Analysis of Caloric and Noncaloric Sweeteners Present in Dairy Products Aimed at the School Market and Their Possible Effects on Health
Abstract
:1. Introduction
Caloric Sweeteners | ||
Natural | Sugars | Sucrose, glucose, fructose, dextrose, lactose, maltose, galactose, trehalose, tagatose |
Caloric sweeteners | Honey, maple syrup, palm sugar, coconut sugar, sorghum syrup | |
Artificial | Modified sugars | High-fructose corn syrup, caramel, invert sugar |
Sugar alcohols | Sorbitol, xylitol *, mannitol, erythritol, maltitol, isomaltulose, lactitol, glycerol | |
Noncaloric Sweeteners | ||
Natural | Noncaloric | Stevia, thaumatin, pentadine, monelin, brazzein |
Artificial | Noncaloric | Aspartame, sucralose, saccharin, acesulfame K, cyclamate, neotame |
2. Materials and Methods
3. Results
Sweetener | Structure | Nomenclature | Sweetening Power | ADI, mg/kg/day |
---|---|---|---|---|
Sucrose | C12H22O11 | Sucrose | 1.0 (reference value) | “not specified” |
Fructose | C6H12O6 | Fructose | 1.5–2.0 | “not specified” |
High-Fructose Corn Syrup | 42–55% C6H12O6 and the rest C12H22O11 | High-Fructose Corn Syrup or HFCS | 42–110 | “not specified” |
Maltodextrins | C12H22O11 | E-1400 | - | “not specified” |
Polydextrose | C12H22O11 | E-1200 | - | “not specified” |
Sucralose | C12H19Cl3O8 | E-955 | 600 | 5 |
Stevia | Variable | E-960 | 300 | 4 |
Acesulfame K | C4H4KNO4S | E-950 | 200 | 15 |
3.1. Caloric Sweeteners Characteristics and Applications
3.1.1. Sucrose
3.1.2. Fructose
3.1.3. High-Fructose Corn Syrup (HFCS)
3.1.4. Maltodextrins
3.1.5. Polydextrose
3.2. Noncaloric Sweeteners Characteristics and Applications
3.2.1. Sucralose
3.2.2. Stevia
3.2.3. Acesulfame K
3.3. Modified Starch Characteristics and Applications
3.4. Caloric Sweeteners’ Health Effects
3.4.1. Sucrose
3.4.2. Fructose
3.4.3. High-Fructose Corn Syrup
3.4.4. Maltodextrins
3.4.5. Polydextrose
3.5. Noncaloric Sweeteners’ Health Effects
3.5.1. Effects of Sweeteners towards Health in Living Beings
3.5.1.1. Gut Microbiota
3.5.1.2. Glucose Metabolism
3.5.1.3. Cancer
3.5.1.4. Dental Health
3.5.1.5. Fat Tissue and Weight Gain
3.5.1.6. Nervous System
3.6. Modified Starch
4. Discussion
4.1. Epidemiology of Overweight and Obesity in Mexico
4.2. Knowledge of Noncaloric Sweeteners
4.3. Acceptable Daily Intakes in Children
4.4. Ingredients, Advertising, and Strategies Regarding Dairy Product
4.5. Authors’ Observations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wakida-Kuzunoki, G.H.; Aguiñaga-Villaseñor, R.G.; Avilés-Cobián, R.; Baeza-Bacab, M.A.; Cavagnari, B.M.; Castillo-Ruíz, V.; Hernández-Aguilar, J.C.; López-García, R.; Martínez-Ramos, A.; Martínez-Rodríguez, N.; et al. Edulcorantes no calóricos en la edad pediátrica: Análisis de la evidencia científica. Rev. Mex. Pediatr. 2017, 84 (Suppl. S1), 3–23. [Google Scholar]
- Manzur-Jattin, F.; Morales-Nuñez, M.; Ordosgoitia-Morales, J.; Quiroz-Mendoza, R.; Ramos-Villegas, Y.; Corrales-Santander, H. Impacto del uso de edulcorantes no calóricos en la salud cardiometabólica. Rev. Colomb. Cardiol. 2020, 27, 103–108. [Google Scholar] [CrossRef]
- Calzada-León, R.; Ruíz-Reyes, M.L.; Altamirano-Bustamante, N.; Padrón-Martínez, M.M. Uso de edulcorantes no calóricos en niños. Acta Pediatr. Mex. 2013, 34, 205–211. [Google Scholar]
- Gil-Campos, M.; San José González, M.A.; Díaz Martín, J.J. Uso de azúcares y edulcorantes en la alimentación del niño. Recomendaciones del Comité de Nutrición de la Asociación Española de Pediatría. An. Pediatr. 2015, 83, 353.e1–353.e7. [Google Scholar] [CrossRef] [PubMed]
- Santillán, A.; García, L.A.; Vásquez, N.; Santoyo, V.H.; Melgar, M.; Pereira, W.; Larrahondo, J.E.; Merino, A. Impacto de la Sustitución del Azúcar de caña por Edulcorantes de Alta Intensidad en México, 1st ed.; Universidad Autónoma Chapingo: Texcoc, Mexico, 2017; pp. 32–64. [Google Scholar]
- Alejos de Domingo, A. Edulcorantes o Azúcar: Efectos Sobre la Salud; Trabajo Fin de Grado, Universidad Complutense de Madrid: Madrid, Spain, 2018. [Google Scholar]
- García-Almeida, J.M.; Casado, G.M.; García, J. Una visión global y actual de los edulcorantes: Aspectos de regulación. Nutr. Hosp. 2013, 28 (Suppl. S4), 17–31. [Google Scholar] [PubMed]
- Bulman, J.F.; Navarro, J.; Díaz, E.; Guzmán-Valdivia, G.; Rodriguez, F. Ingesta de edulcorantes no nutritivos en tres poblaciones distintas de adultos en México. Rev. Chil. Nutr. 2018, 45, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Velasco, J. Efectos de los Edulcorantes Artificiales Sobre la Salud; Tesis de Licenciatura, Universidad de la Laguna: San Cristóbal de La Laguna, Spain, 2019. [Google Scholar]
- Durán, S.; Angarita, L.; Escobar, M.C.; Rojas, D.; de Assis, J. Noncaloric Sweeteners in Children: A Controversial Theme. BioMed Res. Int. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Gobierno de México. Available online: https://www.gob.mx/cms/uploads/attachment/file/201026/Nota_Febrero.pdf (accessed on 25 January 2021).
