Effect of an Antenatal Lifestyle Intervention on Dietary Inflammatory Index and Its Associations with Maternal and Fetal Outcomes: A Secondary Analysis of the PEARS Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Data Collection
2.3. Dietary Inflammatory Index
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Demographic Variables
3.2. Dietary Inflammatory Index
3.3. Cardiometabolic Markers
3.4. Pregnancy Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shin, D.; Hur, J.; Cho, E.-H.; Chung, H.-K.; Shivappa, N.; Wirth, M.D.; Hébert, J.R.; Lee, K.W. Pre-Pregnancy Body Mass Index Is Associated with Dietary Inflammatory Index and C-Reactive Protein Concentrations during Pregnancy. Nutrients 2017, 9, 351. [Google Scholar] [CrossRef] [Green Version]
- Sureshchandra, S.; Marshall, N.E.; Wilson, R.M.; Barr, T.; Rais, M.; Purnell, J.Q.; Thornburg, K.L.; Messaoudi, I. Inflammatory Determinants of Pregravid Obesity in Placenta and Peripheral Blood. Front. Physiol. 2018, 9, 1089. [Google Scholar] [CrossRef]
- Wallace, M.K.; Shivappa, N.; Wirth, M.D.; Hébert, J.R.; Huston-Gordesky, L.; Alvarado, F.; Mouzon, S.H.-D.; Catalano, P.M. Longitudinal Assessment of Relationships Between Health Behaviors and IL-6 in Overweight and Obese Pregnancy. Biol. Res. Nurs. 2021, 23, 481–487. [Google Scholar] [CrossRef]
- Nazzari, S.; Frigerio, A. The programming role of maternal antenatal inflammation on infants’ early neurodevelopment: A review of human studies: Special Section on “Translational and Neuroscience Studies in Affective Disorders”. J. Affect. Disord. 2020, 263, 739–746. [Google Scholar] [CrossRef]
- Monthé-Drèze, C.; Rifas-Shiman, S.L.; Gold, D.R.; Oken, E.; Sen, S.; Sarbattama, S. Maternal obesity and offspring cognition: The role of inflammation. Pediatr. Res. 2018, 85, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hébert, J.R. A New Dietary Inflammatory Index Predicts Interval Changes in Serum High-Sensitivity C-Reactive Protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2013, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Rifas-Shiman, S.L.; Shivappa, N.; Wirth, M.D.; Hébert, J.R.; Gold, D.R.; Gillman, M.W.; Oken, E. Dietary Inflammatory Potential during Pregnancy Is Associated with Lower Fetal Growth and Breastfeeding Failure: Results from Project Viva. J. Nutr. 2015, 146, 728–736. [Google Scholar] [CrossRef]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)—Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, Y.; Zhong, C.; Zhou, X.; Liu, C.; Li, Q.; Chen, R.; Gao, Q.; Li, X.; Zhang, H.; et al. Association between dietary inflammatory index and gestational diabetes mellitus risk in a prospective birth cohort study. Nutrition 2021, 87–88, 111193. [Google Scholar] [CrossRef]
