treatment and without major neurocognitive disorder at the beginning of the study (RR = 0.7 (95% CI: 0.6–1.0); p = 0.03). | |
Antidiabetics | Ng et al. [170] | Longitudinal study of the protective effect of metformin on the cognitive performance of older adults. | Use of metformin showed an inverse association with cognitive impairment (OR = 0.49 (CI 95%: 0.25–0.95); p < 0.05), and was associated with a low risk of cognitive impairment after 6 years of use (OR = 0.27 (CI 95%: 0.12–0.60); p < 0.05). |
Borzì et al. [171] | Retrospective study of the effect of vildagliptin on cognitive function in older diabetic adults with MCI. | The use of metformin as monotherapy or in combination with vildagliptin was associated with a significant reduction in MMSE score (p < 0.001). | |
Hypolipidemics | Bosch et al. [177] | Clinical trial on the effect of rosuvastatin in reducing cognitive impairment in older adults. | The mean difference in DSST score between rosuvastatin vs. placebo was −0.54 (95% CI: −1.88–0.80); p < 0.05. |
Bettermann et al. [178] | Clinical trial on the impact of statin use on delaying cognitive decline in patients with and without MCI. | Statins were associated with a decreased risk for increased neurocognitive impairment from all causes in patients who did not have MCI at the beginning of the study (HR = 0.79 (95% CI: 0.65–0.96) p = 0.021). In subjects with MCI, these protective effects were not observed. |
4.2. Exploring the Reverse Relationship—From Cognitive Disorder to Metabolic Syndrome
Author (REF) | Methodology | Results |
---|---|---|
Janson et al. [186] | Longitudinal study where prevalence of T2DM in patients with AD was evaluated, along with the association between FPG and aging in these patients. | The prevalence of T2DM (34.6 vs. 18.1%; p < 0.05) and IFG (46.2 vs. 23.8%; p < 0.01) was higher in the AD group vs. the control group. A greater increase was seen in FPG per year in the AD group (0.83 vs. 0.57 mg/dL−1; p < 0.01). |
Bae et al. [181] | Cross-sectional study of the prevalence of MS by type of MCI in 3312 older adults and differences related to sex. | The prevalence of MS was higher in participants with naMCI (men: p = 0.030; women: p = 0.040) and the risk of MS was higher in men (OR = 2.45; 95% CI: 1.13–5.32) than in women (OR = 1.94; 95% CI: 1.12–3.39) compared with participants with normal cognition. |
Altschul et al. [187] | Longitudinal cohort study of the association between cognitive function, HbA1c, and other variables in early and late life in 1091 adults. | High cognitive function at age 11 predicted low HbA1c levels at age 70 (p < 0.001). Additionally, high cognitive function at age 70 was associated with a smaller increase in HbA1c levels between age 70 and 79 (p < 0.001). |
Peng et al. [188]. | Study comparing 1063 newly T2DM diagnosed individuals with 1063 control individuals for an association between plasma concentrations of Aβ40 and Aβ42 with risk of T2DM. | The risk of T2DM was higher in individuals with the highest concentrations of Aβ40 and Aβ42 (OR = 2.96 (95% CI: 2.06–4.25)) compared with subjects with the lowest concentrations of Aβ. |
Peng et al. [188]. | Prospective study of the association between plasma concentrations of Aβ40 and Aβ42 with risk of T2DM. | A higher risk of T2DM was found in individuals with concentrations greater than that of Aβ (OR = 3.79 (95% CI: 1.81–7.94)) for Aβ40 and (OR = 2.88 (95% CI: 1.44–5.75)) for Aβ42. |
Author (REF) | Treatment | Methodology | Results |
---|---|---|---|
Ettcheto et al. [190] | Memantine | Preclinical study of the effects of MEM on learning and memory impairment in rats with familial AD and HFD-induced insulin resistance. | MEM prevented body weight increase in HFD-fed mice with APP/PS1 (p < 0.001). Hepatic IR protein levels showed a significant increase in APP/PS1 MEM mice compared to nontreated controls (p < 0.05), improving insulin function in the liver. |
Zhang et al. [194] | Anti- Aβ Immunotherapy | Preclinical study of the effects of intraperitoneal injections of anti-Aβ antibodies in APP/PS1 rats on glucose metabolism. | After 9 months of treatment, neutralization of Aβ reduced fasting blood glucose level (p < 0.001), improved insulin sensitivity (p < 0.05), and inhibited hepatic JAK2/STAT3/SOCS1 signaling (p < 0.05) in APP/PS1 AD model rats. |
Wessels et al. [193] | Lanabecestat | RCT that assessed whether lanabecestat slows the progression of AD compared with placebo in patients with early AD (mild cognitive impairment) and mild AD dementia. | Even though treatment with lanabecestat did not slow cognitive decline, patients who completed week 104 had a mean (SD) weight loss of 0 (4.7) kg for placebo, −0.8 (4.6) kg for patients treated with 20 mg lanabecestat, and −1.9 (5.2) kg for those treated with 50 mg. |
Ahmed et al. [191] | MemantinePiracetam | Clinical study of the effect of piracetam and memantine on diabetes mellitus. | A significant decrease in all diabetic markers (FPG, HbA1c%, and insulin levels) in the diabetic and Alzheimer’s patients was observed after treatment with memantine or piracetam compared to diabetic and Alzheimer’s patients with symptomatic treatment (p < 0.05). |
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hennekens, C.H.; Andreotti, F. Leading Avoidable Cause of Premature Deaths Worldwide: Case for Obesity. Am. J. Med. 2013, 126, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, V.; Añez, R.; Salazar, J.J.; Sanchez, H.; Castellanos, B.; Bello, L.; Villalobos, M. Comportamiento Epidemiológico del síndrome metabólico en el municipio Maracaibo-Venezuela. Síndrome Cardiometabólico 2013, 3, 31–42. [Google Scholar]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Morales Aguilar, R.; Lastre-Amell, G.; Pardo Vásquez, A. Estilos de vida relacionados con factores de riesgo cardiovascular. Arch. Venez. Farmacol. Ter. 2018, 38, 9. [Google Scholar]
- Mente, A.; Yusuf, S.; Islam, S.; McQueen, M.J.; Tanomsup, S.; Onen, C.L.; Rangarajan, S.; Gerstein, H.C.; Anand, S.S. Metabolic syndrome and risk of acute myocardial infarction a case-control study of 26,903 subjects from 52 countries. J. Am. Coll. Cardiol. 2010, 55, 2390–2398. [Google Scholar] [CrossRef] [Green Version]
- Espinoza Diaz, C.I.E.; Morocho Zambrano, A.A.; Pesantez Placencia, L.F.; Toala Guerrero, J.E.; Bravo Rey, P.J.; Garavito Martinez, A.M.; Carbo Tapia, A.D.; García Vargas, J.J. Prevalencia de síndrome metabólico y factores asociados en adultos mayores de la parroquia de Baños, Cuenca. Arch. Venez. Farmacol. Ter. 2018, 39, 6. [Google Scholar]
