Caffeinated Drinks and Physical Performance in Sport: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection of Studies
2.2. Data Extraction
2.3. Quality Assessment and Risk of Bias
3. Results
3.1. Quality Assessment and Risk of Bias
3.2. Description of Included Studies
4. Discussion
4.1. Endurance-Based Sports
4.2. Power-Based Sports
4.3. Team Sports
4.4. Individual Sports with Mixed Aerobic–Anaerobic Metabolism
4.5. Skill-Based Sports
4.6. Multiple Sports
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Study | Participants | Habituation to Caffeine | Study Design | Sport | Supplementation | Dose | Main Outcome |
---|---|---|---|---|---|---|---|
Arazi et al. (2016) [31] | 36 females 14 ± 1 years | Not reported | DB, R, Cx | Swimming | Big Bear energy drink or placebo, consumed 15 min before exercise | 78 mg | Time decrease in a 100 m crawl velocity test |
Hulston and Jeukendrup (2008) [35] | 10 males 27 ± 7 years | All subjects were identified as caffeine users to varying extent (186 ± 101 mg·day−1, range = 70–400 mg·d−1) | DB, R, Cx | Cycling | Glucose drink with or without caffeine or placebo, consumed at the start and during exercise | 5.3 mg·kg−1 | Performance improvement in a time trial |
Cureton et al. (2007) [12] | 16 males 28 ± 7 years | Habitually caffeine users (150 ± 113 mg·day−1, range = 9–482 mg·day−1) | DB, Cx | Cycling | Sports drink with caffeine (C + C) and without caffeine (CHO) or placebo, consumed before exercise | 195 mg·L−1 | Greater mean total work performed during a 15 min ride for the C + C trial |
Ivy et al. (2009) [47] | 6 males and 6 females 27 ± 2 years | Not reported | DB, R, Cx | Cycling | Red Bull energy drink or placebo consumed 40 min before exercise | 160 mg | Performance improvement in a time trial |
Schubert et al. (2013) [51] | 6 males 23 ± 2 years | Mean daily caffeine intake of 80 mg·day −1 | SB, R, Cx | Running | Yerba MatéOrganic Energy Shot (YM), Red Bull Energy Shot (RB), or a placebo, consumed 1 h before exercise | YM = 140 mg, RB = 80 mg | No significant difference in time-trial performance |
Phillips et al. (2014) [54] | 11 males 33 ± 9 years | Between 80 and 350 mg·day−1 | SB, R, Cx | Cycling | Red Bull energy drink (RB), Cola drink (CD), or placebo, consumed 50 min before exercise | RB = 160 mg, CD = 160 mg | No significant difference in a simulated road race |
Prins et al. (2016) [56] | 13 males and 5 females 20 ± 3 years | Noncaffeine users (n = 1), low-to-moderate–caffeine users (50–200 mg·day−1; n = 13) and high-caffeine users (>200 mg·day−1; n = 4) | DB, R, Cx | Running | Red Bull energy drink or placebo, consumed 1 h before the trial | 160 mg | Improvement in a 5-km treadmill running time |
Quinlivan et al. (2015) [57] | 11 males 32 ± 6 years | Regular caffeine consumers (mean caffeine consumption 295 mg·day−1) | DB, R, Cx | Cycling | Red Bull energy drink (RB), anhydrous caffeine (AC), or placebo, consumed 90 min before the trial | RB = 3 mg·kg−1,AC = 3 mg·kg−1 | Significant improvement in time to complete a cycling trial |
Rica et al. (2019) [59] | 55 males and females 33 ± 6 years | Not reported | DB, R, Cx | Running | Energy drink or a placebo, consumed 1 h before exercise | 80 mg | No significant improvement in the Cooper test |
Sheehan and Hartzler (2011) [60] | 9 males and 3 females 21 ± 2 years | Not reported | DB, R, Cx | Running | Cherry Blast XS® energy drink or a placebo, consumed 30 min before the trial | 80 mg | No significant increase in VO2max |
Talanian and Spriet (2016) [21] | 11 males and 4 females 23 ± 1 years | Only one subject was a habitual caffeine user (>50 mg·day−1) | DB, R, Cx | Cycling | Two caffeinated carbohydrate-electrolyte drinks (CE1 and CE2) or a placebo, consumed during exercise | CE1 = 100 mg, CE2 = 200 mg | Performance improvement in a cycling time trial |
Study | Participants | Habituation to Caffeine | Study Design | Sport | Supplementation | Dose | Main Outcome |