- Moore, B.; Sauder, K.A.; Starling, A.P.; Hébert, J.R.; Shivappa, N.; Ringham, B.M.; Glueck, D.H.; Dabelea, D. Proinflammatory Diets during Pregnancy and Neonatal Adiposity in the Healthy Start Study. J. Pediatr. 2018, 195, 121–127.e2. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kan, H.; Yu, X.; Yang, Y.; Li, L.; Zhao, M. Relationship between dietary inflammatory index, hs-CRP level in the second trimester and neonatal birth weight: A cohort study. J. Clin. Biochem. Nutr. 2020, 66, 163–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.-W.; Aubert, A.M.; Shivappa, N.; Bernard, J.Y.; Mensink-Bout, S.M.; Geraghty, A.A.; Mehegan, J.; Suderman, M.; Polanska, K.; Hanke, W.; et al. Associations of maternal dietary inflammatory potential and quality with offspring birth outcomes: An individual participant data pooled analysis of 7 European cohorts in the ALPHABET consortium. PLoS Med. 2021, 18, e1003491. [Google Scholar] [CrossRef]
- Ishibashi, M.; Kyozuka, H.; Yamaguchi, A.; Fujimori, K.; Hosoya, M.; Yasumura, S.; Japan Environment and Children’s Study (JECS) Group. Effect of proinflammatory diet before pregnancy on gestational age and birthweight: The Japan Environment and Children’s Study. Matern. Child. Nutr. 2020, 16, e12899. [Google Scholar] [CrossRef]
- Monthé-Drèze, C.; Rifas-Shiman, S.L.; Aris, I.M.; Shivappa, N.; Hebert, J.R.; Sen, S.; Oken, E. Maternal diet in pregnancy is associated with differences in child body mass index trajectories from birth to adolescence. Am. J. Clin. Nutr. 2021, 113, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Polanska, K.; Kaluzny, P.; Aubert, A.M.; Bernard, J.Y.; Duijts, L.; El Marroun, H.; Hanke, W.; Hébert, J.R.; Heude, B.; Jankowska, A.; et al. Dietary Quality and Dietary Inflammatory Potential During Pregnancy and Offspring Emotional and Behavioral Symptoms in Childhood: An Individual Participant Data Meta-analysis of Four European Cohorts. Biol. Psychiatry 2021, 89, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-W.; Lyons, B.; Navarro, P.; Shivappa, N.; Mehegan, J.; Murrin, C.M.; Hébert, J.R.; Kelleher, C.C.; Phillips, C.M. Maternal dietary inflammatory potential and quality are associated with offspring asthma risk over 10-year follow-up: The Lifeways Cross-Generation Cohort Study. Am. J. Clin. Nutr. 2019, 111, 440–447. [Google Scholar] [CrossRef]
- Hanson, C.; Rifas-Shiman, S.L.; Shivappa, N.; Wirth, M.D.; Hebert, J.R.; Gold, D.; Camargo, C.A.; Sen, S.; Sordillo, J.E.; Oken, E.; et al. Associations of Prenatal Dietary Inflammatory Potential with Childhood Respiratory Outcomes in Project Viva. J. Allergy Clin. Immunol. Pract. 2020, 8, 945–952.e4. [Google Scholar] [CrossRef]
- Chen, L.-W.; Aubert, A.M.; Shivappa, N.; Bernard, J.Y.; Mensink-Bout, S.M.; Geraghty, A.A.; Mehegan, J.; Suderman, M.; Polanska, K.; Hanke, W.; et al. Maternal dietary quality, inflammatory potential and childhood adiposity: An individual participant data pooled analysis of seven European cohorts in the ALPHABET consortium. BMC Med. 2021, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- Navarro, P.; Shivappa, N.; Hébert, J.R.; Mehegan, J.; Murrin, C.M.; Kelleher, C.C.; Phillips, C.M.; the Lifeways Cross-Generation Cohort Study. Intergenerational associations of dietary inflammatory index with birth outcomes and weight status at age 5 and 9: Results from the Lifeways cross-generation cohort study. Pediatr. Obes. 2019, 15, e12588. [Google Scholar] [CrossRef] [PubMed]