- Aldrete-Velasco, J.; López-García, R.; Zúñiga-Guajardo, S.; Riobó-Serbán, P.; Serra-Majem, L.; Suverza-Fernández, A.; Esquivel-Flores, M.G.; Molina-Segui, F.; Pedroza-Islas, R.; Rascón-Hernández, M.; et al. Análisis de la evidencia disponible para el consumo de edulcorantes no calóricos. Documento de expertos. Med. Int. Méx. 2017, 33, 61–83. [Google Scholar]
- Carvallo, P.; Carvallo, E.; Barbosa-da-Silva, S.; Mandarim-de-Lacerda, C.A.; Hernández, A.; del Sol, M. Efectos metabólicos del consumo excesivo de fructosa añadida. Int. J. Morphol. 2019, 37, 1058–1066. [Google Scholar] [CrossRef] [Green Version]
- Riveros, M.J.; Parada, A.; Pettinelli, P. Consumo de fructosa y sus implicaciones para la salud: Malabsorción de fructosa e hígado graso no alcohólico. Nutr. Hosp. 2014, 29, 491–499. [Google Scholar] [CrossRef]
- Romo, A. Edulcorantes energéticos y no energéticos: Utilidad y Efectos secundarios. In Nutrición en Gastroenterología: Aspectos clínicos y dietéticos, 1st ed.; de Haro, F., Fuentes, O., Eds.; AM Editores: Mexico City, Mexico, 2018; pp. 261–276. [Google Scholar]
- Bejarano, J.J.; Suárez, L.M. Algunos peligros químicos y nutricionales del consumo de los alimentos de venta en espacios públicos. Rev. Univ. Ind. Santander. Salud. 2015, 47, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Stephens-Camacho, N.A.; Valdez-Hurtado, S.; Lastra-Zavala, G.; Félix-Ibarra, L.I. Consumo de edulcorantes no nutritivos: Efectos a nivel celular y metabólico. Perspect. Nut. Hum. 2018, 20, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Academia. Available online: https://www.academia.edu/22561760/Glucosa_and_Fructosa (accessed on 24 January 2021).
- Lohner, S.; Toews, I.; Meerpohl, J.J. Health outcomes of non-nutritive sweeteners: Analysis of the research landscape. Nutr. J. 2017, 16, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- INEGI. Available online: https://www.inegi.org.mx/contenidos/programas/ensanut/2018/doc/ensanut_2018_presentacion_resultados.pdf (accessed on 25 January 2021).
- Shamah-Levy, T.; Cuevas-Nasu, L.; Méndez-Gómez-Humarán, I.; Jimenez-Aguilar, A.; Mendoza-Ramírez, A.J.; Villalpando, S. La obesidad en niños mexicanos en edad escolar se asocia con el consumo de alimentos fuera del hogar: Durante el trayecto de la casa a la escuela. Arch. Latinoam. Nutr. 2011, 61, 288–295. [Google Scholar] [PubMed]
- PubChem-National Library of Medicine—Sucrose. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Sucrose (accessed on 28 July 2021).
- PubChem-National Library of Medicine—D-Fructose. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2723872 (accessed on 28 July 2021).
- Patterson, M.E.; Yee, J.K.; Wahjudi, P.; Mao, C.S.; Lee, W.P. Acute metabolic responses to high fructose corn syrup ingestion in adolescents with overweight/obesity and diabetes. J. Nutr. Intermed. Metab. 2018, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- PubChem-National Library of Medicine—Maltodextrin-dextrose equivalent 10-15. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/68229136 (accessed on 28 July 2021).
- PubChem-National Library of Medicine—Melibiose. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/872 (accessed on 28 July 2021).
- PubChem-National Library of Medicine—Sucralose. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/71485 (accessed on 28 July 2021).
- Ruiz, F.J.; Plaza, J.; Saéz, M.J.; Gil, A. Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. Adv. Nutr. 2019, 10, S31–S48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food Standards Agency. Available online: https://www.food.gov.uk/business-guidance/approved-additives-and-e-numbers (accessed on 28 July 2021).
- FAO. Available online: http://www.fao.org/gsfaonline/additives/index.html (accessed on 28 July 2021).
