Association between Mobile Phone Addiction Index and Sugar-Sweetened Food Intake in Medical College Students Stratified by Sex from Shanghai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Population
2.2. Questionnaire Design
2.3. Questionnaire Survey
2.4. Mesurements
2.4.1. SSF
2.4.2. MPAI
2.4.3. Covariate Assessment
NLAQ
BMI
Total and Food Expenditure
Physical Activity
2.5. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, F.B.; Malik, V.S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol. Behav. 2010, 100, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.Q.; Cheng, L.X.; Jiang, W.J. Sugar-sweetened beverages consumption and the risk of depression: A meta-analysis of observational studies. J. Affect. Disord. 2019, 245, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G.K. Why do we like sweet taste: A bitter tale? Physiol. Behav. 2016, 164, 432–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, A.; Reid, J.; Thomson, M. Guideline: Sugars Intake for Adults and Children. World Heal. Organ. 2018, 57, 1716–1722. [Google Scholar]
- Kit, B.K.; Fakhouri, T.H.I.; Park, S.; Nielsen, S.J.; Ogden, C.L. Trends in sugar-sweetened beverage consumption among youth and adults in the United States: 1999–2010. Am. J. Clin. Nutr. 2013, 98, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Brand-Miller, J.C.; Barclay, A.W. Declining consumption of added sugars and sugar-sweetened beverages in Australia: A challenge for obesity prevention. Am. J. Clin. Nutr. 2017, 105, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Aburto, T.C.; Pedraza, L.S.; Sanchez-Pimienta, T.G.; Batis, C.; Rivera, J.A. Discretionary Foods Have a High Contribution and Fruit, Vegetables, and Legumes Have a Low Contribution to the Total Energy Intake of the Mexican Population. J. Nutr. 2016, 146, 1881–1887. [Google Scholar] [CrossRef] [Green Version]
- Klevay, L.M. Letter by Klevay Regarding Article, “Long-Term Consumption of Sugar-Sweetened and Artificially Sweetened Beverages and Risk of Mortality in US Adults”. Circulation 2019, 140, e651. [Google Scholar] [CrossRef]
- Park, S.; Onufrak, S.; Sherry, B.; Blanck, H.M. The Relationship between Health-Related Knowledge and Sugar-Sweetened Beverage Intake among US Adults. J. Acad. Nutr. Diet. 2014, 114, 1059–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef]
- Pollock, N.K.; Bundy, V.; Kanto, W.; Davis, C.L.; Bernard, P.J.; Zhu, H.; Gutin, B.; Dong, Y. Greater fructose consumption is associated with cardiometabolic risk markers and visceral adiposity in adolescents. J. Nutr. 2012, 142, 251–257. [Google Scholar] [CrossRef]
- Chan, T.F.; Lin, W.T.; Huang, H.L.; Lee, C.Y.; Wu, P.W.; Chiu, Y.W.; Huang, C.C.; Tsai, S.; Lin, C.L.; Lee, C.H. Consumption of Sugar-Sweetened Beverages Is Associated with Components of the Metabolic Syndrome in Adolescents. Nutrients 2014, 6, 2088–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhupathiraju, S.N.; Pan, A.; Malik, V.S.; Manson, J.E.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Caffeinated and caffeine-free beverages and risk of type 2 diabetes. Am. J. Clin. Nutr. 2013, 97, 155–166. [Google Scholar] [CrossRef] [Green Version]