- Navarro, P.; Shivappa, N.; Hébert, J.R.; Mehegan, J.; Murrin, C.M.; Kelleher, C.C.; Phillips, C.M. Predictors of the dietary inflammatory index in children and associations with childhood weight status: A longitudinal analysis in the Lifeways Cross-Generation Cohort Study. Clin. Nutr. 2020, 39, 2169–2179. [Google Scholar] [CrossRef]
- Turner-McGrievy, G.M.; Wirth, M.D.; Shivappa, N.; Dunn, C.G.; Crimarco, A.; Hurley, T.G.; West, D.S.; Hussey, J.R.; Hébert, J.R. Impact of a 12-month Inflammation Management Intervention on the Dietary Inflammatory Index, inflammation, and lipids. Clin. Nutr. ESPEN 2019, 30, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Turner-McGrievy, G.M.; Wirth, M.D.; Shivappa, N.; Wingard, E.E.; Fayad, R.; Wilcox, S.; Frongillo, E.A.; Hébert, J.R. Randomization to plant-based dietary approaches leads to larger short-term improvements in Dietary Inflammatory Index scores and macronutrient intake compared with diets that contain meat. Nutr. Res. 2015, 35, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Mayr, H.L.; Thomas, C.J.; Tierney, A.C.; Kucianski, T.; George, E.S.; Ruiz-Canela, M.; Hebert, J.R.; Shivappa, N.; Itsiopoulos, C. Randomization to 6-month Mediterranean diet compared with a low-fat diet leads to improvement in Dietary Inflammatory Index scores in patients with coronary heart disease: The AUSMED Heart Trial. Nutr. Res. 2018, 55, 94–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennelly, M.A.; Ainscough, K.; Lindsay, K.; Gibney, E.; McCarthy, M.; McAuliffe, F.M. Pregnancy, exercise and nutrition research study with smart phone app support (Pears): Study protocol of a randomized controlled trial. Contemp. Clin. Trials 2016, 46, 92–99. [Google Scholar] [CrossRef]
- Kennelly, M.A.; Ainscough, K.; Lindsay, K.L.; O’Sullivan, E.; Gibney, E.R.; McCarthy, M.; McAuliffe, F.M. Pregnancy Exercise and Nutrition with Smartphone Application Support: A Randomized Controlled Trial. Obstet. Gynecol. 2018, 131, 818–826. [Google Scholar] [CrossRef]
- O’Brien, E.C. 487: Educated women respond to dietary intervention regardless of neighborhood deprivation—Secondary analysis from the ROLO study. Am. J. Obstet. Gynecol. 2017, 216, S287–S288. [Google Scholar] [CrossRef]
- Haase, T.P.J. The 2011 Pobal HP Deprivation Index. 2012. Available online: https://maps.pobal.ie/ (accessed on 13 June 2021).
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- England, P.H. McCance and Widdowson’s the Composition of Foods Integrated Dataset 2015. Available online: https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid (accessed on 11 April 2020).
- Agency, F.S. McCance and Widdowson’s the Composition of Foods, 6th ed.; Royal Society of Chemistry: London, UK, 2002. [Google Scholar]