- Jagan Mohan Rao, L.; Ramalakshmi, K. Ingredients of soft drinks. In Recent Trends in Soft Beverages, 1st Ed.; Jagan Mohan Rao, L., Ramalakshmi, K., Eds.; Woodhead Publishing India: New Delhi, India, 2011; Volume A, pp. 189–209. [Google Scholar]
- Helstad, S. Corn Sweeteners. In Corn. Chemistry and Technology, 3rd ed.; Serna-Saldivar, S., Ed.; Woodhead Publishing and AACC International Press: Duxford, UK, 2019; pp. 551–591. [Google Scholar] [CrossRef]
- The American Dietetic Association. Position of the American Dietetic Association: Use of Nutritive and Nonnutritive Sweeteners. J. Am. Diet. Assoc. 2004, 104, 255–275. [Google Scholar] [CrossRef]
- Socolovsky, S. Generalidades, seguridad y aprobacion de los edulcorantes no caloricos. Rev. Mex. Neurocienc. 2018, 19, 5–12. [Google Scholar]
- Durán, S.; Cordón, K.; Rodríguez, M.P. Edulcorantes no nutritivos, riesgos, apetito y ganancia de peso. Rev. Chil. Nutr. 2013, 40, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Rippe, J.M.; Sievenpiper, J.L.; Lê, K.A.; White, J.S.; Clemens, R.; Angelopoulos, T.J. What is the appropriate upper limit for added sugars consumption? Nutr. Rev. 2017, 75, 18–36. [Google Scholar] [CrossRef]
- González, Á.M.; González, B.A.; González, E. Salud dental: Relación entre la caries dental y el consumo de alimentos. Nutr. Hosp. 2013, 28 (Suppl. S4), 64–71. [Google Scholar]
- Zamora, S.; Pérez, F. Importancia de la sacarosa en las funciones cognitivas: Conocimiento y comportamiento. Nutr. Hosp. 2013, 28 (Suppl. S4), 106–111. [Google Scholar]
- FAO/OMS. Available online: http://www.fao.org/gsfaonline/docs/CXS_192s.pdf (accessed on 5 March 2021).
- University of Florida. Available online: https://edis.ifas.ufl.edu/pdffiles/FS/FS18400.pdf (accessed on 4 March 2021).
- García, F.; Gil, J.; Uribe, A.; Valencia, D. Dulce veneno, intolerancia hereditaria a la fructosa. Rev. Med. 2019, 13, 55–64. [Google Scholar]
- Bellaera, F.A.; Hammerschmidt, J.; Sanz, J.; Zaccarello, D.B.; Beccio, B. Jarabe De Maíz De Alta Fructosa, Sus Implicancias En La Salud Y La Información Disponible En El Rotulado De Los Alimentos. Rev. Nutr. Inv. 2018, 126–163. Available online: http://escuelanutricion.fmed.uba.ar/revistani/pdf/19a/rb/851_c.pdf (accessed on 4 March 2021).
- Parra, R.A. Revisión: Microencapsulación de alimentos. Rev. Fac. Nac. Agron. Medellín. 2010, 63, 5669–5684. [Google Scholar]
- Souza, S.V.; Jordão, C.; Zampieri, D.; Spontoni, B.; Leite, J.; Conceicon, A.; de Oliveira, F.; Freitas, E. El consumo de la polidextrosa previene la obesidad y sus comorbilidades en ratas alimentados con dieta hipercalórica. Rev. Chil. Nutr. 2020, 47, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Aidoo, R.P.; Afoakwa, E.O.; Dewettinck, K. Rheological properties, melting behaviours and physical quality characteristics of sugar-free chocolates processed using inulin/polydextrose bulking mixtures sweetened with stevia and thaumatin extracts. Food Sci. Technol. 2015, 62, 592–597. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.-H.; Fowler, P.; Fürst, P.; Gürtler, R.; Gundert-Remy, U.; Husøy, T.; Manco, M.; et al. Scientific Opinion on the re-evaluation of polydextrose (E 1200) as a food additive. EFSA J. 2021, 19, e06363. [Google Scholar] [CrossRef]
- Bueno-Hernández, N.; Vázquez-Frías, R.; Abreu y Abreu, A.T.; Almeda-Valdés, P.; Barajas-Nava, L.A.; Carmona-Sánchez, R.I.; Chávez-Sáenz, J.; Consuelo-Sánchez, A.; Espinosa-Flores, A.J.; Hernández-Rosiles, V.; et al. Revisión de la evidencia científica y opinión técnica sobre el consumo de edulcorantes no calóricos en enfermedades gastrointestinales. Rev. Gastroenterol. Méx. 2019, 84, 492–510. [Google Scholar] [CrossRef]
- Cavagnari, B.M. Edulcorantes no calóricos: Características específicas y evaluación de su seguridad. Arch. Argent. Pediatr. 2019, 117, e1–e7. [Google Scholar] [CrossRef]
- Villarroel, P.; Gómez, C.; Vera, C.; Torres, J. Almidón resistente: Características tecnológicas e intereses fisiológicos. Rev. Chil. Nutr. 2018, 45, 271–278. [Google Scholar] [CrossRef] [Green Version]
- FAO. Available online: http://www.fao.org/tempref/codex/Meetings/CCFA/CCFA47/fa47_03s.pdf (accessed on 5 March 2021).