---|---|---|---|---|---|---|---|
Hoffman et al. (2009) [46] | 12 males 21 ± 1 years | Not reported | DB, R, Cx | Strength/power athletes | Redline Extreme energy drink or placebo, consumed 10 min before exercise | 125 mg | Increase in reaction performance |
Lara et al. (2015) [49] | 14 males 20 ± 3 years | Light caffeine consumers (less than one can of soda or energy drink per day) | DB, R, Cx | Sprint swimming | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Increased performance in a 50-m simulated swimming competition |
Study | Participants | Habituation to Caffeine | Study Design | Sport | Supplementation | Dose | Main Outcome |
---|---|---|---|---|---|---|---|
Abian et al. (2014) [29] | 16 males 15 ± 1 years | Light caffeine consumers (<60 mg·day−1) | DB, R, Cx | Basketball | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Increase in repeated jump performance |
Astorino et al. (2012) [32] | 15 females 20 ± 1 years | Twelve of 15 women were current caffeine consumers, although intake ranged from 1 to 7 days/week | SB, R, Cx | Soccer | Red Bull energy drink or placebo, consumed 1 h before the trial | 1.3 mg·kg−1 | No significant increase in repeated sprint performance |
Carvajal and Moncada (2005) [33] | 20 males 20 ± 2 years | All participants were moderate coffee consumers (2–4 cups per day) | DB, Cx | Soccer | Energy drink, no drink, or placebo, consumed 30 min before exercise | 132 mg | No significant differences in strength and velocity |
Del Coso et al. (2012) [37] | 19 males 21 ± 2 years | Not reported | DB, R, Cx | Soccer | Sugar-free Red Bull energy drink or placebo, consumed 1 h before the trial | 3 mg·kg−1 | Higher high-intensity running during a simulated game |
Del Coso et al. (2014) [40] | 15 males 22 ± 7 years | Light caffeine consumers (<30 mg·day−1) | DB, R, Cx | Volleyball | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Improved performance in several jump tests |
Del Coso et al. (2013) [39] | 16 females 23 ± 2 years | Light caffeine consumers (<60 mg·day−1) | DB, R, Cx | Rugby-sevens | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Higher high-intensity running during a simulated game |
Del Coso et al. (2016) [41] | 13 males 23 ± 4 years | Not reported | DB, R, Cx | Field hockey | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Higher high-intensity running during a simulated game |
Del Coso et al. (2013) [38] | 26 males 25 ± 2 years | Light caffeine consumers (<60 mg·day−1) | DB, R, Cx | Rugby | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Higher high-intensity running during a simulated game |
Fernández-Campos et al. (2015) [43] | 19 females 22 ± 5 years | Not reported | DB, R, Cx | Volleyball | Energy drink, no drink, or placebo, consumed 30 min before exercise | 110 mg | No significant difference in any performance variable |
Gwacham and Wagner (2012) [45] | 20 males 20 ± 2 years | Not reported | DB, R, Cx | Football | AdvoCare Spark energy drink or placebo, consumed 1 h before trial | 120 mg | No significant improvement in sprint performance |
Lara et al. (2014) [48] | 18 females 21 ± 2 years | Light caffeine consumers (not more than one coffee or one serving of energy drink per day) | DB, R, Cx | Soccer | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Higher high-intensity running during a simulated game |
Pérez-López et al. (2015) [50] | 13 females25 ± 5 years | Not reported | DB, R, Cx | Volleyball | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Higher number of body impacts during a simulated game |
Portillo et al. (2017) [55] | 13 females 23 ± 2 years | The daily consumption of caffeine was low (60 mg·day−1) | DB, R, Cx | Rugby-sevens | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Increase in the number of body impacts during real competition |
Woolf et al. (2009) [62] | 17 males 20 ± 2 years | Not reported | DB, R, Cx | Football | Energy drink or placebo, consumed 1 h before the trial | 5 mg·kg−1 | No significant difference in any performance variable |