- Shivappa, N.; Hébert, J.R.; Akhoundan, M.; Mirmiran, P.; Rashidkhani, B. Association between inflammatory potential of diet and odds of gestational diabetes mellitus among Iranian women. J. Matern. Neonatal Med. 2019, 32, 3552–3558. [Google Scholar] [CrossRef]
- Killeen, S.L.; O’Brien, E.C.; Jacob, C.M.; O’Reilly, S.; Hanson, M.; McAuliffe, F.M. PREgnancy Nutrition: A protocol for the development of a Core Outcome Set (PRENCOS). Int. J. Gynecol. Obstet. 2019, 147, 134–139. [Google Scholar] [CrossRef]
- Dadouch, R.; the COSSOPP Investigators; Faheim, M.; Juando-Prats, C.; Parsons, J.; D’Souza, R. Development of a Core Outcome Set for Studies on Obesity in Pregnant Patients (COSSOPP): A study protocol. Trials 2018, 19, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadouch, R.; Faheim, M.; Susini, O.; Sedra, S.; Showell, M.; D’Souza, R.; the COSSOPP Investigators. Variation in outcome reporting in studies on obesity in pregnancy—A systematic review. Clin. Obes. 2019, 9, e12341. [Google Scholar] [CrossRef] [PubMed]
- Dadouch, R.; Hall, C.; D’Souzoa, R.D. Obesity in pregnancy patient-reported outcomes: A qualitative study. J. Evid. Based Med. 2019, 12, 18–19. [Google Scholar]
- Sharma, A.M.; Kushner, R.F. A proposed clinical staging system for obesity. Int. J. Obes. 2009, 33, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Canning, K.L.; Brown, R.E.; Wharton, S.; Sharma, A.M.; Kuk, J.L. Edmonton Obesity Staging System Prevalence and Association with Weight Loss in a Publicly Funded Referral-Based Obesity Clinic. J. Obes. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atlantis, E.; Sahebolamri, M.; Cheema, B.S.; Williams, K. Usefulness of the Edmonton Obesity Staging System for stratifying the presence and severity of weight-related health problems in clinical and community settings: A rapid review of observational studies. Obes. Rev. 2020, 21, 13120. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.M.; Su, H.; Thomas, D.M.; Heo, M.; Golnabi, A.H.; Pietrobelli, A.; Heymsfield, S.B. Tri-Ponderal Mass Index vs Body Mass Index in Estimating Body Fat During Adolescence. JAMA Pediatr. 2017, 171, 629–636. [Google Scholar] [CrossRef]
- Duggan, C.; Tapsoba, J.D.D.; Shivappa, N.; Harris, H.R.; Hébert, J.R.; Wang, C.-Y.; McTiernan, A. Changes in Dietary Inflammatory Index Patterns with Weight Loss in Women: A Randomized Controlled Trial. Cancer Prev. Res. 2021, 14, 85–94. [Google Scholar] [CrossRef]
- Ferreira, Y.A.M.; Kravchychyn, A.C.P.; Vicente, S.D.C.F.; Campos, R.; Tock, L.; Oyama, L.M.; Boldarine, V.T.; Masquio, D.C.L.; Thivel, D.; Shivappa, N.; et al. An Interdisciplinary Weight Loss Program Improves Body Composition and Metabolic Profile in Adolescents with Obesity: Associations with the Dietary Inflammatory Index. Front. Nutr. 2019, 6, 77. [Google Scholar] [CrossRef]