- Geidl-Flueck, B.; Hochuli, M.; Németh, A.; Eberl, A.; Derron, N.; Köfeler, H.C.; Tappy, L.; Berneis, K.; Spinas, G.A.; Gerber, P.A. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J. Hepatol. 2021, 75, 46–54. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Xu, M.; Qiao, G.; Li, C.; Lin, L.; Zheng, G. Smilax china L. polyphenols alleviates obesity and inflammation by modulating gut microbiota in high fat/high sucrose diet-fed C57BL/6J mice. J. Funct. Foods. 2021, 77, 104332. [Google Scholar] [CrossRef]
- Sun, S.; Araki, Y.; Hanzawa, F.; Umeki, M.; Kojima, T.; Nishimura, N.; Ikeda, S.; Mochizuki, S.; Oda, H. High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. J. Nutr. Biochem. 2021, 93, 108621. [Google Scholar] [CrossRef] [PubMed]
- Debray, F.G.; Seyssel, K.; Fadeur, M.; Tappy, L.; Paquot, N.; Tran, C. Effect of a high fructose diet on metabolic parameters in carriers for hereditary fructose intolerance. Clin. Nutr. 2021, 3. [Google Scholar] [CrossRef]
- Soltani, Z.; Rasheed, K.; Kapusta, D.R.; Reisin, E. Potential Role of Uric Acid in Metabolic Syndrome, Hypertension, Kidney Injury, and Cardiovascular Diseases: Is It Time for Reappraisal? Curr. Hypertens. Rep. 2013, 15, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siqueira, J.H.; Mill, J.G.; Velasquez-Melendez, G.; Moreira, A.D.; Barreto, S.M.; Benseñor, I.M.; Molina, M.D.C.B. Sugar-Sweetened Soft Drinks and Fructose Consumption Are Associated with Hyperuricemia: Cross-Sectional Analysis from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients 2018, 10, 981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaniyi, K.S.; Olatunji, L.A. Inhibition of pyruvate dehydrogenase kinase-4 by l-glutamine protects pregnant rats against fructose-induced obesity and hepatic lipid accumulation. Biomed. Pharmacother. 2019, 110, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. Sucrose, fructose, glucose, and their link to metabolic syndrome and cancer. Nutrition 2015, 31, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Keim, N.L.; Stanhope, K.L.; Havel, P.J. Fructose and High-Fructose Corn Syrup. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 119–124. [Google Scholar]
- Espinosa, J.A.; Baxter, J.; Dash, A.; Pratt, J.W. Impact of Low Dose Maltodextrin/Citrulline Loading on the Severity and Duration of Stress Induced Hyperglycemia in Cardiac Surgery. J. Am. Coll. Surg. 2020, 231. [Google Scholar] [CrossRef]
- Hiel, S.; Gianfrancesco, M.A.; Rodriguez, J.; Portheault, D.; Leyrolle, Q.; Bindels, L.B. Link between gut microbiota and health outcomes in inulin -treated obese patients: Lessons from the Food4Gut multicenter randomized placebo-controlled trial. Clin. Nutr. 2020, 39, 3618–3628. [Google Scholar] [CrossRef] [PubMed]
- Kending, M.D.; Lin, C.S.; Beilharz, J.E.; Rooney, K.B.; Boakes, R.A. Maltodextrin can produce similar metabolic and cognitive effects to those of sucrose in the rat. Appetite 2014, 77, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Laudisi, F.; Di Fusco, D.; Dinallo, V.; Stolfi, C.; Di Grazia, A.; Marafini, I.; Colantoni, A.; Ortenzi, A.; Alteri, C.; Guerrieri, F.; et al. The Food Additive Maltodextrin Promotes Endoplasmic Reticulum Stress–Driven Mucus Depletion and Exacerbates Intestinal Inflammation. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 457–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hull, S.; Re, R.; Tiihonen, K.; Viscione, L.; Wickham, M. Consuming polydextrose in a mid-morning snack increases acute satiety measurements and reduces subsequent energy intake at lunch in healthy human subjects. Appetite 2012, 59, 706–712. [Google Scholar] [CrossRef]
- Ibarra, A.; Astbury, N.M.; Olli, K.; Alhoniemi, E.; Tiihonen, K. Effects of polydextrose on different levels of energy intake. A systematic review and meta-analysis. Appetite 2015, 87, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Ibarra, A.; Olli, K.; Pasman, W.; Hendriks, H.; Alhoniemi, E.; Raza, G.S.; Herzig, K.-H.; Tiihonen, K. Effects of polydextrose with breakfast or with a midmorning preload on food intake and other appetite-related parameters in healthy normal-weight and overweight females: An acute, randomized, double-blind, placebo-controlled, and crossover study. Appetite 2017, 110, 5–24. [Google Scholar] [CrossRef]
- Da Silva, J.M.; Klososki, S.J.; Silva, R.; Lorenzo, R.S.; Silva, M.C.; Freitas, M.Q.; Barao, C.E.; Colombo, T. Passion fruit-flavored ice cream processed with water-soluble extract of rice by-product: What is the impact of the addition of different prebiotic components? LWT 2020, 128, 109472. [Google Scholar] [CrossRef]
- Wang, H.; Ren, P.; Mang, L.; Shen, N.; Chen, J.; Zhang, Y. In vitro fermentation of novel microwave-synthesized non-digestible oligosaccharides and their impact on the composition and metabolites of human gut microbiota. J. Funct. Foods. 2019, 55, 156–166. [Google Scholar] [CrossRef]
- Garavaglia, M.B.; Rodríguez, V.; Zapata, M.E.; Rovirosa, A.; González, V.; Flax, F.; Carmuega, E. Edulcorantes no nutritivos: Consumo de los niños y adolescentes, y alimentos que los aportan. Arch. Argent. Pediatr. 2018, 116, 186–191. [Google Scholar] [CrossRef]