Study | Participants | Habituation to Caffeine | Study Design | Sport | Supplementation | Dose | Main Outcome |
---|---|---|---|---|---|---|---|
Abian et al. (2015) [30] | 16 males 25 ± 7 years | Light caffeine consumers (<60 mg·day−1) | DB, R, Cx | Badminton | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Higher performance in badminton-specific jumps |
Clarke and Duncan (2016) [36] | 12 males 28 ± 9 years | Not reported | DB, R, Cx | Badminton | Carbohydrate drink (CHO), caffeinated drink (ED), a drink containing carbohydrate and caffeine (C + C), or placebo, consumed before and during exercise | ED = 4 mg·kg−1, C + C = 4 mg·kg−1 | Significant improvement in serve accuracy and sprinting actions |
Gallo-Salazar et al. (2015) [44] | 10 males and 4 females 16 ± 1 years | Light caffeine consumers (less than 1 can of soda or energy drink per day) | DB, R, Cx | Tennis | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Higher number of sprints during a simulated match |
Peltier et al. (2013) [53] | 8 males 26 ± 6 years | Moderate caffeine consumers (1–2 cups of coffee or equivalent per day) | DB, R, Cx | Tennis | Caffeinated sports drinks or placebo, consumed before and during a simulated tournament | 215 mg | Higher stroke frequency during play |
Study | Participants | Habituation to Caffeine | Study Design | Sport | Supplementation | Dose | Main Outcome |
---|---|---|---|---|---|---|---|
Doyle et al. (2016) [42] | 13 males and females 18–23 years | Not reported | DB, R, Cx | Fencing | Energy drink or placebo consumed 1 h before exercise | 1.5–7.5 mg·kg−1 | Increases in response time and accuracy during a fencing-specific test |
Mumford et al. (2016) [52] | 12 males 35 ± 14 years | Not reported | DB, R, Cx | Golf | Energy drink or placebo, consumed before and after 9 holes during each 18-hole round | 155 mg | Improvements in total score, greens in regulation, and drive distance |
Stevenson et al. (2009) [61] | 20 males 23 ± 4 years | Habitual caffeine users, consuming 157 ± 47 mg·day–1 | DB, R, Cx | Golf | Lucozade Caffeine Boost energy drink or placebo, consumed right before the trial and at holes 6 and 12 | 1.6 mg·kg−1 | Improved putting performance |
Study | Participants | Habituation to Caffeine | Study Design | Sport | Supplementation | Dose | Main Outcome |
---|---|---|---|---|---|---|---|
Chen et al. (2015) [34] | 10 males/19 females 20 ± 2 years | All participants were not regular caffeine consumers (<200 mg·week−1) | DB, R, Cx | Tennis, basketball, and soccer | Energy drink or placebo, consumed 1 h before the exercise | 6 mg·kg−1 | Significant increase in isometric muscle strength |
Rahnama et al. (2010) [58] | 10 males 22 ± 2 years | All participants were moderate caffeine users | DB, R, Cx | Not specified | Red Bull energy drink (RB), Hype energy drink (HE), or placebo, consumed 40 min before exercise | RB = 85 mg, HE = 75 mg | Greater VO2max and time to exhaustion |
Salinero et al. (2014) [8] | 53 males/37 females 24 ± 6 years | All participants were light caffeine consumers (<60 mg·day−1) | DB, R, Cx | Rugby, volleyball, tennis, badminton, swimming, soccer, and hockey | Fure, ProEnergetics energy drink, or placebo, consumed 1 h before exercise | 3 mg·kg−1 | Increase in self-perceived muscle power during exercise |
References
- Aguilar-Navarro, M.; Muñoz, G.; Salinero, J.J.; Muñoz-Guerra, J.; Fernández-álvarez, M.; Plata, M.M.; Del Coso, J. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients 2019, 11, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the world anti-doping agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2019, 54, 681–688. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Sport Position Statement. Supplements and Sports Foods in High Performance Sport. Available online: https://www.ais.gov.au/nutrition/supplements (accessed on 1 July 2021).