- Edwards, M.K.; Shivappa, N.; Mann, J.R.; Hébert, J.R.; Wirth, M.D.; Loprinzi, P.D. The association between physical activity and dietary inflammatory index on mortality risk in U.S. adults. Physician Sportsmed. 2018, 46, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chen, J.; Wirth, M.D.; Shivappa, N.; Hebert, J.R. Lower Dietary Inflammatory Index Scores Are Associated with Lower Glycemic Index Scores among College Students. Nutrients 2018, 10, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, M.D.; Hébert, J.R.; Shivappa, N.; Hand, G.A.; Hurley, T.G.; Drenowatz, C.; McMahon, D.; Shook, R.P.; Blair, S.N. Anti-inflammatory Dietary Inflammatory Index scores are associated with healthier scores on other dietary indices. Nutr. Res. 2016, 36, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainscough, K.M.; O’Brien, E.C.; Lindsay, K.L.; Kennelly, M.A.; O’Sullivan, E.J.; O’Brien, O.A.; McAuliffe, F. MNutrition, Behavior Change and Physical Activity Outcomes from the PEARS RCT-An mHealth-Supported, Lifestyle Intervention Among Pregnant Women with Overweight and Obesity. Front. Endocrinol. 2019, 10, 938. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.M.; Shivappa, N.; Hébert, J.R.; Perry, I.J. Dietary Inflammatory Index and Biomarkers of Lipoprotein Metabolism, Inflammation and Glucose Homeostasis in Adults. Nutrients 2018, 10, 1033. [Google Scholar] [CrossRef] [Green Version]
- McCullough, L.E.; Miller, E.E.; Calderwood, L.E.; Shivappa, N.; Steck, S.E.; Forman, M.R.; Mendez, M.A.; Maguire, R.; Fuemmeler, B.; Kollins, S.; et al. Maternal inflammatory diet and adverse pregnancy outcomes: Circulating cytokines and genomic imprinting as potential regulators? Epigenetics 2017, 12, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Buxton, M.A.; Perng, W.; Tellez-Rojo, M.M.; Rodríguez-Carmona, Y.; Cantoral, A.; Sánchez, B.N.; Rivera-González, L.O.; Gronlund, C.J.; Shivappa, N.; Hébert, J.R.; et al. Particulate matter exposure, dietary inflammatory index and preterm birth in Mexico City, Mexico. Environ. Res. 2020, 189, 109852. [Google Scholar] [CrossRef]
- McAuliffe, F.M.; Killeen, S.L.; Jacob, C.M.; Hanson, M.A.; Hadar, E.; McIntyre, H.D.; Kapur, A.; Kihara, A.B.; Ma, R.C.; Divakar, H.; et al. Management of prepregnancy, pregnancy, and postpartum obesity from the FIGO Pregnancy and Non-Communicable Diseases Committee: A FIGO (International Federation of Gynecology and Obstetrics) guideline. Int. J. Gynecol. Obstet. 2020, 151, 16–36. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, A.R.; Geraghty, A.; Kennelly, M.A.; O’Brien, E.C.; Reji, R.M.; Mehegan, J.; Segurado, R.; Smith, T.; Maguire, O.; Cronin, M.; et al. Limited Impact of Fetal Sex and Maternal Body Mass Index on Fetal and Maternal Insulin Resistance and Lipid Metabolism: Findings from the PEARs Study. Reprod. Sci. 2020, 27, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Sheiner, E.; Kapur, A.; Retnakaran, R.; Hadar, E.; Poon, L.C.; McIntyre, H.D.; Divakar, H.; Staff, A.C.; Narula, J.; Kihara, A.B.; et al. FIGO (International Federation of Gynecology and Obstetrics) Postpregnancy Initiative: Long-term Maternal Implications of Pregnancy Complications—Follow-up Considerations. Int. J. Gynecol. Obstet. 