- Purohit, V.; Mishra, S. The truth about artificial sweeteners–Are they good for diabetics? Indian Heart J. 2018, 70, 197–199. [Google Scholar] [CrossRef]
- Bian, X.; Chi, L.; Gao, B.; Tu, P.; Ru, H.; Lu, K. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE 2017, 12, e0178426. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, H.; Wang, Y.; Lau, H.; Zhou, W.; Chen, C.; Tan, S. A review of stevia as a potential healthcare product: Up-to-date functional characteristics, administrative standards and engineering techniques. Trends Food. Sci. Technol. 2020, 103, 264–281. [Google Scholar] [CrossRef]
- Yalamanchi, S.; Srimath, R.; Dobs, A. Acesulfame-K. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–5. [Google Scholar]
- Magnuson, B.A.; Roberts, A.; Nestmann, E.R. Critical review of the current literature on the safety of sucralose. Food Chem. Toxicol. 2017, 106 Pt A, 324–355. [Google Scholar] [CrossRef] [PubMed]
- Myint, K.Z.; Wu, K.; Xia, Y.; Fan, Y.; Shen, J.; Zhang, P.; Gu, J. Polyphenols from Stevia rebaudiana (Bertoni) leaves and their functional properties. J. Food Sci. 2020, 85, 240–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.P.; Kumari, M.; Prakash, H.G.; Rao, G.P.; Solomon, S. Phytochemical and Pharmacological Importance of Stevia: A Calorie-Free Natural Sweetener. Sugar Tech. 2019, 21, 227–234. [Google Scholar] [CrossRef]
- Silva, M.R.; Moya, C.Á.; León, A.G.S.; Velasco, R.R.; Flores, A.M.C. Genotoxic activity of saccharin, acesulfame-K, stevia and aspartame-acesulfame-K in commercial form. J. Clin. Toxicol. 2018, 8, 386. [Google Scholar] [CrossRef]
- Chappell, G.A.; Wikoff, D.S.; Doepker, C.L.; Borghoff, S.J. Lack of potential carcinogenicity for acesulfame potassium–Systematic evaluation and integration of mechanistic data into the totality of the evidence. Food Chem. Toxicol. 2020, 141. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.; Sharma, D.K.; Kishore, K. Toxicity of Food Additives. In Food Safety and Human Health; Singh, R.L., Mondal, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 67–98. [Google Scholar]
- Li, W.; Liu, Y.; Wang, Y.; Li, X.; Liu, X.; Guo, M.; Tan, Y.; Qin, X.; Wang, X.; Jiang, M. Sucralose Promotes Colitis-Associated Colorectal Cancer Risk in a Murine Model Along With Changes in Microbiota. Front. Oncol. 2020, 10, 710. [Google Scholar] [CrossRef]
- Paredes, A.E.; Naranjo, M.C. La Stevia rebaudiana como coadyuvante en la prevención y el control de la caries dental: Una revisión de literatura. Acta Odontol. Colomb. 2016, 6, 45–60. [Google Scholar]
- Ruyter, J.; Olthof, M.; Seidell, J.; Katan, B. A trial of sugar-free or sugar-sweetened beverages and body weight in children. N. Engl. J. Med. 2012, 367, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- Farid, A.; Hesham, M.; El-Dewak, M.; Amin, A. The hidden hazardous effects of stevia and sucralose consumption in male and female albino mice in comparison to sucrose. Saudi Pharm. J. 2020, 28, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- DeMartino, P.; Cockburn, D.W. Resistant starch: Impact on the gut microbiome and health. Curr. Opin. Biotechnol. 2020, 61, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Togo, J.; Hu, S.; Li, M.; Niu, C.; Speakman, J.R. Impact of dietary sucrose on adiposity and glucose homeostasis in C57BL/6J mice depends on mode of ingestion: Liquid or solid. Mol. Metab. 2019, 27, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Karjalainen, S.; Tolvanen, M.; Pienihäkkinen, K.; Söderling, E.; Lagström, H.; Simell, O.; Niinikoski, H. High sucrose intake at 3 years of age is associated with increased salivary counts of mutans streptococci and lactobacilli, and with increased caries rate from 3 to 16 years of age. Caries Res. 2015, 49, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Van Opstal, A.M.; Kaal, I.; van den Berg-Huysmans, A.A.; Hoeksma, M.; Blonk, C.; Pijl, H.; Rombouts, S.; van der Grond, J. Dietary sugars and non-caloric sweeteners elicit different homeostatic and hedonic responses in the brain. Nutrition 2019, 60, 80–86. [Google Scholar] [CrossRef]
- Higgins, K.A.; Mattes, R.D. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am. J. Clin. Nutr. 2019, 109, 1288–1301. [Google Scholar] [CrossRef]
- Maersk, M.; Belza, A.; Stødkilde-Jørgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2012, 95, 283–289. [Google Scholar] [CrossRef]
- Aijälä, M.; Malo, E.; Ukkola, O.; Bloigu, R.; Lehenkari, P.; Autio-Harmainen, H.; Santaniemi, M.; Kesäniemi, Y.A. Long-term fructose feeding changes the expression of leptin receptors and autophagy genes in the adipose tissue and liver of male rats: A possible link to elevated triglycerides. Genes Nutr. 2013, 8, 623–635. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.J.; Perez-Pozo, S.E.; Lillo, J.L.; Grases, F.; Schold, J.D.; Kuwabara, M.; Sato, Y.; Hernando, A.A.; Garcia, G.; Jensen, T.; et al. Fructose increases risk for kidney stones: Potential role in metabolic syndrome and heat stress. BMC Nephrol. 2018, 19, 315. [Google Scholar] [CrossRef]