- de Koning, L.; Malik, V.S.; Kellogg, M.D.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Sweetened Beverage Consumption, Incident Coronary Heart Disease, and Biomarkers of Risk in Men. Circulation 2012, 125, 1735–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assy, N.; Nasser, G.; Kamayse, I.; Nseir, W.; Beniashvili, Z.; Djibre, A.; Grosovski, M. Soft drink consumption linked with fatty liver in the absence of traditional risk factors. Can. J. Gastroenterol. 2008, 22, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Batt, C.; Phipps-Green, A.J.; Black, M.A.; Cadzow, M.; Merriman, M.E.; Topless, R.; Gow, P.; Harrison, A.; Highton, J.; Jones, P.; et al. Sugar-sweetened beverage consumption: A risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann. Rheum. Dis. 2014, 73, 2101–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBoer, M.D.; Scharf, R.J.; Demmer, R.T. Sugar-Sweetened Beverages and Weight Gain in 2-to 5-Year-Old Children. Pediatrics 2013, 132, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Overby, N.C.; Lillegaard, I.T.L.; Johansson, L.; Andersen, L.F. High intake of added sugar among Norwegian children and adolescents. Public Health Nutr. 2004, 7, 285–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mireku, M.O.; Barker, M.M.; Mutz, J.; Dumontheil, I.; Thomas, M.S.C.; Roosli, M.; Elliott, P.; Toledano, M.B. Night-time screen-based media device use and adolescents’ sleep and health-related quality of life. Environ. Int. 2019, 124, 66–78. [Google Scholar] [CrossRef]
- Tebar, W.R.; Christofaro, D.G.D.; Diniz, T.A.; Lofrano-Prado, M.C.; Botero, J.P.; Correia, M.D.; Cucato, G.G.; Ritti-Dias, R.M.; do Prado, W.L. Increased Screen Time Is Associated With Alcohol Desire and Sweetened Foods Consumption During the COVID-19 Pandemic. Front. Nutr. 2021, 8, 630586. [Google Scholar] [CrossRef] [PubMed]
- Leung, L. Linking Psychological Attributes to Addiction and Improper Use of the Mobile Phone among Adolescents in Hong Kong. J. Child. Media 2008, 2, 93–113. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhan, D.N.; Zhou, Y.H.; Gao, X.M. Loneliness and problematic mobile phone use among adolescents during the COVID-19 pandemic: The roles of escape motivation and self-control. Addict. Behav. 2021, 118, 106857. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Zhang, Y.B.; Zhang, L.L.; Luo, F.Z.; Xu, W.T.; Huang, J.H.; Yang, L.Y.; Zhang, W. Childhood emotional neglect and problematic mobile phone use among Chinese adolescents: A longitudinal moderated mediation model involving school engagement and sensation seeking. Child Abuse Negl. 2021, 115, 104991. [Google Scholar] [CrossRef]
- Zoellner, J.M.; Hedrick, V.E.; You, W.; Chen, Y.; Davy, B.M.; Porter, K.J.; Bailey, A.; Lane, H.; Alexander, R.; Estabrooks, P.A. Effects of a behavioral and health literacy intervention to reduce sugar-sweetened beverages: A randomized-controlled trial. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.J.; Xue, H.; Kumanyika, S.; Wang, Y. School beverage environment and children’s energy expenditure associated with physical education class: An agent-based model simulation. Pediatr. Obes. 2017, 12, 203–212. [Google Scholar] [CrossRef]
- Santaliestra-Pasias, A.M.; Dios, J.E.L.; Sprengeler, O.; Hebestreit, A.; De Henauw, S.; Eiben, G.; Felso, R.; Lauria, F.; Tornaritis, M.; Veidebaum, T.; et al. Food and beverage intakes according to physical activity levels in European children: The IDEFICS (Identification and prevention of Dietary and lifestyle induced health EFfects In Children and infantS) study. Public Health Nutr. 2018, 2, 1717–1725. [Google Scholar] [CrossRef] [Green Version]
- LaCaille, L.J.; Dauner, K.N.; Krambeer, R.J.; Pedersen, J. Psychosocial and Environmental Determinants of Eating Behaviors, Physical Activity, and Weight Change Among College Students: A Qualitative Analysis. J. Am. Coll. Health 2011, 59, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Kit, B.K.; Carroll, M.D.; Park, S. Consumption of sugar drinks in the United States, 2005–2008. NCHS Data Brief 2011, 71, 1–8. [Google Scholar]
- Rosinger, A.; Herrick, K.; Gahche, J.; Park, S. Sugar-sweetened Beverage Consumption Among, U.S. Adults, 2011–2014. NCHS Data Brief 2017, 270, 1–8. [Google Scholar]