- Baltazar-Martins, J.G.; Brito De Souza, D.; Aguilar, M.; Grgic, J.; Del Coso, J. Infographic. The road to the ergogenic effect of caffeine on exercise performance. Br. J. Sports Med. 2020, 54, 618–619. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Marques-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef] [Green Version]
- Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Gonzalez-Millán, C.; Areces, F.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Del Coso, J. The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br. J. Nutr. 2014, 112, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Sanchis-Gomar, F.; Pareja-Galeano, H.; Cervellin, H.; Lippi, G.; Earnest, C. Energy drink overconsumption in adolescents: Implications for arrhythmias and other cardiovascular events. Can. J. Cardiol. 2015, 31, 572–575. [Google Scholar] [CrossRef]
- Hodgson, A.B.; Randell, R.K.; Jeukendrup, A.E. The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE 2013, 8, e59561. [Google Scholar] [CrossRef] [Green Version]
- Salinero, J.; Lara, B.; Del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sport. Med. 2019, 27, 238–256. [Google Scholar] [CrossRef]
- Cureton, K.J.; Warren, G.L.; Millard-Stafford, M.L.; Wingo, J.E.; Trilk, J.; Buyckx, M. Caffeinated sports drink: Ergogenic effects and possible mechanisms. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 35–55. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Krawczyk, R.; Krzysztofik, M.; Rzeszutko-Belzowska, A.; Dornowski, M.; Zajac, A.; Del Coso, J.; Wilk, M. Effects of acute ingestion of caffeinated chewing gum on performance in elite judo athletes. J. Int. Soc. Sports Nutr. 2021, 18, 49. [Google Scholar] [CrossRef]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef]
- Magkos, F.; Kavouras, S.A. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit. Rev. Food Sci. Nutr. 2005, 45, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Hoyte, C.O.; Albert, D.; Heard, K.J. The use of energy drinks, dietary supplements, and prescription medications by United States college students to enhance athletic performance. J. Community Health 2013, 38, 575–580. [Google Scholar] [CrossRef]
- Wickham, K.A.; Spriet, L.L. Administration of caffeine in alternate forms. Sports Med. 2018, 48, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Tuttle, T.D.; Higgins, C.L. Energy beverages: Content and safety. Mayo Clin. Proc. 2010, 85, 1033–1041. [Google Scholar] [CrossRef] [Green Version]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Lorenzo Calvo, J.; Fei, X.; Domínguez, R.; Pareja-Galeano, H. Caffeine and cognitive functions in sports: A systematic review and meta-analysis. Nutrients 2021, 13, 868. [Google Scholar] [CrossRef]
- Talanian, J.L.; Spriet, L.L. Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Appl. Physiol. Nutr. Metab. 2016, 41, 850–855. [Google Scholar] [CrossRef] [Green Version]
- Van Nieuwenhoven, M.A.; Brummer, R.J.M.; Brouns, F. Gastrointestinal function during exercise: Comparison of water, sports drink, and sports drink with caffeine. J. Appl. Physiol. 2000, 89, 1079–1085. [Google Scholar] [CrossRef] [Green Version]
- Souza, D.B.; Del Coso, J.; Casonatto, J.; Polito, M.D. Acute effects of caffeine-containing energy drinks on physical performance: A systematic review and meta-analysis. Eur. J. Nutr. 2017, 56, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Hellín, J.; Varillas-Delgado, D. Energy drinks and sports performance, cardiovascular risk, and genetic associations; future prospects. Nutrients 2021, 13, 715. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, A.; Berge, E. How to do a systematic review. Int. J. Stroke 2018, 13, 138–156. [Google Scholar] [CrossRef] [PubMed]