- Kerekes, G.; Nurmohamed, M.T.; González-Gay, M.A.; Seres, I.; Paragh, G.; Kardos, Z.; Baráth, Z.; Tamási, L.; Soltész, P.; Szekanecz, Z. Rheumatoid arthritis and metabolic syndrome. Nat. Rev. Rheumatol. 2014, 10, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Uzunlulu, M.; Caklili, O.T.; Oguz, A. Association between Metabolic Syndrome and Cancer. Ann. Nutr. Metab. 2016, 68, 173–179. [Google Scholar] [CrossRef]
- Bangen, K.J.; Armstrong, N.M.; Au, R.; Gross, A.L. Metabolic Syndrome and Cognitive Trajectories in the Framingham Offspring Study. J. Alzheimer’s Dis. 2019, 71, 931–943. [Google Scholar] [CrossRef]
- Laws, S.M.; Gaskin, S.; Woodfield, A.; Srikanth, V.; Bruce, D.; Fraser, P.E.; Porter, T.; Newsholme, P.; Wijesekara, N.; Burnham, S.; et al. Insulin resistance is associated with reductions in specific cognitive domains and increases in CSF tau in cognitively normal adults. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Petersen, R.C.; Roberts, R.O.; Knopman, D.S.; Boeve, B.F.; Geda, Y.E.; Ivnik, R.J.; Smith, G.E.; Jack, C.R., Jr. Mild cognitive impairment: Ten years later. Arch. Neurol. 2009, 66, 1447–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanford, A.M. Mild Cognitive Impairment. Clin. Geriatr. Med. 2017, 33, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, H. Buscando las bases moleculares de la enfermedad de Alzheimer. Gac. Médica Caracas 2017, 125, 4–11. [Google Scholar]
- Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.-Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat. Rev. Neurol. 2018, 14, 168–181. [Google Scholar] [CrossRef]
- Kylin, E. Hypertonie and Zuckerkrankheit. Zent. Inn. Med. 1921, 42, 873–877. [Google Scholar]
- Marañon, G. Über Hypertonie and Zuckerkrankheit. Zent. Inn. Med. 1922, 43, 169–176. [Google Scholar]
- Hanefeld, M.; Leonhardt, W. Das Metabolische Syndrom. Dt Gesundh Wesen. 1981, 36, 545–551. [Google Scholar] [CrossRef]
- Reaven, G.M. Banting lecture Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef]
- Reaven, G.M. Why Syndrome X? From Harold Himsworth to the Insulin Resistance Syndrome. Cell Metab. 2005, 1, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Randle, P.; Garland, P.; Hales, C.; Newsholme, E. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963, 281, 785–789. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Ferrannini, E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991, 14, 173–194. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. J. Br. Diabet. Assoc. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Balkau, B.; Charles, M.A. Comment on the provisional report from the WHO consultation. Diabet. Med. 1999, 16, 442–443. [Google Scholar] [CrossRef]
- Reaven, G.M. The metabolic syndrome: Is this diagnosis necessary? Am. J. Clin. Nutr. 2006, 83, 1237–1247. [Google Scholar] [CrossRef] [Green Version]
- Einhorn, D.; Reaven, G.M.; Cobin, R.H.; Ford, E.; Ganda, O.P.; Handelsman, Y.; Hellman, R.; Jellinger, P.S.; Kendall, D.; Krauss, R.M.; et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr. Pract. 2003, 9, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Alegría Ezquerra, E.; Castellano Vázquez, J.M.; Alegría Barrero, A. Obesity, metabolic syndrome and diabetes: Cardiovascular implications and therapy. Rev. Esp. Cardiol. 2008, 61, 752–764. [Google Scholar] [CrossRef] [Green Version]
- Gunczler, P. Síndrome de resistencia a la insulina en niños y adolescentes. Gac. Médica. Caracas 2006, 114, 99–103. [Google Scholar]
- Després, J.-P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathieu, P.; LaRose, E.; Rodés-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal Obesity and the Metabolic Syndrome: Contribution to Global Cardiometabolic Risk. Arter. Thromb. Vasc. Biol. 2008, 28, 1039–1049. [Google Scholar] [CrossRef]
- Jais, A.; Brüning, J.C. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Investig. 2017, 127, 24–32. [Google Scholar] [CrossRef]
- Rönnemaa, E.; Zethelius, B.; Sundelöf, J.; Sundström, J.; Degerman-Gunnarsson, M.; Berne, C.; Lannfelt, L.; Kilander, L. Impaired insulin secretion increases the risk of Alzheimer disease. Neurology 2008, 71, 1065–1071. [Google Scholar] [CrossRef]
- Cohen, A.D.; Klunk, W.E. Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol. Dis. 2014, 72, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Segura, B.; Jurado, M.Á.; Freixenet, N.; Albuin, C.; Muniesa, J.; Junque, C. Mental slowness and executive dysfunctions in patients with metabolic syndrome. Neurosci. Lett. 2009, 462, 49–53. [Google Scholar] [CrossRef]
- Narváez López, E.J.; Bravo Peláez, J.A.; Almeida Lozano, K.A.; Alvarez Rivera, C.G.; Mendoza Argandoña, C.A.; Morales Sánchez, A.M.; Godos Rivera, D.T.; Del Salto Ocaña, T.E.; Catota Camacho, M.M. Implicación de polimorfismos de apolipoproteína en la fisiopatología de la ateroesclerosis y enfermedad de Alzheimer. Rev. Latinoam. Hipertens. 2018, 13, 6. [Google Scholar]
- Anstey, K.J.; Cherbuin, N.; Budge, M.; Young, J. Body mass index in midlife and late-life as a risk factor for dementia: A me-ta-analysis of prospective studies. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2011, 12, 426–437. [Google Scholar] [CrossRef]
- Grillo, C.; Woodruff, J.L.; Macht, V.A.; Reagan, L.P. Insulin resistance and hippocampal dysfunction: Disentangling peripheral and brain causes from consequences. Exp. Neurol. 2019, 318, 71–77. [Google Scholar] [CrossRef]
- Lindqvist, A.; Mohapel, P.; Bouter, B.; Frielingsdorf, H.; Pizzo, D.; Brundin, P.; Erlanson-Albertsson, C. High-fat diet impairs hippocampal neurogenesis in male rats. Eur. J. Neurol. 2006, 13, 1385–1388. [Google Scholar] [CrossRef] [Green Version]
- Karimi, S.A.; Salehi, I.; Komaki, A.; Sarihi, A.; Zarei, M.; Shahidi, S. Effect of high-fat diet and antioxidants on hippocampal long-term potentiation in rats: An in vivo study. Brain Res. 2013, 1539, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Ta, Q.T.H.; Nguyen, T.T.D.; Le, T.T.; Vo, V.G. Role of Insulin Resistance in the Alzheimer’s Disease Progression. Neurochem. Res. 2020, 45, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
- Vander Zanden, C.M.; Chi, E.Y. Passive immunotherapies targeting amyloid beta and Tau oligomers in Alzheimer’s disease. J. Pharm. Sci. 2020, 109, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Hurrle, S.; Hsu, W.H. The etiology of oxidative stress in insulin resistance. Biomed. J. 2017, 40, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alz-heimer’s disease. Alzheimers Dement. Transl. Res. Clin. Interv. 2018, 4, 575–590. [Google Scholar] [CrossRef]
- Walker, J.M.; Harrison, F.E. Shared Neuropathological Characteristics of Obesity, Type 2 Diabetes and Alzheimer’s Disease: Impacts on Cognitive Decline. Nutrients 2015, 7, 7332–7357. [Google Scholar] [CrossRef] [Green Version]