- Olguin, M.C.; Posadas, M.D.; Revelan, G.C.; Labourdette, V.; Marinozzi, D.O.; Venezia, M.R.; Zingale, M.I. Efectos del consumo elevado de fructosa y sacarosa sobre parámetros metabólicos en ratas obesas y diabéticas. Rev. Chil. Nutr. 2015, 42, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Stanhope, K.L.; Medici, V.; Bremer, A.A.; Lee, V.; Lam, H.D.; Nunez, M.V.; Chen, G.X.; Keim, N.L.; Havel, P.J. A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am. J. Clin. Nutr. 2015, 101, 1144–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyers, A.M.; Mourra, D.; Beeler, J.A. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Thomson, P.; Santibañez, R.; Aguirre, C.; Galgani, J.E.; Garrido, D. Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. Br. J. Nutr. 2019, 122, 856–862. [Google Scholar] [CrossRef] [Green Version]
- Anton, S.D.; Martin, C.K.; Han, H.; Coulon, S.; Cefalu, W.T.; Geiselman, P.; Williamson, D.A. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite 2010, 55, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Farhat, G.; Berset, V.; Moore, L. Effects of Stevia Extract on Postprandial Glucose Response, Satiety and Energy Intake: A Three-Arm Crossover Trial. Nutrients 2019, 11, 3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, F.; Tavenard, A.; Esvan, M.; Laviolle, B.; Viltard, M.; Lepicard, E.M.; Lainé, F. Consumption of a Carbonated Beverage with High-Intensity Sweeteners Has No Effect on Insulin Sensitivity and Secretion in Nondiabetic Adults. J. Nutr. 2018, 148, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Cameron, I.; Alam, M.A.; Wang, J.; Brown, L. Endurance exercise in a rat model of metabolic syndrome. Can. J. Physiol. Pharmacol. 2012, 90, 1490–1497. [Google Scholar] [CrossRef]
- Barquera, S.; Rivera, J.A. Obesity in Mexico: Rapid epidemiological transition and food industry interference in health policies. Lancet Diabetes Endocrinol. 2020, 8, 746–747. [Google Scholar] [CrossRef]
- Jimenez, P.; Ochoa, A. Obesidad: ¿Cómo afecta nuestra salud lo que mamá comió durante el embarazo? Revista milenaria. Cienc. yarte 2015, 9, 17–19. [Google Scholar]
- Vázquez, M.C.; Guevara, R.G.; Aguirre, H.; Alvarado, A.M.; Romero, H. Current consumption of natural sweeteners (benefits and problems): Stevia. Rev. Med. Electrón. 2017, 39, 1153–81159. [Google Scholar]
- Aldrete-Velasco, J.A.; Aranceta-Bartrina, J.; Rodríguez-García, J.A.; Durán-Coyote, S.; Pedraza-Chavéz, J.; Reyes-Zavala, C. Conocimiento, consumo y recomendación de edulcorantes no calóricos en una población de profesionales de la salud en México. Med. Int. Mex. 2020, 36, 173–184. [Google Scholar] [CrossRef]
- Romo, A.; Almeda, P.; Brito, G.X.; Gómez, F.J. Prevalencia del consumo de edulcorantes no nutritivos (ENN) en una población de pacientes con diabetes en México. Gac. Med. Mex. 2017, 153, 61–74. [Google Scholar]
- Tolentino, L.; Rincón, S.; Bahena, L.; Ríos, V.; Barquera, S. Conocimiento y uso del etiquetado nutrimental de alimentos y bebidas industrializados en México. Salud. Publ. Mex. 2018, 60, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Durán, S.; Quijada, M.; Silva, L.; Almonacid, N.; Berlanga, M.; Rodríguez, M. Niveles de ingesta diaria de edulcorantes no nutritivos en escolares de la región de valparaíso. Rev. Chil. Nutr. 2011, 38, 444–449. [Google Scholar] [CrossRef]
- Muñoz, I.; Sevilla, M.D.; García, F.E.; Sanchéz, J.G.; Sánchez, L.G. Bebidas edulcorantes y su riesgo para la salud. Rev. Educ. Cienc. Ing. 2020, 117, 20–30. [Google Scholar]
- Cairns, G.; Angus, K.; Hastings, G.; Caraher, M. Systematic reviews of the evidence on the nature, extent and effects of food marketing to children. A retrospective summary. Appetite 2013, 62, 209–215. [Google Scholar] [CrossRef]
- Tatlow-Golden, M.; Garde, A. Digital food marketing to children: Exploitation, surveillance and rights violations. Glob. Food Secur. 2020, 27, 100423. [Google Scholar] [CrossRef]
Dairy Product Description | Contained Sweeteners | Modified Starch | |
---|---|---|---|
Caloric | Noncaloric | ||
Petit Suisse cheese | Sucrose, fructose | - | - |
Fermented dairy product with fruit (medium presentation) | Sucrose, maltodextrin | - | Yes |
Dairy product ferment fruit flavor (small presentation) | Sucrose, maltodextrin | - | Yes |
Fruit flavored yogurt with cereal | Sucrose, maltodextrin, high-fructose corn syrup | Sucralose | Yes |
Fermented dairy product with Lactobacillus casei Shirota | Sucrose | - | - |
Ultrapasteurized reconstituted skim milk with flavorings | Sucrose, maltodextrin, polydextrose | Stevia | - |
Ultrapasteurized semiskimmed milk with ice cream flavor (boxed presentation) | Sucrose | - | - |
Ultrapasteurized semiskimmed milk with ice cream flavor (bottle presentation) | Sucrose | - | - |
Chocolate milk | Sucrose | Sucralose, acesulfame K, stevia | - |
Yogurt with fruit preparation | Sucrose, high-fructose corn syrup | Acesulfame K, sucralose | Yes |
Sweetened natural yogurt with cereal | Sucrose | - | Yes |
Plain whipped yogurt | Sucrose, Fructose | Acesulfame K | Yes |
Custard (Dulce de Leche) | Sucrose | - | Yes |
Flan | Sucrose, fructose | - | Yes |
