Impact of Hyponatremia after Renal Transplantation on Decline of Renal Function, Graft Loss and Patient Survival: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.1.1. Characteristics of the STCS
2.1.2. Patients and Data
2.1.3. Outcomes
2.1.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients
3.2. Risk Associated with Hyponatremia
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Upadhyay, A.; Jaber, B.L.; Madias, N.E. Incidence and prevalence of hyponatremia. Am. J. Med. 2006, 119 (Suppl. 1), S30–S35. [Google Scholar] [CrossRef] [PubMed]
- Wald, R.; Jaber, B.L.; Price, L.L.; Upadhyay, A.; Madias, N.E. Impact of hospital-associated hyponatremia on selected outcomes. Arch. Intern. Med. 2010, 170, 294–302. [Google Scholar] [CrossRef]
- Liamis, G.; Rodenburg, E.M.; Hofman, A.; Zietse, R.; Stricker, B.H.; Hoorn, E.J. Electrolyte disorders in community subjects: Prevalence and risk factors. Am. J. Med. 2013, 126, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Adrogue, H.J.; Madias, N.E. Hyponatremia. N. Engl. J. Med. 2000, 342, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Hoorn, E.J.; Zietse, R. Hyponatremia and mortality: Moving beyond associations. Am. J. Kidney Dis. 2013, 62, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, H.; Sugimura, Y.; Takagi, H.; Mizoguchi, H.; Takeuchi, H.; Izumida, H.; Nakashima, K.; Ochiai, H.; Takeuchi, S.; Kiyota, A.; et al. Chronic Hyponatremia Causes Neurologic and Psychologic Impairments. J. Am. Soc. Nephrol. 2016, 27, 766–780. [Google Scholar] [CrossRef] [Green Version]
- Upala, S.; Sanguankeo, A. Association Between Hyponatremia, Osteoporosis, and Fracture: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2016, 101, 1880–1886. [Google Scholar] [CrossRef] [Green Version]
- Jamal, S.A.; Arampatzis, S.; Harrison, S.L.; Bucur, R.C.; Ensrud, K.; Orwoll, E.S.; Bauer, U.C. Hyponatremia and Fractures: Findings from the MrOS Study. J. Bone Miner. Res. 2015, 30, 970–975. [Google Scholar] [CrossRef] [Green Version]
- Arampatzis, S.; Gaetcke, L.-M.; Funk, G.-C.; Schwarz, C.; Mohaupt, M.; Zimmermann, H.; Exadaktylos, A.K.; Lindner, G. Diuretic-induced hyponatremia and osteoporotic fractures in patients admitted to the emergency department. Maturitas 2013, 75, 81–86. [Google Scholar] [CrossRef]
- Arampatzis, S.; Frauchiger, B.; Fiedler, G.-M.; Leichtle, A.B.; Buhl, D.; Schwarz, C.; Funk, G.-C.; Zimmermann, H.; Exadaktylos, A.K.; Lindner, G. Characteristics, symptoms, and outcome of severe dysnatremias present on hospital admission. Am. J. Med. 2012, 125, 1125.e1–1125.e7. [Google Scholar] [CrossRef]
- Arampatzis, S.; Funk, G.C.; Leichtle, A.B.; Fiedler, G.-M.; Schwarz, C.; Zimmermann, H.; Exadaktylos, A.K.; Lindner, G. Impact of diuretic therapy-associated electrolyte disorders present on admission to the emergency department: A cross-sectional analysis. BMC Med. 2013, 11, 83. [Google Scholar] [CrossRef] [Green Version]
- Hackworth, W.A.; Heuman, D.M.; Sanyal, A.J.; Fisher, R.A.; Sterling, R.K.; Luketic, V.A.; Shiffman, M.L.; Maluf, D.G.; Cotterell, A.H.; Posner, M.P.; et al. Effect of hyponatraemia on outcomes following orthotopic liver transplantation. Liver Int. 2009, 29, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Dawwas, M.F.; Lewsey, J.D.; Neuberger, J.M.; Gimson, A.E. The impact of serum sodium concentration on mortality after liver transplantation: A cohort multicenter study. Liver Transpl. 2007, 13, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.R.; Biggins, S.W.; Kremers, W.K.; Wiesner, R.H.; Kamath, P.S.; Benson, J.T.; Edwards, E.; Therneau, T.M. Hyponatremia and mortality among patients on the liver-transplant waiting list. N. Engl. J. Med. 2008, 359, 1018–1026. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Berl, T. Sodium. Lancet 1998, 352, 220–228. [Google Scholar] [CrossRef]