- Shiiki, T.; Ohtsuki, S.; Kurihara, A.; Naganuma, H.; Nishimura, K.; Tachikawa, M.; Hosoya, K.; Terasaki, T. Brain insulin impairs amyloid-beta(1-40) clearance from the brain. J. Neurosci. Off. J. Soc. Neurosci. 2004, 24, 9632–9637. [Google Scholar] [CrossRef]
- Liu, Z.; Patil, I.Y.; Jiang, T.; Sancheti, H.; Walsh, J.P.; Stiles, B.L.; Yin, F.; Cadenas, E. High-Fat Diet Induces Hepatic Insulin Resistance and Impairment of Synaptic Plasticity. PLoS ONE 2015, 10, e0128274. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, L.; Hu, Z. Cerebral insulin, insulin signaling pathway, and brain angiogenesis. Neurol. Sci. 2016, 37, 9–16. [Google Scholar] [CrossRef]
- Liang, C.; Lam, P.; Martinez, S.; Mukherjee, J. Development of [18F]FAZIN3 for PET imaging of neurofibrillary tangles in Alz-heimer’s Disease. J. Nucl. Med. 2020, 61, 1032. [Google Scholar]
- Benedict, C.; Grillo, C. Insulin Resistance as a Therapeutic Target in the Treatment of Alzheimer’s Disease: A State-of-the-Art Review. Front. Neurosci. 2018, 12, 215. [Google Scholar] [CrossRef]
- Yarchoan, M.; Toledo, J.; Lee, E.B.; Arvanitakis, Z.; Kazi, H.; Han, L.-Y.; Louneva, N.; Lee, V.M.-Y.; Kim, S.F.; Trojanowski, J.Q.; et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies. Acta Neuropathol. 2014, 128, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Starks, E.J.; Patrick O’Grady, J.; Hoscheidt, S.M.; Racine, A.M.; Carlsson, C.M.; Zetterberg, H.; Blennow, K.; Okonkwo, O.C.; Puglielli, L.; Asthana, S.; et al. Insulin resistance is associated with higher cerebrospinal fluid Tau levels in asymptomatic APOE ε4 Carriers. J. Alzheimers Dis. JAD 2015, 46, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Sullivan, K.A.; Backus, C.; Feldman, E.L. Cortical Neurons Develop Insulin Resistance and Blunted Akt Signaling: A Potential Mechanism Contributing to Enhanced Ischemic Injury in Diabetes. Antioxidants Redox Signal. 2011, 14, 1829–1839. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, N.-Q.; Yan, F.; Jin, H.; Zhou, S.-Y.; Shi, J.-S.; Jin, F. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav. Brain Res. 2018, 339, 57–65. [Google Scholar] [CrossRef]
- Esposito, G.; Scuderi, C.; Lu, J.; Savani, C.; De Filippis, D.; Iuvone, T.; Steardo, L., Jr.; Sheen, V.; Steardo, L. S100B induces tau protein hyperphosphorylation via Dickopff-1 up-regulation and disrupts the Wnt pathway in human neural stem cells. J. Cell. Mol. Med. 2008, 12, 914–927. [Google Scholar] [CrossRef]
- van der Harg, J.M.; Eggels, L.; Bangel, F.N.; Ruigrok, S.R.; Zwart, R.; Hoozemans, J.J.M.; la Fleur, S.E.; Scheper, W. Insulin deficiency results in reversible protein kinase A activation and tau phosphorylation. Neurobiol. Dis. 2017, 103, 163–173. [Google Scholar] [CrossRef]
- Gratuze, M.; Julien, J.; Petry, F.R.; Morin, F.; Planel, E. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer’s disease-like tau pathology. Sci. Rep. 2017, 7, srep46359. [Google Scholar] [CrossRef] [Green Version]
- Kins, S.; Crameri, A.; Evans, D.R.; Hemmings, B.A.; Nitsch, R.M.; Gotz, J. Reduced protein phosphatase 2A activity induces hyper-phosphorylation and altered compartmentalization of tau in transgenic mice. J. Biol. Chem. 2001, 276, 38193–38200. [Google Scholar] [CrossRef]
- Planel, E.; Tatebayashi, Y.; Miyasaka, T.; Liu, L.; Wang, L.; Herman, M.; Yu, W.H.; Luchsinger, J.A.; Wadzinski, B.; Duff, K.E.; et al. Insulin dysfunction induces in vivo tau hyperphos-phorylation through distinct mechanisms. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 13635–13648. [Google Scholar] [CrossRef]
- Zilka, N.; Filipcik, P.; Koson, P.; Fialova, L.; Skrabana, R.; Zilkova, M.; Rolkova, G.P.; Kontsekova, E.; Novak, M. Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett. 2006, 580, 3582–3588. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Backus, C.; Oh, S.; Hayes, J.M.; Feldman, E.L. Increased Tau Phosphorylation and Cleavage in Mouse Models of Type 1 and Type 2 Diabetes. Endocrinology 2009, 150, 5294–5301. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Backus, C.; Oh, S.; Feldman, E.L. Hyperglycemia-Induced Tau Cleavage in vitro and in vivo: A Possible Link Between Diabetes and Alzheimer’s Disease. J. Alzheimer’s Dis. 2013, 34, 727–739. [Google Scholar] [CrossRef] [Green Version]
- Forny-Germano, L.; De Felice, F.G.; Vieira, M.N.D.N. The Role of Leptin and Adiponectin in Obesity-Associated Cognitive Decline and Alzheimer’s Disease. Front. Neurosci. 2019, 12, 1027. [Google Scholar] [CrossRef] [Green Version]
- Suyama, S.; Maekawa, F.; Maejima, Y.; Kubota, N.; Kadowaki, T.; Yada, T. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. Sci. Rep. 2016, 6, 30796. [Google Scholar] [CrossRef]
- Friedman, J. The long road to leptin. J. Clin. Investig. 2016, 126, 4727–4734. [Google Scholar] [CrossRef] [Green Version]
- Bouret, S.G. Neurodevelopmental actions of leptin. Brain Res. 2010, 1350, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Pousti, F.; Ahmadi, R.; Mirahmadi, F.; Hosseinmardi, N.; Rohampour, K. Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus. Neurosci. Lett. 2018, 662, 227–232. [Google Scholar] [CrossRef]
- Thundyil, J.; Pavlovski, D.; Sobey, C.G.; Arumugam, T.V. Adiponectin receptor signalling in the brain. Br. J. Pharmacol. 2011, 165, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-L.; Aou, S.; Oomura, Y.; Hori, N.; Fukunaga, K.; Hori, T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience 2002, 113, 607–615. [Google Scholar] [CrossRef]
- Pérez-González, R.; Alvira-Botero, M.X.; Robayo, O.; Antequera, D.; Garzón, M.; Martín-Moreno, A.M.; Brera, B.; De Ceballos, M.L.; Carro, E. Leptin gene therapy attenuates neuronal damages evoked by amyloid-β and rescues memory deficits in APP/PS1 mice. Gene Ther. 2014, 21, 298–308. [Google Scholar] [CrossRef] [Green Version]
- Fewlass, D.C.; Noboa, K.; Pi-Sunyer, F.X.; Johnston, J.M.; Yan, S.D.; Tezapsidis, N. Obesity-related leptin regulates Alzheimer’s Abeta. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2004, 18, 1870–1878. [Google Scholar]
- Holden, K.F.; Lindquist, K.; Tylavsky, F.A.; Rosano, C.; Harris, T.B.; Yaffe, K. Serum leptin level and cognition in the elderly: Findings from the Health ABC Study. Neurobiol. Aging 2009, 30, 1483–1489. [Google Scholar] [CrossRef] [Green Version]
- Ng, R.C.-L.; Chan, K.-H. Potential Neuroprotective Effects of Adiponectin in Alzheimer’s Disease. Int. J. Mol. Sci. 2017, 18, 592. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.W.; Abid N bin Jo, M.H.; Jo, M.G.; Yoon, G.H.; Kim, M.O. Suppression of adiponectin receptor 1 promotes memory dysfunction and Alzheimer’s disease-like pathologies. Sci. Rep. 2017, 7, 12435. [Google Scholar] [CrossRef]