- Lohse, K.R.; Sainani, K.L.; Taylor, J.A.; Butson, M.L.; Knight, E.J.; Vickers, A.J. Systematic review of the use of “magnitude-based inference” in sports science and medicine. PLoS ONE 2020, 15, e0235318. [Google Scholar] [CrossRef]
- Savović, J.; Weeks, L.; Sterne, J.A.C.; Turner, L.; Altman, D.G.; Moher, D.; Higgins, J.P.T. Evaluation of the Cochrane Collaboration’s tool for assessing the risk of bias in randomized trials: Focus groups, online survey, proposed recommendations and their implementation. Syst. Rev. 2014, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Abian-Vicen, J.; Puente, C.; Salinero, J.J.; González-Millán, C.; Areces, F.; Muñoz, G.; Muñoz-Guerra, J.; Del Coso, J. A caffeinated energy drink improves jump performance in adolescent basketball players. Amino Acids 2014, 46, 1333–1341. [Google Scholar] [CrossRef]
- Abian, P.; Del Coso, J.; Salinero, J.J.; Gallo-Salazar, C.; Areces, F.; Ruiz-Vicente, D.; Lara, B.; Soriano, L.; Muñoz, V.; Abian-Vicen, J. The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players. J. Sports Sci. 2015, 33, 1042–1050. [Google Scholar] [CrossRef]
- Arazi, H.; Najafdari, A.; Eghbali, E. Effect of Big Bear energy drink on performance indicators, blood lactate levels and rating of perceived exertion in elite adolescent female swimmers. Prog. Nutr. 2016, 18, 403–410. [Google Scholar]
- Astorino, T.A.; Matera, A.J.; Basinger, J.; Evans, M.; Schurman, T.; Marquez, R. Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids 2012, 42, 1803–1808. [Google Scholar] [CrossRef]
- Carvajal-Sancho, A. The acute effect of an energy drink on the physical and cognitive performance of male athletes = Akutni učinek energetskega napitka na telesne in kognitivne sposobnosti športnikov. Kinesiol. Slov. 2005, 2, 5–16. [Google Scholar]
- Chen, H.Y.; Wang, H.S.; Tung, K.; Chao, H.H. Effects of gender difference and caffeine supplementation on anaerobic muscle performance. Int. J. Sports Med. 2015, 36, 974–978. [Google Scholar] [CrossRef]
- Hulston, C.J.; Jeukendrup, A.E. Substrate metabolism and exercise performance with caffeine and carbohydrate intake. Med. Sci. Sports Exerc. 2008, 40, 2096–2104. [Google Scholar] [CrossRef]
- Clarke, N.D.; Duncan, M.J. Effect of carbohydrate and caffeine ingestion on badminton performance. Int. J. Sports Physiol. Perform. 2016, 11, 108–115. [Google Scholar] [CrossRef]
- Del Coso, J.; Muñoz-Fernández, V.E.; Muñoz, G.; Fernández-Elías, V.E.; Ortega, J.F.; Hamouti, N.; Barbero, J.C.; Muñoz-Guerra, J. Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE 2012, 7, e31380. [Google Scholar] [CrossRef]
- Del Coso, J.; Ramírez, J.A.; Muñoz, G.; Portillo, J.; Gonzalez-Millán, C.; Muñoz, V.; Barbero-Álvarez, J.C.; Muñoz-Guerra, J. Caffeine-containing energy drink improves physical performance of elite rugby players during a simulated match. Appl. Physiol. Nutr. Metab. 2013, 38, 368–374. [Google Scholar] [CrossRef]
- Del Coso, J.; Portillo, J.; Muñoz, G.; Abián-Vicén, J.; Gonzalez-Millán, C.; Muñoz-Guerra, J. Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids 2013, 44, 1511–1519. [Google Scholar] [CrossRef]
- Del Coso, J.; Pérez-López, A.; Abian-Vicen, J.; Salinero, J.J.; Lara, B.; Valadés, D. Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. Int. J. Sports Physiol. Perform. 2014, 9, 1013–1018. [Google Scholar] [CrossRef]