- Yarlagadda, S.G.; Coca, S.G.; Formica, R.N.; Poggio, E.D.; Parikh, C.R. Association between delayed graft function and allograft and patient survival: A systematic review and meta-analysis. Nephrol. Dial. Transpl. 2009, 24, 1039–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opelz, G.; Dohler, B.; Collaborative Transplant Study Report. Influence of time of rejection on long-term graft survival in renal transplantation. Transplantation 2008, 85, 661–666. [Google Scholar] [CrossRef]
- Liamis, G.; Milionis, H.; Elisaf, M. A review of drug-induced hyponatremia. Am. J. Kidney Dis. 2008, 52, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Rodenburg, E.M.; Hoorn, E.J.; Ruiter, R.; Lous, J.J.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H.; Visser, L.E. Thiazide-associated hyponatremia: A population-based study. Am. J. Kidney Dis. 2013, 62, 67–72. [Google Scholar] [CrossRef]
- Higgins, R.; Ramaiyan, K.; Dasgupta, T.; Kanji, H.; Fletcher, S.; Lam, F.; Kashi, H. Hyponatraemia and hyperkalaemia are more frequent in renal transplant recipients treated with tacrolimus than with cyclosporin. Further evidence for differences between cyclosporin and tacrolimus nephrotoxicities. Nephrol. Dial. Transpl. 2004, 19, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Einollahi, B.; Nemati, E.; Rostami, Z.; Teimoori, M.; Ghadian, A. Electrolytes Disturbance and Cyclosporine Blood Levels among Kidney Transplant Recipients. Int. J. Organ Transpl. Med. 2012, 3, 166–175. [Google Scholar]
- Han, S.S.; Han, M.; Park, J.Y.; An, J.N.; Park, S.; Park, S.-K.; Han, D.-J.; Na, K.Y.; Oh, Y.K.; Lim, C.S.; et al. Posttransplant Hyponatremia Predicts Graft Failure and Mortality in Kidney Transplantation Recipients: A Multicenter Cohort Study in Korea. PLoS ONE 2016, 11, e0156050. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.T.; van Delden, C.; Müller, N.J.; Baumann, P.; Lovis, C.; Marti, H.-P.; Fehr, T.; Binet, I.; de Geest, S.; Bucher, H.C.; et al. Design and methodology of the Swiss Transplant Cohort Study (STCS): A comprehensive prospective nationwide long-term follow-up cohort. Eur. J. Epidemiol. 2013, 28, 347–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beilhack, G.; Lindner, G.; Funk, G.-C.; Monteforte, R.; Schwarz, C. Electrolyte disorders in stable renal allograft recipients. Swiss Med. Wkly. 2020, 150, w20366. [Google Scholar] [CrossRef] [PubMed]
- Angeli, P.; Wong, F.; Watson, H.; Ginès, P.; CAPPS Investigators. Hyponatremia in cirrhosis: Results of a patient population survey. Hepatology 2006, 44, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Leise, M.D.; Yun, B.C.; Larson, J.J.; Benson, J.T.; Yang, J.D.; Therneau, T.M.; Rosen, C.B.; Heimbach, J.K.; Biggins, S.W.; Kim, W.R. Effect of the pretransplant serum sodium concentration on outcomes following liver transplantation. Liver Transpl. 2014, 20, 687–697. [Google Scholar] [CrossRef]
- Yun, B.C.; Kim, W.R.; Benson, J.T.; Biggins, S.W.; Therneau, T.M.; Kremers, W.K.; Rosen, C.B.; Klintmalm, G.B. Impact of pretransplant hyponatremia on outcome following liver transplantation. Hepatology 2009, 49, 1610–1615. [Google Scholar] [CrossRef] [Green Version]
- Chawla, A.; Sterns, R.H.; Nigwekar, S.U.; Cappuccio, J.D. Mortality and serum sodium: Do patients die from or with hyponatremia? Clin. J. Am. Soc. Nephrol. 2011, 6, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Sundararajan, V.; Henderson, T.; Perry, C.; Muggivan, A.; Quan, H.; Ghali, W.A. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J. Clin. Epidemiol. 2004, 57, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
Parameters | Sodium <136 mmol/l (n = 97) | Sodium ≥136 mmol/l (n = 1218) | Total (n = 1315) |
---|---|---|---|
Age at transplantation (years) | 56 (48–65) | 54 (43–63) | 54 (43–63) |
Males, n (%) | 63 (64.95%) | 786 (64.53%) | 849 (64.56%) |
Hypertension, n (%) | 53 (54.64%) | 701 (57.55%) | 754 (57.34%) |
Liver disease, n (%) | 1 (1.03%) | 10 (0.82%) | 11 (0.84%) |