- Viswanathan, A.; Rocca, W.A.; Tzourio, C. Vascular risk factors and dementia: How to move forward? Neurology 2009, 72, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Borshchev, Y.Y.; Uspensky, Y.P.; Galagudza, M.M. Pathogenetic pathways of cognitive dysfunction and dementia in metabolic syndrome. Life Sci. 2019, 237, 116932. [Google Scholar] [CrossRef]
- Pantoni, L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010, 9, 689–701. [Google Scholar] [CrossRef]
- Moss, M.B.; Jonak, E. Cerebrovascular disease and dementia: A primate model of hypertension and cognition. Alzheimer’s Dement. 2007, 3, S6–S15. [Google Scholar] [CrossRef]
- Veglio, F.; Paglieri, C.; Rabbia, F.; Bisbocci, D.; Bergui, M.; Cerrato, P. Hypertension and cerebrovascular damage. Atherosclerosis 2009, 205, 331–341. [Google Scholar] [CrossRef]
- Frisardi, V.; Solfrizzi, V.; Seripa, D.; Capurso, C.; Santamato, A.; Sancarlo, D.; Vendemiale, G.; Pilotto, A.; Panza, F. Metabolic-cognitive syndrome: A cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Res. Rev. 2010, 9, 399–417. [Google Scholar] [CrossRef]
- Reynolds, C.H.; Garwood, C.J.; Wray, S.; Price, C.; Kellie, S.; Perera, T.; Zvelebil, M.; Yang, A.; Sheppard, P.W.; Varndell, I.M.; et al. Phosphorylation Regulates Tau Interactions with Src Homology 3 Domains of Phosphatidylinositol 3-Kinase, Phospholipase Cγ1, Grb2, and Src Family Kinases. J. Biol. Chem. 2008, 283, 18177–18186. [Google Scholar] [CrossRef] [Green Version]
- Marciniak, E.; Leboucher, A.; Caron, E.; Ahmed, T.; Tailleux, A.; Dumont, J.; Issad, T.; Gerhardt, E.; Pagesy, P.; Vileno, M.; et al. Tau deletion promotes brain insulin resistance. J. Exp. Med. 2017, 214, 2257–2269. [Google Scholar] [CrossRef] [PubMed]
- Obici, S.; Feng, Z.; Karkanias, G.; Baskin, D.G.; Rossetti, L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat. Neurosci. 2002, 5, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Brüning, J.C.; Gautam, D.; Burks, D.J.; Gillette, J.; Schubert, M.; Orban, P.C.; Klein, R.; Krone, W.; Müller-Wieland, D.; Kahn, C.R. Role of brain insulin receptor in control of body weight and reproduction. Science 2000, 289, 2122–2125. [Google Scholar] [CrossRef]
- Bharadwaj, P.; Wijesekara, N.; Liyanapathirana, M.; Newsholme, P.; Ittner, L.; Fraser, P.; Verdile, G. The Link between Type 2 Diabetes and Neurodegeneration: Roles for Amyloid-β, Amylin, and Tau Proteins. J. Alzheimer’s Dis. 2017, 59, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Wijesekara, N.; Ahrens, R.; Sabale, M.; Wu, L.; Ha, K.; Verdile, G.; Fraser, P.E. Amyloid-β and islet amyloid pathologies link Alzheimer’s disease and type 2 diabetes in a transgenic model. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2017, 31, 5409–5418. [Google Scholar] [CrossRef] [Green Version]
- Wijesekara, N.; Gonçalves, R.A.; Ahrens, R.; De Felice, F.G.; Fraser, P.E. Tau ablation in mice leads to pancreatic β cell dysfunction and glucose intolerance. FASEB J. 2018, 32, 3166–3173. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Helmerhorst, E.; Taddei, K.; Plewright, B.; Van Bronswijk, W.; Martins, R. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J. Neurosci. Off. J. Soc. Neurosci. 2002, 22, 221. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, B.; Zhang, F.; Wu, J.; Hu, Y.; Liu, Y.; Zhai, Q. Amyloid-β induces hepatic insulin resistance by activating JAK2/STAT3/SOCS-1 signaling pathway. Diabetes 2012, 61, 1434–1443. [Google Scholar] [CrossRef] [Green Version]
- De Felice, F.G.; Velasco, P.T.; Lambert, M.P.; Viola, K.; Fernandez, S.J.; Ferreira, S.T.; Klein, W.L. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J. Biol. Chem. 2007, 282, 11590–11601. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-A.; Wei, Y.; Sowers, J.R. Role of Mitochondrial Dysfunction in Insulin Resistance. Circ. Res. 2008, 102, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; De Felice, F.G.; Fernandez, S.; Chen, H.; Lambert, M.P.; Quon, M.J.; Krafft, G.A.; Klein, W.L. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J. 2007, 22, 246–260. [Google Scholar] [CrossRef] [Green Version]
- Bomfim, T.R.; Forny-Germano, L.; Sathler, L.B.; Brito-Moreira, J.; Houzel, J.C.; Decker, H.; Silverman, M.A.; Kazi, H.; Melo, H.M.; McClean, P.L.; et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers. J. Clin. Investig. 2012, 122, 1339–1353. [Google Scholar] [CrossRef]
- Bonda, D.J.; Stone, J.G.; Torres, S.L.; Siedlak, S.L.; Perry, G.; Kryscio, R.; Jicha, G.; Casadesus, G.; Smith, M.A.; Zhu, X.; et al. Dysregulation of leptin signaling in Alzheimer disease: Evidence for neuronal leptin resistance. J. Neurochem. 2014, 128, 162–172. [Google Scholar] [CrossRef]
- Kanoski, S.E.; Hayes, M.R.; Greenwald, H.S.; Fortin, S.M.; Gianessi, C.A.; Gilbert, J.R.; Grill, H.J. Hippocampal Leptin Signaling Reduces Food Intake and Modulates Food-Related Memory Processing. Neuropsychopharmacology 2011, 36, 1859–1870. [Google Scholar] [CrossRef] [Green Version]
- Meakin, P.J.; Jalicy, S.M.; Montagut, G.; Allsop, D.J.P.; Cavellini, D.L.; Irvine, S.W.; McGinley, C.; Liddell, M.K.; McNeilly, A.D.; Parmionova, K.; et al. Bace1-dependent amyloid processing regulates hypothalamic leptin sensitivity in obese mice. Sci. Rep. 2018, 8, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brief, D.J.; Davis, J.D. Reduction of food intake and body weight by chronic intraventricular insulin infusion. Brain Res. Bull. 1984, 12, 571–575. [Google Scholar] [CrossRef]
- Panza, F.; Solfrizzi, V.; Logroscino, G.; Maggi, S.; Santamato, A.; Seripa, D.; Pilotto, A. Current epidemiological approaches to the met-abolic-cognitive syndrome. J. Alzheimers Dis. 2012, 30, S31–S75. [Google Scholar] [CrossRef] [PubMed]
- Irimata, K.E.; Dugger, B.N.; Wilson, J.R. Impact of the Presence of Select Cardiovascular Risk Factors on Cognitive Changes among Dementia Subtypes. Curr. Alzheimer Res. 2018, 15, 1032–1044. [Google Scholar] [CrossRef] [PubMed]
- Case, C.C.; Jones, P.H.; Nelson, K.; Smith, E.O.; Ballantyne, C.M. Impact of weight loss on the metabolic syndrome. Diabetes Obes. Metab. 2002, 4, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, K.; Kanaya, A.; Lindquist, K.; Simonsick, E.M.; Harris, T.; Shorr, R.I.; Tylavsky, F.A.; Newman, A.B. The Metabolic Syndrome, Inflammation, and Risk of Cognitive Decline. JAMA 2004, 292, 2237–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panza, F.; D’Introno, A.; Colacicco, A.M.; Capurso, C.; Del Parigi, A.; Capurso, S.A.; Caselli, R.J.; Pilotto, A.; Scafato, E.; Capurso, A.; et al. Cognitive frailty: Predementia syndrome and vascular risk factors. Neurobiol. Aging 2006, 27, 933–940. [Google Scholar] [CrossRef]