Petit Suisse cheese (designed to be eaten by smashing it) | Sucrose, fructose, maltodextrin | - | Yes |
Sweetener | Study Reference | Title of Publication | Country | Subjects | Exposure | Conclusions |
---|---|---|---|---|---|---|
Sucrose | [85] | “Impact of dietary sucrose on adiposity and glucose homeostasis in C57BL/6J mice depends on mode of ingestion: liquid or solid” | China | Male C57BL/6J mice | Sucrose in solid and liquid food (rodent chow and drinking water) | In this study, it was found that mice that consumed sucrose-sweetened liquids had more significant body weight gain and presented a reduction in the response of insulin. Thus, the consumption of sucrose-sweetened liquids can induce the development of metabolic syndrome and changes in body weight. |
[86] | “High Sucrose Intake at 3 Years of Age Is Associated with Increased Salivary Counts of Mutans Streptococci and Lactobacilli, and with Increased Caries Rate from 3 to 16 Years of Age” | Finland | Children from 3 to 16 years old | Fructose added in diet or food | Children with high sucrose intake are more likely to develop caries and have higher salivary counts of mutans streptococci. | |
[87] | “Dietary sugars and noncaloric sweeteners elicit different homeostatic and hedonic responses in the brain” | Netherlands | 16 healthy men from 18 to 25 years of age with body mass index between 20–23 kg/m2 | 50 g glucose, fructose, or sucrose, or 0.33 g sucralose dissolved in 300 mL of water | This research studied the metabolic responses of sweeteners; it was found that sucrose, like glucose, can induce an elevation of glucose and insulin in blood after ingestion, and that sucrose had a delayed and lesser response from the hypothalamus. | |
[88] | “A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity” | United States of America | Individuals from West Lafayette | Beverages sweetened with 100, 120, or 140 g sucrose | The consumption of sucrose can induce gain of body weight in comparison to noncaloric sweeteners. | |
[89] | “Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study” | Denmark | Healthy, nondiabetic subjects between 20 and 50 years old with BMI 26–40 and blood pressure < 160/100 mm Hg. | Beverages sweetened with sucrose, aspartame, saccharin, sucralose, or rebaudioside A | The consumption of beverages sweetened with sucrose or fructose for six months can increase adipose tissue accumulation compared to other beverages such as noncaloric milk and soda. Also, the results of human studies suggested that the excess consumption of fructose produces adverse metabolic changes, such as gain of adipose tissue, increased triglycerides, decreased insulin sensitivity, and dyslipidemia. | |
Fructose | [90] | “Long-term fructose feeding changes the expression of leptin receptors and autophagy genes in the adipose tissue and liver of male rats: a possible link to elevated triglycerides” | Finland | Sprague-Dawley rats | Fructose-rich diet | This study demonstrated that fructose consumption can induce leptin resistance, elevate triglyceride levels, and induce insulin resistance and hepatic steatosis. |
[91] | “Fructose increases risk for kidney stones: potential role in metabolic syndrome and heat stress” | United States of America | Healthy male adults between 40–65 years of age | 200 g fructose daily in water | The results of this study showed that fructose consumption appears to increase the formation of urinary stones by the direct effects on urinary pH, overproduction of oxalate, and the increment of serum levels of uric acid. | |
[92] | “Efectos del consumo elevado de fructosa y sacarosa sobre parámetros metabólicos en ratas obesas y diabéticas” | Argentina | Overweight and diabetic IIMb/β rats | Diets with fructose, sucrose, or corn starch | Cholesterol and triglyceride levels were elevated in the groups fed with fructose and sucrose. In addition, mild hepatic steatosis and other severe effects such as obesity and overweight, insulin resistance, diabetes type 2, hyperuricemia, nonalcoholic fatty liver, and renal failure were demonstrated. | |
High-Fructose Corn Syrup | [93] | “A dose-response study of consuming high-fructose corn syrup–sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults” | United States | 187 adults between 18 and 40 years of age and with BMI 18–35 kg/m2 | Beverages sweetened with high-fructose corn syrup | The results of the study mentioned that the consumption of beverages sweetened with HFCS is associated with an increase of uric acid serum levels and dose-response increases of circulating triglycerides and lipoprotein risk factors for CVD. |
[94] | “High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity” | United States | Male and female C57BL/6 m mice | High-fructose corn syrup in chow diet or a 10% solution of HFCS-55 in drinking water | The research claimed that changes in body weight were not found. However, the data showed that the consumption of high-fructose syrup can induce metabolic dysregulation associated with glucose serum levels and dopamine independent of obesity or body weight gain. | |