2019, 147, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Abdurahman, A.A.; Azadbakhat, L.; Rasouli, M.; Chamari, M.; Qorbani, M.; Dorosty, A.R. Association of dietary inflammatory index with metabolic profile in metabolically healthy and unhealthy obese people. Nutr. Diet. 2019, 76, 192–198. [Google Scholar] [CrossRef]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R.M.; Pérez-Rodrigo, C.; López-Sobaler, A.M. Dietary assessment methods: Dietary records. Nutr. Hosp. 2015, 31 (Suppl. 3), 38–45. [Google Scholar] [PubMed]
n | Value | |
---|---|---|
Age (years) | 433 | 32.45 (4.29) |
Body Mass Index (kg/m2) * | 434 | 28.25 (26.70, 31.34) |
Body Mass Index category (n, % obesity) | 434 | 141, 32.50 |
Ethnicity (n, % White) | 421 | 396, 94.1 |
Smoking (n, % current) | 434 | 22, 5.10 |
Parity (n, % 1 or more) | 434 | 194, 44.70 |
Socioeconomic status (n, % above average advantage) | 434 | 310, 71.40 |
Study group (n, % intervention) | 434 | 224, 51.60 |
E-DIITM in early pregnancy | 434 | −0.10 (1.15) |
E-DIITM in late pregnancy | 290 | −0.413 (1.12) |
Gestational age at delivery (days) * | 419 | 283.00 (276.00, 289.00) |
Maternal cardiometabolic and inflammatory markers in early pregnancy | ||
Total cholesterol (mmol/L) | 398 | 5.39 (0.87) |
LDL cholesterol (mmol/L) | 398 | 3.21 (0.86) |
HDL cholesterol (mmol/L) | 398 | 1.52 (0.44) |
Triglycerides (mmol/L) * | 398 | 1.42 (1.07, 1.68) |
Glucose (mmol/L) | 382 | 4.50 (0.34) |
C3 Complement (mg/dl) * | 291 | 154.40 (141.59, 174.04) |
C-reactive protein (mg/L) * | 275 | 1.39 (0.64, 2.88) |
Insulin (mmol/L) * | 397 | 8.52 (6.45, 11.46) |
C-peptide (Umol/L) * | 391 | 1.41 (1.09, 1.75) |
Maternal pregnancy outcomes | ||
Gestational diabetes (n, %) | 394 | 57, 14.50 |
Pre-eclampsia or pregnancy-induced hypertension (n, %) | 378 | 26, 6.90 |
Early pregnancy Edmonton Obesity Staging System score ≥ 1 (n, %) | 276 | 224, 81.20 |
Infant characteristics | ||
Infant sex (n, % male) | 411 | 215, 52.30 |
Birth weight (g) | 422 | 3643.93 (526.89) |
Low birth weight (n, % <2500 g) | 422 | 9, 2.10 |
Macrosomia (n, % >4000 g) | 422 | 99, 23.50 |
Small for gestational age (n, % <10th centile) | 395 | 23, 5.80 |
Large for gestational age (n, % >90th centile) | 395 | 47, 11.90 |
Placental weight (g) | 363 | 665.94 (146.69) |
Birth length (cm) | 395 | 51.33 (2.17) |
Ponderal index (cm3) * | 399 | 2.70 (2.50, 2.92) |
Head circumference (cm) * | 385 | 35.10 (34.30, 36.00) |
Foetal cardiometabolic and inflammatory markers | ||
Total cholesterol (mmol/L) * | 193 | 1.76 (1.46, 2.00) |
LDL cholesterol (mmol/L) * | 193 | 0.86 (0.70, 1.08) |
HDL cholesterol (mmol/L) * | 193 | 0.54 (0.45, 0.70) |
Triglycerides (mmol/L) * | 193 | 0.53 (0.42, 0.74) |
Glucose (mmol/L) | 30 | 4.35 (0.86) |
C3 Complement (mg/dl) | 158 | 90.26 (18.11) |
C-reactive Protein (mg/L) * | 144 | 0.03 (0.02, 0.05) |
Insulin (mmol/L) * | 193 | 4.97 (2.48, 8.22) |