- Dregan, A.; Stewart, R.; Gulliford, M.C. Cardiovascular risk factors and cognitive decline in adults aged 50 and over: A popula-tion-based cohort study. Age Ageing 2013, 42, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.L.; Ding, J.; Tang, E.Y.H.; Siervo, M.; Robinson, L.; Jagger, C.; Stephan, B.C.M. Cardiovascular Disease Risk Models and Longitudinal Changes in Cognition: A Systematic Review. PLoS ONE 2014, 9, e114431. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.L.; De Craen, A.J.M.; Kerse, N.; Teh, R.; Granic, A.; Davies, K.; Wesnes, K.A.; Elzen, W.D.; Gussekloo, J.; Kirkwood, T.B.L.; et al. Predicting Risk of Cognitive Decline in Very Old Adults Using Three Models: The Framingham Stroke Risk Profile; the Cardiovascular Risk Factors, Aging, and Dementia Model; and Oxi-Inflammatory Biomarkers. J. Am. Geriatr. Soc. 2017, 65, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Purnell, C.; Gao, S.; Callahan, C.M.; Hendrie, H.C. Cardiovascular risk factors and incident Alzheimer disease: A systematic review of the literature. Alzheimer Dis. Assoc. Disord. 2009, 23, 1–10. [Google Scholar] [CrossRef]
- Prasad, K.; Wiryasaputra, L.; Ng, A.; Kandiah, N. White Matter Disease Independently Predicts Progression from Mild Cognitive Impairment to Alzheimer’s Disease in a Clinic Cohort. Dement. Geriatr. Cogn. Disord. 2011, 31, 431–434. [Google Scholar] [CrossRef]
- Iadecola, C.; Yaffe, K.; Biller, J.; Bratzke, L.C.; Faraci, F.M.; Gorelick, P.B.; Gulati, M.; Kamel, H.; Knopman, D.S.; Launer, L.J.; et al. Impact of Hypertension on Cognitive Function: A Scientific Statement from the American Heart Association. Hypertension 2016, 68, e67–e94. [Google Scholar] [CrossRef] [PubMed]
- Avila Vinueza, J.P.; Avila Vinueza, T.L.; Pesantez Calle, M.F.; Guaraca Pino, A.C.; Durazno Montesdeoca, G.C.; Cobos Alvarracin, M.Y. Frecuencia, factores de riesgo y hallazgos neuroimagenológicos de deterioro cognitivo leve en pacientes con hipertensión arterial. Arch. Venez. Farmacol. Ter. 2019, 38, 12. [Google Scholar]
- McDonald, C.; Pearce, M.S.; Kerr, S.R.J.; Newton, J.L. Blood pressure variability and cognitive decline in older people: A 5-year longitudinal study. J. Hypertens. 2017, 35, 140–147. [Google Scholar] [CrossRef]
- Tzourio, C.; Dufouil, C.; Ducimetiere, P.; Alperovitch, A. Cognitive decline in individuals with high blood pressure: A longitudinal study in the elderly. Neurology 1999, 53, 1948. [Google Scholar] [CrossRef]
- Haring, B.; Wu, C.; Coker, L.H.; Seth, A.; Snetselaar, L.; Manson, J.E.; Rossouw, J.E.; Wassertheil-Smoller, S. Hypertension, Dietary Sodium, and Cognitive Decline: Results from the Women’s Health Initiative Memory Study. Am. J. Hypertens. 2015, 29, 202–216. [Google Scholar] [CrossRef] [Green Version]
- Tarraf, W.; Rodríguez, C.J.; Daviglus, M.L.; Lamar, M.; Schneiderman, N.; Gallo, L.; Talavera, G.A.; Kaplan, R.C.; Fornage, M.; Conceicao, A.; et al. Blood Pressure and Hispanic/Latino Cognitive Function: Hispanic Community Health Study/Study of Latinos Results. J. Alzheimer’s Dis. 2017, 59, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Kilander, L.; Nyman, H.; Boberg, M.; Hansson, L.; Lithell, H. Hypertension is related to cognitive impairment: A 20-year follow-up of 999 men. Hypertension 1998, 31, 780–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Launer, L.J. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study. JAMA 1995, 274, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.A.; Sharrett, A.R.; Wu, A.; Schneider, A.L.C.; Albert, M.; Lutsey, P.L.; Bandeen-Roche, K.; Coresh, J.; Gross, A.L.; Windham, B.G.; et al. Association of Midlife to Late-Life Blood Pressure Patterns with Incident Dementia. JAMA 2019, 322, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Reitz, C.; Tang, M.-X.; Manly, J.; Mayeux, R.; Luchsinger, J.A. Hypertension and the Risk of Mild Cognitive Impairment. Arch. Neurol. 2007, 64, 1734–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, M.F.; Elias, P.K.; Sullivan, L.M.; Wolf, P.A.; D’Agostino, R.B. Lower cognitive function in the presence of obesity and hyper-tension: The Framingham heart study. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2003, 27, 260–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chacón, O.; Riaño-Garzón, M.E.; Bermúdez, V.; Quintero Sanguino, M.; Hernández Lalinde, J.D.; Mendoza Bernal, M.I. ¿Es la obesidad un factor de riesgo para el trastorno de déficit de atención con hiperactividad (TDAH)? Rev. Latinoam Hipertens. 2018, 13, 89–97. [Google Scholar]
- Cournot, M.; Marquie, J.C.; Ansiau, D.; Martinaud, C.; Fonds, H.; Ferrieres, J.; Ruidavets, J.B. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology 2006, 67, 1208–1214. [Google Scholar] [CrossRef]
- Kloppenborg, R.P.; Berg, E.V.D.; Kappelle, L.J.; Biessels, G.J. Diabetes and other vascular risk factors for dementia: Which factor matters most? A systematic review. Eur. J. Pharmacol. 2008, 585, 97–108. [Google Scholar] [CrossRef]
- Sabia, S.; Kivimaki, M.; Shipley, M.J.; Marmot, M.; Singh-Manoux, A. Body mass index over the adult life course and cognition in late midlife: The Whitehall II Cohort Study. Am. J. Clin. Nutr. 2008, 89, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Beydoun, M.A.; Wang, Y. Obesity and central obesity as risk factors for incident dementia and its subtypes: A systematic review and meta-analysis. Obes. Rev. 2008, 9, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Blom, K.; Emmelot-Vonk, M.H.; Koek, H.L. The influence of vascular risk factors on cognitive decline in patients with dementia: A systematic review. Maturitas 2013, 76, 113–117. [Google Scholar] [CrossRef]
- de Frias, C.M.; Bunce, D.; Wahlin, A.; Adolfsson, R.; Sleegers, K.; Cruts, M.; van Broeckhoven, C.; Nilsson, L. Cholesterol and triglycerides moderate the effect of apolipoprotein E on memory functioning in older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2007, 62, 112–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sims, R.; Madhere, S.; Callender, C.; Campbell, A. Patterns of Relationships between Cardiovascular Disease Risk Factors and Neurocognitive Function in African Americans. Ethn. Dis. 2008, 18, 471–476. [Google Scholar] [PubMed]
- Singh-Manoux, A.; Gimeno, D.; Kivimaki, M.; Brunner, E.; Marmot, M.G. Low HDL cholesterol is a risk factor for deficit and decline in memory in midlife: The Whitehall II study. Arterioscler Thromb. Vasc. Biol. 2008, 28, 1556–1562. [Google Scholar] [CrossRef] [Green Version]
- Zuliani, G.; Cavalieri, M.; Galvani, M.; Volpato, S.; Cherubini, A.; Bandinelli, S.; Corsi, A.M.; Lauretani, F.; Guralnik, J.M.; Fellin, R.; et al. Relationship Between Low Levels of High-Density Lipoprotein Cholesterol and Dementia in the Elderly. The InChianti Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2010, 65, 559–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vliet, P.; van de Water, W.; de Craen, A.J.M.; Westendorp, R.G.J. The influence of age on the association between cholesterol and cognitive function. Exp. Gerontol. 2009, 44, 112–122. [Google Scholar] [CrossRef]