- Guttersrud, O.; Dalane, J.O.; Pettersen, S. Improving measurement in nutrition literacy research using Rasch modelling: Examining construct validity of stage-specific ‘critical nutrition literacy’ scales. Public Health Nutr. 2014, 17, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jia, Y.N.; Qian, H.H.; Fu, H. Development of assessment indicators system of health literacy for college student in China. Health Educ. Health Promot. 2018, 13, 514–519. [Google Scholar]
- Zhu, Y.B. “Obesity paradox”—A phenomenon based upon the health-related outcome on quality of life. Chin. J. Epidemiol. 2013, 34, 294–296. [Google Scholar]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, s498–s504. [Google Scholar] [CrossRef] [Green Version]
- Kyu, H.H.; Bachman, V.F.; Alexander, L.T.; Mumford, J.E.; Afshin, A.; Estep, K.; Veerman, J.L.; Delwiche, K.; Iannarone, M.L.; Moyer, M.L.; et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: Systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016, 354, i3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, M.; Wang, C.; Zhang, Y.M.; Zheng, Y.D.; Zhang, L.; Huang, Y.J.; Wang, P.Y. Sugary beverage intakes and obesity prevalence among junior high school students in Beijing—A cross-sectional research on SSBs intake. Asia Pac. J. Clin. Nutr. 2012, 21, 425–430. [Google Scholar]
- Yang, Q.P.; Xi, Y.; Liu, H.M.; Luo, J.; Ouyang, Y.F.; Sun, M.H.; Yong, C.T.; Xiang, C.H.; Lin, Q. Free Sugars Intake among Chinese Adolescents and Its Association with Dental Caries: A Cross-Sectional Study. Nutrients 2021, 13, 765. [Google Scholar] [CrossRef] [PubMed]
- Lian, S.L.; Sun, X.J.; Niu, G.F.; Yang, X.J.; Zhou, Z.K.; Yang, C. Mobile phone addiction and psychological distress among Chinese adolescents: The mediating role of rumination and moderating role of the capacity to be alone. J. Affect. Disord. 2021, 279, 701–710. [Google Scholar] [CrossRef]
- Soni, R.; Upadhyay, R.; Jain, M. Prevalence of smart phone addiction, sleep quality and associated behavior problems in adolescents. Int. J. Res. Med. Sci. 2017, 5, 515–519. [Google Scholar] [CrossRef] [Green Version]
- Powell, L.M.; Szczypka, G.; Chaloupka, F.J. Trends in Exposure to Television Food Advertisements Among Children and Adolescents in the United States. Arch. Pediatr. Adolesc. Med. 2010, 164, 794–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, L.M.; Szczypka, G.; Chaloupka, F.J. Adolescent exposure to food advertising on television. Am. J. Prev. Med. 2007, 33, s251–s256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avery, A.; Anderson, C.; McCullough, F. Associations between children’s diet quality and watching television during meal or snack consumption: A systematic review. Matern. Child Nutr. 2017, 13, e12428. [Google Scholar] [CrossRef]
- Wang, Y.C.; Bleich, S.N.; Gortmaker, S.L. Increasing caloric contribution from sugar-sweetened beverages and 100% fruit juices among US children and adolescents, 1988–2004. Pediatrics 2008, 121, e1604–e1614. [Google Scholar] [CrossRef] [PubMed]
- ul Haq, I.; Mariyam, Z.; Li, M.; Huang, X.J.; Jiang, P.; Zeb, F.; Wu, X.Y.; Feng, Q.; Zhou, M. A Comparative Study of Nutritional Status, Knowledge Attitude and Practices (KAP) and Dietary Intake between International and Chinese Students in Nanjing, China. Int. J. Environ. Res. Public Health 2018, 15, 1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, Z.H.; Zhu, Y.N.; Cai, L.; Sun, F.H.; Ma, Y.H.; Jing, J.; Chen, Y.J. Sugar-Sweetened Beverage Consumption and Risks of Obesity and Hypertension in Chinese Children and Adolescents: A National Cross-Sectional Analysis. Nutrients 2017, 9, 1302. [Google Scholar] [CrossRef] [Green Version]