Maltodextrins | [62] | “Maltodextrin can produce similar metabolic and cognitive effects to those of sucrose in the rat” | Australia | Male albino Wistar rats | Sucrose, maltodextrin solution, or drinking water | In this study, the data suggested that the excess consumption of maltodextrin produces rapid body weight gain and adipose tissue accumulation, like the consumption of sucrose. |
Polydextrose | [44] | “El consumo de la polidextrosa previene la obesidad y sus comorbilidades en ratas alimentados con dieta hypercaloric” | Brazil | Male Wistar Rats | Hypercaloric diet with polydextrose supplementation | In this study, no effects of polydextrose associated with cholesterol and lipoproteins were detected. However, it was mentioned that polydextrose can affect glucose metabolism by lowering insulin and glucose serum levels, improving the metabolic response. |
Sucralose | [95] | “Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults” | Chile | Healthy men between 18–50 years with a BMI between 20–30 kg/m2 | Sucralose capsules (260 mg) | The study results showed that participants who consumed sucralose presented lesser body weight gain compared to the placebo group. Moreover, it was confirmed that sucralose consumption does not alter glycemic control, and there were no changes in the gut microbiome. |
Stevia | [96] | “Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels” | United States | 19 healthy individuals with BMI between 20 and 24.9 kg/m2 and 12 individuals with BMI between 30 and 39.9, all 18–50 years of age | Preload with stevia before lunch and dinner | In the study, the consumption of stevia had different effects in comparison to sucrose after the preload of stevia, insulin, and glucose serum levels were reduced. Also, participants who consumed stevia preload reported similar levels of satiety compared to when they consumed sucrose preload. |
[97] | “ Effects of Stevia Extract on Postprandial Glucose Response, Satiety and Energy Intake: A Three-Arm Crossover Trial” | United Kingdom | 20 women and 10 men between 18 and 65 years of age with BMI between 18.5 and 29.9 kg/m2 | Preload containing water mixed with 1 g stevia | After the ingestion of the preload, glucose serum levels were not as elevated as the for the preload containing sucrose and water. Also, it was proven that the consumption of stevia reduces appetite and keeps satiety. | |
Acesulfame K | [71] | “The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice” | United States | Male CD-1Mice | Noncaloric sweetener: acesulfame K | This study found that the consumption of acesulfame K in male CD-1 mice can increase body weight gain. Furthermore, both genders presented shifts in the gut bacterial community composition. |
[98] | Consumption of a Carbonated Beverage with High-Intensity Sweeteners Has No Effect on Insulin Sensitivity and Secretion in Nondiabetic Adults | France | Nondiabetic adults with BMI between 19 and 29 kg/m | Carbonated beverages containing 129 mg aspartame and 13 mg acesulfame K | The data showed that after 12 weeks of consuming carbonated beverages sweetened with acesulfame K, participants did not present insulin sensitivity or insulin secretion alterations. | |
Modified Corn Starch | [99] | “Endurance exercise in a rat model of metabolic syndrome” | Australia | Male Wistar rats | Diet rich in modified corn starch or HCHF diet | Rats fed with a diet high in carbohydrates and fat presented metabolic alterations such as obesity and dyslipidemia, impaired glucose tolerance, and increased systolic blood pressure compared to those fed with a diet based on modified corn starch. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briones-Avila, L.S.; Moranchel-Hernández, M.A.; Moreno-Riolobos, D.; Silva Pereira, T.S.; Ortega Regules, A.E.; Villaseñor López, K.; Islas Romero, L.M. Analysis of Caloric and Noncaloric Sweeteners Present in Dairy Products Aimed at the School Market and Their Possible Effects on Health. Nutrients 2021, 13, 2994. https://doi.org/10.3390/nu13092994
Briones-Avila LS, Moranchel-Hernández MA, Moreno-Riolobos D, Silva Pereira TS, Ortega Regules AE, Villaseñor López K, Islas Romero LM. Analysis of Caloric and Noncaloric Sweeteners Present in Dairy Products Aimed at the School Market and Their Possible Effects on Health. Nutrients. 2021; 13(9):2994. https://doi.org/10.3390/nu13092994
Chicago/Turabian StyleBriones-Avila, Laura S., Mara A. Moranchel-Hernández, Daniela Moreno-Riolobos, Taísa S. Silva Pereira, Ana E. Ortega Regules, Karen Villaseñor López, and Laura M. Islas Romero. 2021. "Analysis of Caloric and Noncaloric Sweeteners Present in Dairy Products Aimed at the School Market and Their Possible Effects on Health" Nutrients 13, no. 9: 2994. https://doi.org/10.3390/nu13092994
APA StyleBriones-Avila, L. S., Moranchel-Hernández, M. A., Moreno-Riolobos, D., Silva Pereira, T. S., Ortega Regules, A. E., Villaseñor López, K., & Islas Romero, L. M. (2021). Analysis of Caloric and Noncaloric Sweeteners Present in Dairy Products Aimed at the School Market and Their Possible Effects on Health. Nutrients, 13(9), 2994. https://doi.org/10.3390/nu13092994