- Kinno, R.; Mori, Y.; Kubota, S.; Nomoto, S.; Futamura, A.; Shiromaru, A.; Kuroda, T.; Yano, S.; Ishigaki, S.; Murakami, H.; et al. High serum high-density lipoprotein-cholesterol is associated with memory function and gyrification of insular and frontal opercular cortex in an elderly memory-clinic pop-ulation. NeuroImage Clin. 2019, 22, 101746. [Google Scholar] [CrossRef]
- Bonarek, M.; Barberger-Gateau, P.; Letenneur, L.; Deschamps, V.; Iron, A.; Dubroca, B.; Dartigues, J.F. Relationships between cholesterol, apolipoprotein E polymorphism and dementia: A cross-sectional analysis from the PAQUID study. Neuroepidemiology 2000, 19, 141–148. [Google Scholar] [CrossRef]
- Sanz, C.; Andrieu, S.; Sinclair, A.; Hanaire, H.; Vellas, B. For the REAL.FR Study Group Diabetes is associated with a slower rate of cognitive decline in Alzheimer disease. Neurology 2009, 73, 1359–1366. [Google Scholar] [CrossRef]
- Solimany, F.; Mohammadi, E.; Omidfar, F. Comparison of cognitive abilities, depression and anxiety of type II diabetic patients with healthy individuals in Isfahan province in 2015. Rev. Latinoam. Hipertens. 2018, 13, 8. [Google Scholar]
- Marseglia, A.; Fratiglioni, L.; Kalpouzos, G.; Wang, R.; Bäckman, L.; Xu, W. Prediabetes and diabetes accelerate cognitive decline and predict microvascular lesions: A population-based cohort study. Alzheimer’s Dement. 2019, 15, 25–33. [Google Scholar] [CrossRef]
- Rouch, I.; Roche, F.; Dauphinot, V.; Laurent, B.; Antérion, C.T.; Celle, S.; Krolak-Salmon, P.; Barthélémy, J.-C. Diabetes, impaired fasting glucose, and cognitive decline in a population of elderly community residents. Aging Clin. Exp. Res. 2012, 24, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, K.; Blackwell, T.; Kanaya, A.M.; Davidowitz, N.; Barrett-Connor, E.; Krueger, K. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 2004, 63, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Vanhanen, M.; Koivisto, K.; Kuusisto, J.; Mykkänen, L.; Helkala, E.-L.; Hänninen, T.; Riekkinen, P.; Soininen, H.; Laakso, M. Cognitive function in an elderly population with persistent impaired glucose tolerance. Diabetes Care 1998, 21, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Kanaya, A.M.; Barrett-Connor, E.; Gildengorin, G.; Yaffe, K. Change in cognitive function by glucose tolerance status in older adults: A 4-year prospective study of the Rancho Bernardo study cohort. Arch. Intern. Med. 2004, 164, 1327–1333. [Google Scholar] [CrossRef] [Green Version]
- Miles, W.R.; Root, H.F. Psychologic Tests Applied to Diabetic Patients. Arch. Intern. Med. 1922, 30, 767–777. [Google Scholar] [CrossRef] [Green Version]
- Grodstein, F.; Chen, J.; Wilson, R.S.; Manson, J.E. Nurses’ Health Study. Type 2 diabetes and cognitive function in communi-ty-dwelling elderly women. Diabetes Care. 2001, 24, 1060–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cukierman, T.; Gerstein, H.C.; Williamson, J.D. Cognitive decline and dementia in diabetes—systematic overview of prospective observational studies. Diabetologia 2005, 48, 2460–2469. [Google Scholar] [CrossRef]
- Saczynski, J.S.; Jónsdóttir, M.K.; Garcia, M.E.; Jonsson, P.V.; Peila, R.; Eiriksdottir, G.; Olafsdottir, E.; Harris, T.B.; Gudnason, V.; Launer, L.J. Cognitive Impairment: An Increasingly Important Complication of Type 2 Diabetes: The Age, Gene/Environment Susceptibility-Reykjavik Study. Am. J. Epidemiol. 2008, 168, 1132–1139. [Google Scholar] [CrossRef]
- Cukierman-Yaffe, T.; Gerstein, H.C.; Williamson, J.D.; Lazar, R.M.; Lovato, L.; Miller, M.E.; Coker, L.H.; Murray, A.; Sullivan, M.D.; Marcovina, S.M.; et al. Relationship between baseline gly-cemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: The action to control cardiovascular risk in diabetes-memory in diabetes (ACCORD-MIND) trial. Diabetes Care 2009, 32, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Elias, M.F.; Elias, P.K.; Sullivan, L.M.; Wolf, P.A.; D’Agostino, R.B. Obesity, diabetes and cognitive deficit: The Framingham Heart Study. Neurobiol. Aging 2005, 26, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.O.; Geda, Y.E.; Knopman, D.S.; Cha, R.H.; Boeve, B.F.; Ivnik, R.J.; Pankratz, V.S.; Tangalos, E.G.; Petersen, R.C. Metabolic syndrome, inflammation, and nonamnestic mild cognitive impairment in older persons: A population-based study. Alzheimer Dis. Assoc. Disord. 2010, 24, 11–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaffe, K.; Weston, A.L.; Blackwell, T.; Krueger, K.A. The Metabolic Syndrome and Development of Cognitive Impairment Among Older Women. Arch. Neurol. 2009, 66, 324–328. [Google Scholar] [CrossRef] [Green Version]
- Pal, K.; Mukadam, N.; Petersen, I.; Cooper, C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: A systematic review and meta-analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atti, A.R.; Valente, S.; Iodice, A.; Caramella, I.; Ferrari, B.; Albert, U.; Mandelli, L.; De Ronchi, D. Metabolic Syndrome, Mild Cognitive Impairment, and Dementia: A Meta-Analysis of Longitudinal Studies. Am. J. Geriatr. Psychiatry 2019, 27, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Yau, P.L.; Javier, D.C.; Ryan, C.; Tsui, W.H.; Ardekani, B.A.; Ten, S.; Convit, A. Preliminary evidence for brain complications in obese adolescents with type 2 diabetes mellitus. Diabetologia 2010, 53, 2298–2306. [Google Scholar] [CrossRef] [Green Version]
- Verdejo-Garcia, A.; Pérez-Expósito, M.; Schmidt-Río-Valle, J.; Fernández-Serrano, M.J.; Cruz, F.; Pérez-García, M.; López-Belmonte, G.; Martín-Matillas, M.; Martín-Lagos, J.A.; Marcos, A.; et al. Selective Alterations Within Executive Functions in Adolescents With Excess Weight. Obesity 2010, 18, 1572–1578. [Google Scholar] [CrossRef]
- Lande, M.B.; Kaczorowski, J.M.; Auinger, P.; Schwartz, G.J.; Weitzman, M. Elevated blood pressure and decreased cognitive function among school-age children and adolescents in the United States. J. Pediatr. 2003, 143, 720–724. [Google Scholar] [CrossRef]
- Li, Y.; Dai, Q.; Jackson, J.C.; Zhang, J. Overweight Is Associated with Decreased Cognitive Functioning Among School-age Children and Adolescents. Obesity 2008, 16, 1809–1815. [Google Scholar] [CrossRef]
- Lozada, M.; Machado, S.; Manrique, M.; Martínez, D.; Suárez, O.; Guevara, H. Factores de riesgo asociados al síndrome metabólico en adolescentes. Gac. Médica Caracas 2008, 116, 323–329. [Google Scholar]
- Bourdel-Marchasson, I.; Lapre, E.; Laksir, H.; Puget, E. Insulin resistance, diabetes and cognitive function: Consequences for pre-ventative strategies. Diabetes Metab. 2010, 36, 173–181. [Google Scholar] [CrossRef]