- Del Coso, J.; Portillo, J.; Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Areces, F. Caffeinated energy drinks improve high-speed running in elite field hockey players. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 26–32. [Google Scholar] [CrossRef]
- Doyle, T.P.; Lutz, R.S.; Pellegrino, J.K.; Sanders, D.J.; Arent, S.M. The effects of caffeine on arousal, response time, accuracy, and performance in division in collegiate fencers. J. Strength Cond. Res. 2016, 30, 3228–3235. [Google Scholar] [CrossRef]
- Fernández-Campos, C.; Dengo, A.L.; Moncada-Jiménez, J. Acute consumption of an energy drink does not improve physical performance of female volleyball players. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Gallo-Salazar, C.; Areces, F.; Abián-Vicén, J.; Lara, B.; Salinero, J.J.; Gonzalez-Millán, C.; Portillo, J.; Muñoz, V.; Juarez, D.; Del Coso, J. Enhancing physical performance in elite junior tennis players with a caffeinated energy drink. Int. J. Sports Physiol. Perform. 2015, 10, 305–310. [Google Scholar] [CrossRef]
- Gwacham, N.; Wagner, D.R. Acute effects of a caffeine-taurine energy drink on repeated sprint performance of American college football players. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Kang, J.; Ratamess, N.A.; Hoffman, M.W.; Tranchina, C.P.; Faigenbaum, A.D. Examination of a pre-exercise, high energy supplement on exercise performance. J. Int. Soc. Sports Nutr. 2009, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivy, J.L.; Kammer, L.; Ding, Z.; Wang, B.; Bernard, J.R.; Liao, Y.H.; Hwang, J. Improved cycling time-trial performance after ingestion of a caffeine energy drink. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Lara, B.; Gonzalez-Millán, C.; Salinero, J.J.; Abian-Vicen, J.; Areces, F.; Barbero-Alvarez, J.C.; Muñoz, V.; Portillo, L.J.; Gonzalez-Rave, J.M.; Del Coso, J. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 2014, 46, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Ruiz-Vicente, D.; Areces, F.; Abián-Vicén, J.; Salinero, J.J.; Gonzalez-Millán, C.; Gallo-Salazar, C.; Del Coso, J. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br. J. Nutr. 2015, 114, 908–914. [Google Scholar] [CrossRef] [Green Version]
- Pérez-López, A.; Salinero, J.J.; Abian-Vicen, J.; Valadés, D.; Lara, B.; Hernandez, C.; Areces, F.; González, C.; Del Coso, J. Caffeinated energy drinks improve volleyball performance in elite female players. Med. Sci. Sports Exerc. 2015, 47, 850–856. [Google Scholar] [CrossRef]
- Mark Schubert, M.; Astorino, T.A.; Leal Azevedo, J. The effects of caffeinated “energy shots” on time trial performance. Nutrients 2013, 5, 2062–2075. [Google Scholar] [CrossRef] [Green Version]
- Mumford, P.W.; Tribby, A.C.; Poole, C.N.; Dalbo, V.J.; Scanlan, A.T.; Moon, J.R.; Roberts, M.D.; Young, K.C. Effect of caffeine on golf performance and fatigue during a competitive tournament. Med. Sci. Sports Exerc. 2016, 48, 132–138. [Google Scholar] [CrossRef]
- Peltier, S.L.; Leprêtre, P.M.; Metz, L.; Ennequin, G.; Aubineau, N.; Ois Lescuyer, J.F.; Duclos, M.; Brink, T.; Sirvent, P. Effects of pre-exercise, endurance, and recovery designer sports drinks on performance during tennis tournament simulation. J. Strength Cond. Res. 2013, 27, 3076–3083. [Google Scholar] [CrossRef]
- Phillips, M.D.; Rola, K.S.; Christensen, K.V.; Ross, J.W.; Mitchell, J.B. Preexercise energy drink consumption does not improve endurance cycling performance but increases lactate, monocyte, and interleukin-6 response. J. Strength Cond. Res. 2014, 28, 1443–1453. [Google Scholar] [CrossRef]