- Buja, A.; Grotto, G.; Montecchio, L.; De Battisti, E.; Sperotto, M.; Bertoncello, C.; Cocchio, S.; Baldovin, T.; Baldo, V. Association between health literacy and dietary intake of sugar, fat and salt: A systematic review. Public Health Nutr. 2021, 24, 2085–2097. [Google Scholar] [CrossRef]
- Prada, M.; Saraiva, M.; Garrido, M.V.; Rodrigues, D.L.; Lopes, D. Knowledge about Sugar Sources and Sugar Intake Guidelines in Portuguese Consumers. Nutrients 2020, 12, 3888. [Google Scholar] [CrossRef]
- Vitoria, P.D.; Salgueiro, M.F.; Silva, S.A.; De Vries, H. The impact of social influence on adolescent intention to smoke: Combining types and referents of influence. Br. J. Health Psychol. 2009, 14, 681–699. [Google Scholar] [CrossRef]
- Liu, F.R.; Wang, Q.G.; Tian, M.J.; Liu, M.F. Monthly cost of living data analysis of college students. Tech. Wind 2020, 18, 283. [Google Scholar]
- Rodriguez, N.R.; Di Marco, N.M.; Langley, S.; American Dietetic Association; Dietitians of Canada; American College of Sports Medicine. American College of Sports Medicine position stand. Nutrition and athletic performance. Med. Sci. Sports Exerc. 2009, 41, 709–731. [Google Scholar]
- Wasserman, D.H.; Zinman, B. Exercise in individuals with IDDM. Diabetes Care 1994, 17, 924–937. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Male (n = 368) | Female (n = 753) | p Value |
---|---|---|---|
MPAI (score), Mean ± SD | 44.94 ± 12.08 | 45.25 ± 11.87 | 0.682 |
Age (years), Mean ± SD | 23.22 ± 3.32 | 23.45 ± 3.39 | 0.277 |
NLAQ (score) | |||
Acquisition capacity (score), Mean ± SD | 12.44 ± 3.41 | 12.27 ± 3.37 | 0.431 |
Comprehension capacity (score), Mean ± SD | 21.80 ± 4.12 | 21.99 ± 3.86 | 0.471 |
Application capacity (score), Mean ± SD | 10.81 ± 2.64 | 10.93 ± 2.46 | 0.440 |
BMI (kg/m2) | |||
Normal, n (%) | 240 (65.22) | 541 (71.85) | <0.001 |
Underweight, n (%) | 17 (4.62) | 166 (22.05) | |
Overweight and obese, n (%) | 111 (30.16) | 46 (6.11) | |
Total physical activity (MET/min/w) | |||
<600 (MET/min/w), n (%) | 43 (11.68) | 188 (24.97) | <0.001 |
600–4000 (MET/min/w), n (%) | 289 (78.53) | 539 (71.58) | |
≥4000 (MET/min/w), n (%) | 36 (9.78) | 26 (3.45) | |
CB (mL/d) | |||
Low intake, n (%) | 127 (34.51) | 434 (57.64) | <0.001 |
High intake, n (%) | 241 (65.49) | 319 (42.36) | |
OSBB (mL/d) | |||
Low intake, n (%) | 205 (55.71) | 399 (52.99) | 0.391 |
High intake, n (%) | 163 (44.29) | 354 (47.01) | |
Sugar/chocolate (g/day) | |||
Low intake, n (%) | 246 (66.85) | 438 (58.17) | 0.005 |
High intake, n (%) | 122 (33.15) | 315 (41.83) | |
Total expenditure (CNY/month) | |||
<2000 (CNY/month), n (%) | 176 (47.83) | 274 (36.39) | <0.001 |
≥2000 (CNY/month), n (%) | 192 (52.17) | 479 (63.61) | |
Food expenditure (CNY/month) | |||
<1000 (CNY/month), n (%) | 108 (29.35) | 249 (33.07) | 0.209 |
≥1000 (CNY/month), n (%) | 260 (70.65) | 504 (66.93) |
Characteristics | Male Adjusted OR (95%CI) | Female Adjusted OR (95%CI) |
---|---|---|
MPAI (score) | 1.023 (1.004–1.042) * | 1.026 (1.013–1.039) * |
Age (years) | 0.979 (0.915–1.048) | 0.958 (0.916–1.003) |
NLAQ (score) | ||
Acquisition capacity | 0.954 (0.893–1.020) | 1.045 (0.999–1.094) |
Comprehension capacity | 1.015 (0.952–1.081) | 1.039 (0.993–1.088) |
Application capacity | 1.007 (0.911–1.112) | 1.012 (0.942–1.089) |
BMI (kg/m2) | ||
Normal | 1 (Reference) | 1 (Reference) |
Underweight | 0.850 (0.292–2.474) | 1.144 (0.798–1.641) |
Overweight and obese | 1.149 (0.702–1.880) | 1.495 (0.807–2.773) |
Total physical activity (MET/min/w) | ||
<600 MET/min/w | 1 (Reference) | 1 (Reference) |
600–4000 MET/min/w | 0.880 (0.427–1.815) | 0.956 (0.679–1.348) |
≥4000 MET/min/w | 0.771 (0.291–2.046) | 0.687 (0.285–1.652) |
Total expenditure (CNY/month) | ||