- Pinillos Patiño, Y.; Herazo Beltrán, Y.; Vidarte Claros, J.A.; Quiroz, E.; Suarez Palacio, D. Niveles de Actividad Física y sus Deter-minantes en Mujeres Adultas de Barranquilla. Cienc. Innov. Salud 2014, 2, 10–17. [Google Scholar]
- De La Cruz Vargas, J.A.; Dyzinger, W.; Herzog, S.; dos Santos, F.; Villegas, H.; Ezinga, M. Medicina del Estilo de Vida: Trabajando juntos para revertir la epidemia de las enfermedades crónicas en Latinoamérica. Cienc. Innov. Salud 2017, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Frederiksen, K.S.; Verdelho, A.; Madureira, S.; Bäzner, H.; O’Brien, J.T.; Fazekas, F.; Scheltens, P.; Schmidt, R.; Wallin, A.; Wahlund, L.; et al. Physical activity in the elderly is associated with improved executive function and processing speed: The LADIS Study: Physical activity and cognitive function. Int. J. Geriatr. Psychiatry. 2015, 30, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Karssemeijer, E.G.A.; Aaronson, J.A.; Bossers, W.J.; Smits, T.; Olde Rikkert, M.G.M.; Kessels, R.P.C. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A me-ta-analysis. Ageing Res. Rev. 2017, 40, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Groot, C.; Hooghiemstra, A.; Raijmakers, P.; Van Berckel, B.; Scheltens, P.; Scherder, E.; van der Flier, W.; Ossenkoppele, R. The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Res. Rev. 2016, 25, 13–23. [Google Scholar] [CrossRef]
- Díaz Cárdenas, S. Fomento de la Salud Física en Pacientes de la Facultad de Odontología de la Universidad de Cartagena: Sistematización de Experiencias. Cienc. Innov. Salud 2013, 1, 52–56. [Google Scholar] [CrossRef]
- Lautenschlager, N.T.; Cox, K.L.; Ellis, K.A. Physical activity for cognitive health: What advice can we give to older adults with subjective cognitive decline and mild cognitive impairment? Dialogues Clin. Neurosci. 2019, 21, 61–68. [Google Scholar] [PubMed]
- McGrattan, A.M.; McEvoy, C.; McGuinness, B.; McKinley, M.C.; Woodside, J.V. Effect of dietary interventions in mild cognitive impairment: A systematic review. Br. J. Nutr. 2018, 120, 1388–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Parsaik, A.K.; Mielke, M.; Erwin, P.J.; Knopman, D.S.; Petersen, R.C.; Roberts, R.O. Association of Mediterranean Diet with Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2014, 39, 271–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosking, D.E.; Eramudugolla, R.; Cherbuin, N.; Anstey, K.J. MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimer’s Dement. 2019, 15, 581–589. [Google Scholar] [CrossRef]
- Krikorian, R.; Shidler, M.D.; Dangelo, K.; Couch, S.C.; Benoit, S.C.; Clegg, D.J. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol. Aging 2012, 33, 425.e19–425.e27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chen, J.; Qiu, J.; Li, Y.; Wang, J.; Jiao, J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: A dose-response meta-analysis of 21 cohort studies1–3. Am. J. Clin. Nutr. 2015, 103, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Rouch, L.; Cestac, P.; Hanon, O.; Cool, C.; Helmer, C.; Bouhanick, B.; Chamontin, B.; Dartigues, J.-F.; Vellas, B.; Andrieu, S. Antihypertensive Drugs, Prevention of Cognitive Decline and Dementia: A Systematic Review of Observational Studies, Randomized Controlled Trials and Meta-Analyses, with Discussion of Potential Mechanisms. CNS Drugs 2015, 29, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Levi Marpillat, N.; Macquin-Mavier, I.; Tropeano, A.I.; Bachoud-Levi, A.-C.; Maison, P. Antihypertensive classes, cognitive decline and incidence of dementia: A network meta-analysis. J. Hypertens. 2013, 31, 1073–1082. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Fratiglioni, L.; Zhu, L.; Fastbom, J.; Winblad, B.; Viitanen, M. Occurrence and progression of dementia in a community population aged 75 years and older: Relationship of antihypertensive medication use. Arch. Neurol. 1999, 56, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Q.; Li, W.S.; Liu, Z.; Zhang, H.L.; Ba, Y.G.; Zhang, R.X. Metformin therapy and cognitive dysfunction in patients with type 2 diabetes: A meta-analysis and systematic review. Medicine 2020, 99, 19378. [Google Scholar] [CrossRef]
- Ng, T.P.; Feng, L.; Yap, K.B.; Lee, T.S.; Tan, C.H.; Winblad, B. Long-Term Metformin Usage and Cognitive Function among Older Adults with Diabetes. J. Alzheimer’s Dis. 2014, 41, 61–68. [Google Scholar] [CrossRef]
- Borzì, A.M.; Condorelli, G.; Biondi, A.; Basile, F.; Vicari, E.S.D.; Buscemi, C.; Luca, S.; Vacante, M. Effects of vildagliptin, a DPP-4 inhibitor, in elderly diabetic patients with mild cognitive impairment. Arch. Gerontol. Geriatr. 2019, 84, 103896. [Google Scholar] [CrossRef]
- Areosa Sastre, A.; Vernooij, R.W.; González-Colaço Harmand, M.; Martínez, G. Effect of the treatment of Type 2 diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst. Rev. 2017, 6, 003804. [Google Scholar] [CrossRef]
- Koo, B.K.; Kim, L.; Lee, J.; Moon, M.K. Taking metformin and cognitive function change in older patients with diabetes. Geriatr. Gerontol. Int. 2019, 19, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Wennberg, A.M.V.; Hagen, C.E.; Edwards, K.; Roberts, R.O.; Machulda, M.M.; Knopman, D.S.; Petersen, R.C.; Mielke, M.M. Association of antidiabetic medi-cation use, cognitive decline, and risk of cognitive impairment in older people with type 2 diabetes: Results from the pop-ulation-based Mayo Clinic Study of Aging. Int. J. Geriatr. Psychiatry. 2018, 33, 1114–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink, H.A.; Jutkowitz, E.; McCarten, J.R.; Hemmy, L.S.; Butler, M.; Davila, H.; Ratner, E.; Calvert, C.; Barclay, T.R.; Brasure, M. Pharmacologic interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia: A systematic review. Ann. Intern. Med. 2018, 168, 39–51. [Google Scholar] [CrossRef]
- Ligthart, S.A.; Moll van Charante, E.P.; Van Gool, W.A.; Richard, E. Treatment of cardiovascular risk factors to prevent cognitive decline and dementia: A systematic review. Vasc. Health Risk Manag. 2010, 6, 775–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, J.; O’Donnell, M.; Swaminathan, B.; Lonn, E.M.; Sharma, M.; Dagenais, G.; Diaz, R.; Khunit, K.; Lewis, B.S.; Avezum, A.; et al. Effects of blood pressure and lipid lowering on cognition: Results from the HOPE-3 study. Neurology 2019, 92, 1435–1446. [Google Scholar] [CrossRef] [Green Version]
- Bettermann, K.; Arnold, A.M.; Williamson, J.; Rapp, S.; Sink, K.; Toole, J.F.; Carlson, M.C.; Yasar, S.; DeKosky, S.; Burke, G.L. Statins, Risk of Dementia, and Cognitive Function: Secondary Analysis of the Ginkgo Evaluation of Memory Study. J. Stroke Cerebrovasc. Dis. 2012, 21, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Zandi, P.P.; Sparks, D.L.; Khachaturian, A.S.; Tschanz, J.; Norton, M.; Steinberg, M.; Welsh-Bohmer, K.A.; Breitner, J.C.S. Do Statins Reduce Risk of Incident Dementia and Alzheimer Disease? The Cache County Study. Arch. Gen. Psychiatry 2005, 62, 217–224. [Google Scholar] [CrossRef]