- Portillo, J.; Del Coso, J.; Abián-Vicén, J. Effects of caffeine ingestion on skill performance during an international female rugby sevens competition. J. Strength Cond. Res. 2017, 31, 3351–3357. [Google Scholar] [CrossRef]
- Prins, P.J.; Goss, F.L.; Nagle, E.F.; Beals, K.; Robertson, R.J.; Lovalekar, M.T.; Welton, G.L. Energy drinks improve five-kilometer running performance in recreational endurance runners. J. Strength Cond. Res. 2016, 30, 2979–2990. [Google Scholar] [CrossRef] [PubMed]
- Quinlivan, A.; Irwin, C.; Grant, G.D.; Anoopkumar-Dukie, S.; Skinner, T.; Leveritt, M.; Desbrow, B. The effects of red bull energy drink compared with caffeine on cycling time-trial performance. Int. J. Sports Physiol. Perform. 2015, 10, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Rahnama, N.; Gaeini, A.A.; Kazemi, F. The effectiveness of two energy drinks on selected indices of maximal cardiorespiratory fitness and blood lactate levels in male athletes. J. Res. Med. Sci. 2010, 15, 127–132. [Google Scholar]
- Rica, R.L.; Evangelista, A.L.; Maia, A.F.; Machado, A.F.; La Scala Teixeira, C.V.; Barbosa, W.A.; Hacbart, F.N.; Guerra Junior, M.A.; Ferreira, L.G.; Gomes, J.H.; et al. Energy drinks do not alter aerobic fitness assessment using field tests in healthy adults regardless of physical fitness status. J. Phys. Educ. Sport 2019, 19, 113–120. [Google Scholar]
- Sheehan, K.; Hartzler, L. Effects of XS® energy drink on aerobic exercise capacity of athletes. Int. J. Exerc. Sci. 2011, 4, 152–163. [Google Scholar]
- Stevenson, E.J.; Hayes, P.R.; Allison, S.J. The effect of a carbohydrate-caffeine sports drink on simulated golf performance. Appl. Physiol. Nutr. Metab. 2009, 34, 681–688. [Google Scholar] [CrossRef]
- Woolf, K.; Bidwell, W.K.; Carlson, A.G. Effect of caffeine as an ergogenic aid during anaerobic exercise performance in caffeine naive collegiate football players. J. Strength Cond. Res. 2009, 23, 1363–1369. [Google Scholar] [CrossRef]
- Diaz-Lara, F.J.; Del Coso, J.; García, J.M.; Portillo, L.J.; Areces, F.; Abián-Vicén, J. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur. J. Sport Sci. 2016, 16, 1079–1086. [Google Scholar] [CrossRef]
- Giráldez-Costas, V.; González-García, J.; Lara, B.; Del Coso, J.; Wilk, M.; Salinero, J.J. Caffeine increases muscle performance during a bench press training session. J. Hum. Kinet. 2020, 74, 185–193. [Google Scholar] [CrossRef]
- Giráldez-Costas, V.; Ruíz-Moreno, C.; González-García, J.; Lara, B.; Del Coso, J.; Salinero, J.J. Pre-exercise caffeine intake enhances bench press strength training adaptations. Front. Nutr. 2021, 8, 3. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Morales, J.S.; Emanuele, E.; Pareja-Galeano, H.; Lucia, A. Supplements with purported effects on muscle mass and strength. Eur. J. Nutr. 2019, 58, 2983–3008. [Google Scholar] [CrossRef]
- Lara, B.; Ruiz-Moreno, C.; Salinero, J.J.; Coso, J.D. Time course of tolerance to the performance benefits of caffeine. PLoS ONE 2019, 14, e0210275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-moreno, C.; Lara, B.; Gutiérrez-hellín, J.; González-garcía, J.; Del Coso, J. Time course and magnitude of tolerance to the ergogenic effect of caffeine on the second ventilatory threshold. Life 2020, 10, 343. [Google Scholar] [CrossRef] [PubMed]
- Puente, C.; Abián-Vicén, J.; Salinero, J.J.; Lara, B.; Areces, F.; Del Coso, J. Caffeine improves basketball performance in experienced basketball players. Nutrients 2017, 9, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Lythe, J.; Kilding, A.E. Physical demands and physiological responses during elite field hockey. Int. J. Sports Med. 2011, 32, 523–528. [Google Scholar] [CrossRef]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorist, M.M.; Tops, M. Caffeine, fatigue, and cognition. Brain Cogn. 2003, 53, 82–94. [Google Scholar] [CrossRef]