C-peptide (Umol/L) * | 203 | 0.12 (0.10, 0.59) |
Birth outcomes | ||
Mode of delivery (% caesarean delivery) | 422 | 112, 26.50 |
Preterm birth (n, % <37 weeks) | 419 | 15, 3.60 |
Intervention | Control | p Value | q Value | |||
---|---|---|---|---|---|---|
n | Mean (SD) | n | Mean (SD) | |||
Early pregnancy E-DIITM | 224 | −0.06 (1.11) | 210 | −0.14 (1.19) | 0.499 | 0.125 |
Late pregnancy E-DIITM | 147 | −0.75 (1.05) | 143 | −0.07 (1.09) | <0.001 | 0.003 |
Mean change E-DIITM | 147 | −0.76 (1.15) | 143 | 0.07 (1.21) | <0.001 | 0.005 |
Within group comparison | * p < 0.001 (q = 0.006) | * p = 0.465 (q = 0.116) |
Maternal (Early) | Maternal (Late) | Cord | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | r | p Value | q Value | n | r | p Value | q Value | n | r | p Value | q Value | |
Total cholesterol (mmol/L) | 398 | 0.01 | 0.070 | 0.054 | 362 | 0.01 | 0.872 | 0.183 | 193 | 0.07 | 0.362 | 0.099 |
LDL cholesterol (mmol/L) | 398 | 0.13 | 0.011 | 0.022 | 362 | 0.06 | 0.279 | 0.082 | 193 | 0.07 | 0.330 | 0.090 |
HDL cholesterol (mmol/L) | 398 | −0.11 | 0.039 | 0.040 | 362 | −0.16 | 0.002 | 0.018 | 193 | 0.00 | 0.974 | 0.200 |
Triglycerides (mmol/L) * | 398 | 0.11 | 0.023 | 0.031 | 362 | 0.11 | 0.042 | 0.045 | 193 | −0.03 | 0.679 | 0.143 |
Glucose (mmol/L) | 382 | −0.02 | 0.656 | 0.150 | - | 30 | 0.19 | 0.314 | 0.088 | |||
C3 Complement (mg/dl) | 291 | 0.12 | 0.039 | 0.041 | 294 | 0.05 | 0.401 | 0.106 | 158 | 0.03 | 0.729 | 0.157 |
C-reactive Protein (mg/L) * | 275 | 0.03 | 0.606 | 0.148 | 276 | −0.030 | 0.620 | 0.138 | 144 | 0.01 | 0.910 | 0.185 |
Insulin (mmol/L) * | 397 | 0.14 | 0.004 | 0.021 | 364 | 0.13 | 0.015 | 0.029 | 193 | 0.15 | 0.044 | 0.046 |
C-peptide (ng/mL) * | 391 | 0.06 | 0.228 | 0.075 | 364 | 0.03 | 0.641 | 0.142 | 203 | −0.02 | 0.747 | 0.158 |
Single Variable | Adjusted | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | B | p Value | q Value | 95% CI | B | p Value | q Value | 95% CI | R2 Adj | Model p | Model q | |
Early pregnancy | ||||||||||||
LDL cholesterol (mmol/L) | 398 | 0.13 | 0.011 | 0.024 | 0.02, 0.17 | 0.17 | 0.157 | 0.067 | −0.03, 0.21 | 0.06 | 0.011 | 0.017 |
HDL cholesterol (mmol/L) | 398 | −0.11 | 0.023 | 0.042 | −0.08, −0.06 | −0.08 | 0.326 | 0.100 | −0.09, 0.03 | 0.05 | 0.001 | 0.009 |
Triglycerides (mmol/L) * | 398 | 0.11 | 0.027 | 0.060 | −0.00, 0.03 | −0.02 | 0.849 | 0.172 | −0.02, 0.02 | 0.08 | <0.001 | 0.010 |
C3 Complement (mg/dl) | 291 | 0.12 | 0.039 | 0.037 | 0.15, 5.68 | −0.01 | 0.901 | 0.182 | −4.40, 3.87 | 0.11 | <0.001 | 0.012 |
Insulin (mmol/L) * | 397 | 0.16 | 0.001 | 0.017 | 0.01, 0.05 | 0.08 | 0.333 | 0.096 | −0.01, 0.04 | 0.15 | <0.001 | 0.013 |
Late pregnancy | ||||||||||||
HDL cholesterol (mmol/L) | 362 | −0.16 | 0.002 | 0.016 | −0.12, −0.03 | −0.16 | 0.066 | 0.055 | −0.15, 0.01 | 0.04 | 0.001 | 0.015 |
triglycerides (mmol/L) | 362 | 0.11 | 0.042 | 0.045 | 0.02, 0.11 | 0.11 | 0.194 | 0.072 | −0.03, 0.15 | −0.00 | 0.462 | 0.106 |
Insulin (mmol/L) * | 364 | 0.12 | 0.024 | 0.030 | 0.00, 0.04 | 0.02 | 0.775 | 0.164 | −0.02, 0.03 | 0.16 | <0.001 | 0.016 |