- Rea, T.D.; Breitner, J.C.; Psaty, B.M.; Fitzpatrick, A.L.; Lopez, O.L.; Newman, A.B.; Hazzard, W.R.; Zandi, P.P.; Burke, G.L.; Lyketsos, C.G.; et al. Statin use and the risk of incident dementia: The cardiovascular health study. Arch. Neurol. 2005, 62, 1047–1051. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.; Shimada, H.; Lee, S.; Makizako, H.; Lee, S.; Harada, K.; Doi, T.; Tsutsumimoto, K.; Hotta, R.; Nakakubo, S.; et al. The Relationships Between Components of Metabolic Syndrome and Mild Cognitive Impairment Subtypes: A Cross-Sectional Study of Japanese Older Adults. J. Alzheimer’s Dis. 2017, 60, 913–921. [Google Scholar] [CrossRef]
- Steen, E.; Terry, B.M.; Rivera, E.J.; Cannon, J.L.; Neely, T.R.; Tavares, R.; Xu, X.J.; Wands, J.R.; De La Monte, S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—Is this type 3 diabetes? J. Alzheimer’s Dis. 2005, 7, 63–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frölich, L.; Blum-Degen, D.; Bernstein, H.-G.; Engelsberger, S.; Humrich, J.; Laufer, S.; Muschner, D.; Thalheimer, A.; Türk, A.; Hoyer, S.; et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J. Neural Transm. 1998, 105, 423–438. [Google Scholar] [CrossRef] [PubMed]
- Craft, S.; Peskind, E.; Schwartz, M.W.; Schellenberg, G.D.; Raskind, M.; Porte, D. Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: Relationship to severity of dementia and apolipoprotein E genotype. Neurology 1998, 50, 164–168. [Google Scholar] [CrossRef]
- Mody, N.; Agouni, A.; Mcilroy, G.D.; Platt, B.; Delibegovic, M. Susceptibility to diet-induced obesity and glucose intolerance in the APP SWE/PSEN1 A246E mouse model of Alzheimer’s disease is associated with increased brain levels of protein tyrosine phosphatase 1B (PTP1B) and retinol-binding protein 4 (RBP4), and basal phosphorylation of S6 ribosomal protein. Diabetologia 2011, 54, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
- Janson, J.; Laedtke, T.; Parisi, J.E.; O’Brien, P.; Petersen, R.C.; Butler, P.C. Increased Risk of Type 2 Diabetes in Alzheimer Disease. Diabetes 2004, 53, 474–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, D.M.; Starr, J.M.; Deary, I.J. Cognitive function in early and later life is associated with blood glucose in older individuals: Analysis of the Lothian Birth Cohort of 1936. Diabetologia 2018, 61, 1946–1955. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Xu, Z.; Mo, X.; Guo, Q.; Yin, J.; Xu, M.; Peng, Z.; Sun, T.; Zhou, L.; Peng, X.; et al. Association of plasma β-amyloid 40 and 42 concentration with type 2 diabetes among Chinese adults. Diabetologia 2020, 63, 954–963. [Google Scholar] [CrossRef]
- Lipton, S.A. Paradigm shift in NMDA receptor antagonist drug development: Molecular mechanism of uncompetitive inhi-bition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J. Alzheimers Dis. 2004, 6, 61–74. [Google Scholar] [CrossRef]
- Ettcheto, M.; Sanchez-Lopez, E.; Gómez-Mínguez, Y.; Cabrera, H.; Busquets, O.; Beas-Zárate, C.; García, M.L.; Carro, E.; Casadesus, G.; Auladell, C.; et al. Peripheral and Central Effects of Memantine in a Mixed Preclinical Mice Model of Obesity and Familial Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 7327–7339. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Elgharabawy, R.; Al-Najjar, A.H. Ameliorating effect of anti-Alzheimer’s drugs on the bidirectional association between type 2 diabetes mellitus and Alzheimer’s disease. Exp. Biol. Med. 2017, 242, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Meakin, P.J.; Harper, A.J.; Hamilton, D.L.; Gallagher, J.; McNeilly, A.D.; Burgess, L.A.; Vaanholt, L.M.; Bannon, K.A.; Latcham, J.; Hussain, I.; et al. Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice. Biochem. J. 2011, 441, 285–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessels, A.M.; Tariot, P.N.; Zimmer, J.A.; Selzler, K.J.; Bragg, S.M.; Andersen, S.W.; Landry, J.; Krull, J.H.; Downing, A.M.; Willis, B.A.; et al. Efficacy and safety of Lanabecestat for treatment of early and mild Alzheimer disease: The AMARANTH and DAYBREAK-ALZ randomized clinical trials. JAMA Neurol. 2020, 77, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, B.; Deng, B.; Zhang, F.; Wu, J.; Wang, Y.; Le, Y.; Zhai, Q. Amyloid-β Induces Hepatic Insulin Resistance In Vivo via JAK2. Diabetes 2012, 62, 1159–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunstad, J.; Spitznagel, M.B.; Paul, R.H.; Cohen, R.A.; Kohn, M.; Luyster, F.S.; Clark, R.; Williams, L.M.; Gordon, E. Body mass index and neuropsychological function in healthy children and adolescents. Appetite 2008, 50, 246–251. [Google Scholar] [CrossRef]
- Muller, M.; Tang, M.-X.; Schupf, N.; Manly, J.J.; Mayeux, R.; Luchsinger, J.A. Metabolic Syndrome and Dementia Risk in a Multiethnic Elderly Cohort. Dement. Geriatr. Cogn. Disord. 2007, 24, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Forti, P.; Pisacane, N.; Rietti, E.; Lucicesare, A.; Olivelli, V.; Mariani, E.; Mecocci, P.; Ravaglia, G. Metabolic Syndrome and Risk of Dementia in Older Adults. J. Am. Geriatr. Soc. 2010, 58, 487–492. [Google Scholar] [CrossRef]
- Feinkohl, I.; Janke, J.; Hadzidiakos, D.; Slooter, A.; Winterer, G.; Spies, C.; Pischon, T. Associations of the metabolic syndrome and its components with cognitive impairment in older adults. BMC Geriatr. 2019, 19, 1–11. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, M.; Chávez-Castillo, M.; Pirela, D.; Parra, H.; Nava, M.; Chacín, M.; Angarita, L.; Añez, R.; Salazar, J.; Ortiz, R.; et al. Metabolic Syndrome: Is It Time to Add the Central Nervous System? Nutrients 2021, 13, 2254. https://doi.org/10.3390/nu13072254
Rojas M, Chávez-Castillo M, Pirela D, Parra H, Nava M, Chacín M, Angarita L, Añez R, Salazar J, Ortiz R, et al. Metabolic Syndrome: Is It Time to Add the Central Nervous System? Nutrients. 2021; 13(7):2254. https://doi.org/10.3390/nu13072254
Chicago/Turabian StyleRojas, Milagros, Mervin Chávez-Castillo, Daniela Pirela, Heliana Parra, Manuel Nava, Maricarmen Chacín, Lissé Angarita, Roberto Añez, Juan Salazar, Rina Ortiz, and et al. 2021. "Metabolic Syndrome: Is It Time to Add the Central Nervous System?" Nutrients 13, no. 7: 2254. https://doi.org/10.3390/nu13072254
APA StyleRojas, M., Chávez-Castillo, M., Pirela, D., Parra, H., Nava, M., Chacín, M., Angarita, L., Añez, R., Salazar, J., Ortiz, R., Durán Agüero, S., Gravini-Donado, M., Bermúdez, V., & Díaz-Camargo, E. (2021). Metabolic Syndrome: Is It Time to Add the Central Nervous System? Nutrients, 13(7), 2254. https://doi.org/10.3390/nu13072254