Study | Random Sequences Generation (Selection Bias) | Allocation Concealment (Selection Bias) | Blinding of Participants/Researchers (Performance Bias) | Blindness of Outcome Assessment (Detection Bias) | Incomplete Outcome Data (Attrition Bias) | Selective Outcome Reporting (Reporting Bias) | Other Sources of Bias |
---|---|---|---|---|---|---|---|
Abian et al., 2014 [29] | + | ? | + | + | + | + | + |
Abian et al., 2015 [30] | + | ? | + | + | + | + | + |
Arazi et al., 2016 [31] | + | + | + | + | + | + | + |
Astorino et al., 2012 [32] | + | + | - | - | + | - | + |
Carvajal and Moncada, 2005 [33] | + | + | + | + | + | + | + |
Chen et al., 2015 [34] | + | ? | + | + | + | + | + |
Hulston and Jeukendrup, 2008 [35] | + | ? | + | + | + | + | + |
Clarke and Duncan, 2016 [36] | + | ? | + | + | + | + | + |
Cureton et al., 2007 [12] | + | ? | + | + | - | + | + |
Del Coso et al., 2012 [37] | + | + | + | + | + | + | + |
Del Coso et al., 2013 [38] | + | + | + | + | + | + | + |
Del Coso et al., 2013 [39] | + | + | + | + | ? | + | + |
Del Coso et al., 2014 [40] | + | + | + | + | + | + | + |
Del Coso et al., 2016 [41] | + | + | + | + | + | + | + |
Doyle et al., 2016 [42] | + | ? | + | ? | + | + | ? |
Fernández-Campos et al., 2015 [43] | + | ? | + | ? | ? | + | + |
Gallo-Salazar et al., 2015 [44] | + | + | + | ? | + | + | + |
Gwacham and Wagner, 2012 [45] | + | ? | + | + | + | + | + |
Hoffman et al., 2009 [46] | + | ? | + | ? | + | + | + |
Ivy et al., 2009 [47] | + | ? | + | ? | + | + | + |
Lara et al., 2014 [48] | + | + | + | + | ? | + | + |
Lara et al., 2015 [49] | + | + | + | + | + | + | + |
Perez-Lopez et al., 2015 [50] | + | + | + | + | + | + | ? |
Schubert et al., 2013 [51] | + | + | - | ? | + | + | + |
Mumford et al., 2016 [52] | + | + | + | + | + | + | ? |
Peltier et al., 2013 [53] | + | ? | + | - | + | + | ? |
Phillips et al., 2014 [54] | + | + | - | ? | + | + | + |
Portillo et al., 2017 [55] | + | + | + | + | + | + | + |
Prins et al., 2016 [56] | + | ? | + | ? | + | + | + |
Quinlivan et al., 2015 [57] | + | - | + | ? | + | + | + |
Rahnama et al., 2010 [58] | + | ? | + | ? | + | + | + |
Rica et al., 2019 [59] | + | ? | + | ? | ? | + | - |
Salinero et al., 2014 [8] | + | + | + | ? | + | + | + |
Sheehan and Hartzler, 2011 [60] | + | + | + | ? | + | + | + |
Stevenson et al., 2009 [61] | + | ? | + | ? | + | + | + |
Talanian and Spriet, 2016 [21] | + | ? | + | ? | + | + | + |
Woolf et al., 2009 [62] | + | ? | + | ? | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, S.L.; Díaz-Lara, J.; Pareja-Galeano, H.; Del Coso, J. Caffeinated Drinks and Physical Performance in Sport: A Systematic Review. Nutrients 2021, 13, 2944. https://doi.org/10.3390/nu13092944
Jiménez SL, Díaz-Lara J, Pareja-Galeano H, Del Coso J. Caffeinated Drinks and Physical Performance in Sport: A Systematic Review. Nutrients. 2021; 13(9):2944. https://doi.org/10.3390/nu13092944
Chicago/Turabian StyleJiménez, Sergio L., Javier Díaz-Lara, Helios Pareja-Galeano, and Juan Del Coso. 2021. "Caffeinated Drinks and Physical Performance in Sport: A Systematic Review" Nutrients 13, no. 9: 2944. https://doi.org/10.3390/nu13092944
APA StyleJiménez, S. L., Díaz-Lara, J., Pareja-Galeano, H., & Del Coso, J. (2021). Caffeinated Drinks and Physical Performance in Sport: A Systematic Review. Nutrients, 13(9), 2944. https://doi.org/10.3390/nu13092944