<2000 CNY/month | 1 (Reference) | 1 (Reference) |
≥2000 CNY/month | 0.868 (0.516–1.463) | 1.308 (0.912–1.875) |
Food expenditure (CNY/month) | ||
<1000 CNY/month | 1 (Reference) | 1 (Reference) |
≥1000 CNY/month | 1.881 (1.078–3.281) * | 1.092 (0.756–1.577) |
Characteristics | Male Adjusted OR (95%CI) | Female Adjusted OR (95%CI) |
---|---|---|
MPAI (score) | 1.019 (1.001–1.038) * | 1.020 (1.007–1.033) * |
Age (years) | 0.929 (0.865–0.997) * | 0.948 (0.904–0.993) * |
NLAQ (score) | ||
Acquisition capacity | 1.023 (0.957–1.093) | 1.034 (0.987–1.082) |
Comprehension capacity | 1.054 (0.989–1.123) | 1.010 (0.965–1.057) |
Application capacity | 0.994 (0.900–1.098) | 0.978 (0.910–1.052) |
BMI (kg/m2) | ||
Normal | 1 (Reference) | 1 (Reference) |
Underweight | 0.631 (0.220–1.815) | 1.081 (0.750–1.557) |
Overweight and obese | 0.830 (0.511–1.349) | 1.687 (0.893–3.187) |
Total physical activity (MET/min/w) | ||
<600 MET/min/w | 1 (Reference) | 1 (Reference) |
600–4000 MET/min/w | 0.716 (0.353–1.454) | 0.763 (0.540–1.080) |
≥4000 MET/min/w | 0.859 (0.331–2.226) | 0.448 (0.185–1.088) |
Total expenditure (CNY/month) | ||
<2000 CNY/month | 1 (Reference) | 1 (Reference) |
≥2000 CNY/month | 1.750 (1.060–2.890) * | 1.991 (1.387–2.857) * |
Food expenditure (CNY/month) | ||
<1000 CNY/month | 1 (Reference) | 1 (Reference) |
≥1000 CNY/month | 2.441 (1.378–4.324) * | 1.598 (1.106–2.309) * |
Characteristics | Male Adjusted OR (95%CI) | Female Adjusted OR (95%CI) |
---|---|---|
MPAI (score) | 1.005 (0.986–1.025) | 1.019 (1.006–1.032) * |
Age (years) | 0.942 (0.872–1.017) | 0.948 (0.906–0.993) * |
NLAQ (score) | ||
Acquisition capacity | 0.996 (0.931–1.067) | 1.012 (0.967–1.059) |
Comprehension capacity | 1.082 (1.013–1.155) * | 1.035 (0.989–1.083) |
Application capacity | 0.901 (0.813–0.998) * | 0.909 (0.846–0.977) * |
BMI (kg/m2) | ||
Normal | 1 (Reference) | 1 (Reference) |
Underweight | 1.006 (0.346–2.927) | 1.377 (0.963–1.967) |
Overweight and obese | 0.716 (0.430–1.192) | 0.799 (0.421–1.516) |
Total physical activity (MET/min/w) | ||
<600 MET/min/w | 1 (Reference) | 1 (Reference) |
600–4000 MET/min/w | 1.595 (0.728–3.493) | 1.026 (0.728–1.448) |
≥4000 MET/min/w | 2.860 (1.047–7.812) * | 0.798 (0.336–1.895) |
Total expenditure (CNY/month) | ||
<2000 CNY/month | 1 (Reference) | 1 (Reference) |
≥2000 CNY/month | 1.042 (0.622–1.748) | 1.206 (0.842–1.727) |
Food expenditure (CNY/month) | ||
<1000 CNY/month | 1 (Reference) | 1 (Reference) |
≥1000 CNY/month | 1.648 (0.915–2.967) | 0.846 (0.587–1.219) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhou, W.; Wang, J.; Chen, B.; He, G.; Jia, Y. Association between Mobile Phone Addiction Index and Sugar-Sweetened Food Intake in Medical College Students Stratified by Sex from Shanghai, China. Nutrients 2021, 13, 2256. https://doi.org/10.3390/nu13072256
Liu S, Zhou W, Wang J, Chen B, He G, Jia Y. Association between Mobile Phone Addiction Index and Sugar-Sweetened Food Intake in Medical College Students Stratified by Sex from Shanghai, China. Nutrients. 2021; 13(7):2256. https://doi.org/10.3390/nu13072256
Chicago/Turabian StyleLiu, Shaojie, Weiqiang Zhou, Jiangqi Wang, Bo Chen, Gengsheng He, and Yingnan Jia. 2021. "Association between Mobile Phone Addiction Index and Sugar-Sweetened Food Intake in Medical College Students Stratified by Sex from Shanghai, China" Nutrients 13, no. 7: 2256. https://doi.org/10.3390/nu13072256
APA StyleLiu, S., Zhou, W., Wang, J., Chen, B., He, G., & Jia, Y. (2021). Association between Mobile Phone Addiction Index and Sugar-Sweetened Food Intake in Medical College Students Stratified by Sex from Shanghai, China. Nutrients, 13(7), 2256. https://doi.org/10.3390/nu13072256