Cord blood | ||||||||||||
Insulin (mmol/L) * | 193 | 0.14 | 0.058 | 0.052 | −0.00, 0.10 | 0.10 | 0.384 | 0.103 | −0.05, 0.12 | 0.02 | 0.184 | 0.049 |
Single Variable | Adjusted | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | OR | p Value | q Value | 95% CI | OR | p Value | q Value | 95% CI | |
Maternal health | |||||||||
Gestational diabetes mellitus | 355 | 1.05 | 0.714 | 0.154 | 0.82, 1.34 | 0.86 | 0.515 | 0.122 | 0.55, 1.35 |
Metabolically unhealthy phenotype in early pregnancy | 276 | 1.27 | 0.086 | 0.058 | 0.96, 1.68 | 0.91 | 0.707 | 0.152 | 0.56, 1.48 |
Pre-eclampsia or pregnancy-induced hypertension | 378 | 0.87 | 0.436 | 0.113 | 0.61, 1.24 | 1.09 | 0.784 | 0.169 | 0.59, 2.03 |
Mode of delivery (caesarean delivery) | 483 | 0.90 | 0.251 | 0.076 | 0.74, 1.08 | 0.89 | 0.494 | 0.119 | 0.64, 1.24 |
Neonatal health | |||||||||
Macrosomia (>4000 g) | 383 | 0.95 | 0.606 | 0.139 | 0.78, 1.16 | 0.78 | 0.159 | 0.069 | 0.55, 1.10 |
Small for gestational age (<10th centile) | 359 | 0.93 | 0.677 | 0.145 | 0.64, 1.34 | 0.85 | 0.594 | 0.131 | 0.47, 1.54 |
Large for gestational age (>90th centile) | 359 | 1.06 | 0.683 | 0.146 | 0.81, 1.38 | 1.12 | 0.663 | 0.142 | 0.68, 1.82 |
Preterm birth (<37 weeks) | 381 | 0.77 | 0.265 | 0.079 | 0.49, 1.22 | 0.97 | 0.938 | 0.191 | 0.45, 2.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Killeen, S.L.; Phillips, C.M.; Delahunt, A.; Yelverton, C.A.; Shivappa, N.; Hébert, J.R.; Kennelly, M.A.; Cronin, M.; Mehegan, J.; McAuliffe, F.M. Effect of an Antenatal Lifestyle Intervention on Dietary Inflammatory Index and Its Associations with Maternal and Fetal Outcomes: A Secondary Analysis of the PEARS Trial. Nutrients 2021, 13, 2798. https://doi.org/10.3390/nu13082798
Killeen SL, Phillips CM, Delahunt A, Yelverton CA, Shivappa N, Hébert JR, Kennelly MA, Cronin M, Mehegan J, McAuliffe FM. Effect of an Antenatal Lifestyle Intervention on Dietary Inflammatory Index and Its Associations with Maternal and Fetal Outcomes: A Secondary Analysis of the PEARS Trial. Nutrients. 2021; 13(8):2798. https://doi.org/10.3390/nu13082798
Chicago/Turabian StyleKilleen, Sarah Louise, Catherine M. Phillips, Anna Delahunt, Cara A. Yelverton, Nitin Shivappa, James R. Hébert, Maria A. Kennelly, Martina Cronin, John Mehegan, and Fionnuala M. McAuliffe. 2021. "Effect of an Antenatal Lifestyle Intervention on Dietary Inflammatory Index and Its Associations with Maternal and Fetal Outcomes: A Secondary Analysis of the PEARS Trial" Nutrients 13, no. 8: 2798. https://doi.org/10.3390/nu13082798
APA StyleKilleen, S. L., Phillips, C. M., Delahunt, A., Yelverton, C. A., Shivappa, N., Hébert, J. R., Kennelly, M. A., Cronin, M., Mehegan, J., & McAuliffe, F. M. (2021). Effect of an Antenatal Lifestyle Intervention on Dietary Inflammatory Index and Its Associations with Maternal and Fetal Outcomes: A Secondary Analysis of the PEARS Trial. Nutrients, 13(8), 2798. https://doi.org/10.3390/nu13082798