Cardiac insufficiency, n (%) | 19 (19.59%) | 204 (16.75%) | 223 (16.96%) |
Donor type | |||
Donation after Brainstem death (DBD) | 64 (65.98%) | 629 (51.64%) | 693 (52.7%) |
Living related | 10 (10.31%) | 250 (20.53%) | 260 (19.77%) |
Living unrelated | 20 (20.62%) | 301 (24.71%) | 321 (24.41%) |
Donation after Circulatory Death (DCD) | 3 (3.09%) | 38 (3.12%) | 41 (3.12%) |
Dialysis before transplantation | |||
Haemodialysis | 72 (74.23%) | 830 (68.14%) | 902 (68.59%) |
Peritoneal dialysis | 11 (11.34%) | 171 (14.04%) | 182 (13.84%) |
Pre-emptive | 14 (14.43%) | 217 (17.82%) | 231 (17.57%) |
Serum measurements (mean) | |||
Sodium (mmol/l) | 132.9 ± 3.05 | 140.3 ± 2.3 | 140 ± 3.08 |
Chloride (mmol/l) | 102.9 ± 5.17 | 106.06 ± 6.22 | 106 ± 6.21 |
Potassium (mmol/l) | 4.21 ± 0.48 | 4.11 ± 0.48 | 4.12 ± 0.48 |
Calcium total (mmol/l) | 2.38 ± 0.24 | 2.39 ± 0.17 | 2.39 ± 0.17 |
Phosphate (mmol/l) | 0.94 ± 0.21 | 0.92 ± 0.37 | 0.92 ± 0.36 |
Magnesium (mmol/l) | 0.7 ± 0.1 | 0.68 ± 0.1 | 0.69 ± 0.1 |
Creatinine (µmol/l) | 138.6 ± 60.33 | 135.26 ± 50.6 | 136 ± 51.36 |
Urea (mmol/l) | 9.73 ± 5.11 | 9.98 ± 5.33 | 9.96 ± 5.32 |
eGFRCKD-EPI (ml/min/1.73m2) | 48.22 ± 16.32 | 48.97 ± 16.03 | 48.9 ± 16.04 |
Outcome | |||
Death | 4 (4.12%) | 52 (4.27%) | 56 (4.26%) |
Graft loss | 3 (3.09%) | 24 (1.97%) | 27 (2.05%) |
Rapid decline of renal function | 36 (37.11%) | 478 (39.24%) | 514 (39.09%) |
Composite outcome | 43 (44.33%) | 554 (45.48%) | 597 (45.4%) |
Regression Coefficient | 95% CI | p Value | |
---|---|---|---|
Glucose (mmol/L) | −0.25 | −0.33–−0.18 | <0.001 |
Chloride (mmol/L) | 0.11 | 0.09–0.14 | <0.001 |
Potassium (mmol/L) | −0.78 | −1.09–−0.48 | <0.001 |
Age | 0.01 | 0–0.03 | 0.0443 |
Sex (Male) | 0.38 | 0.05–0.71 | 0.0257 |
Albumine (g/L) | 0.03 | 0.01–0.05 | 0.0109 |
Phosphate (mmol/L) | 0.03 | −0.35–0.40 | 0.8902 |
Magnesium (mmol/L) | 0.00 | 0.0–0.01 | 0.5586 |
Systolic blood pressure | 0.00 | −0.01–0.01 | 0.4492 |
Diastolic blood pressure | −0.01 | −0.03–0 | 0.0731 |
Loop Diuretic | 0.1 | −0.36–0.55 | 0.6831 |
Thiazide Diuretic | 0.07 | −0.53–0.68 | 0.8138 |
Anti-hypertensive (ACE inhibitors, ARB) | −0.08 | −0.43–0.28 | 0.6706 |
Anti-hypertensive (others) | −0.14 | −0.57–0.28 | 0.5131 |
Steroids | 0.12 | −0.29–0.52 | 0.5801 |
Mycophénolate mofétil | −0.71 | −1.27–−0.15 | 0.0132 |
Calcineurin inhibitors | 0.6 | 0.14–1.06 | 0.0105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berchtold, L.; Filzer, A.; Achermann, R.; Devetzis, V.; Dahdal, S.; Bonani, M.; Schnyder, A.; Golshayan, D.; Amico, P.; Huynh-Do, U.; et al. Impact of Hyponatremia after Renal Transplantation on Decline of Renal Function, Graft Loss and Patient Survival: A Prospective Cohort Study. Nutrients 2021, 13, 2995. https://doi.org/10.3390/nu13092995
Berchtold L, Filzer A, Achermann R, Devetzis V, Dahdal S, Bonani M, Schnyder A, Golshayan D, Amico P, Huynh-Do U, et al. Impact of Hyponatremia after Renal Transplantation on Decline of Renal Function, Graft Loss and Patient Survival: A Prospective Cohort Study. Nutrients. 2021; 13(9):2995. https://doi.org/10.3390/nu13092995
Chicago/Turabian StyleBerchtold, Lena, Anja Filzer, Rita Achermann, Vasileios Devetzis, Suzan Dahdal, Marco Bonani, Aurelia Schnyder, Dela Golshayan, Patrizia Amico, Uyen Huynh-Do, and et al. 2021. "Impact of Hyponatremia after Renal Transplantation on Decline of Renal Function, Graft Loss and Patient Survival: A Prospective Cohort Study" Nutrients 13, no. 9: 2995. https://doi.org/10.3390/nu13092995
APA StyleBerchtold, L., Filzer, A., Achermann, R., Devetzis, V., Dahdal, S., Bonani, M., Schnyder, A., Golshayan, D., Amico, P., Huynh-Do, U., de Seigneux, S., Arampatzis, S., & on behalf of Swiss Transplant Cohort Study Collaborators. (2021). Impact of Hyponatremia after Renal Transplantation on Decline of Renal Function, Graft Loss and Patient Survival: A Prospective Cohort Study. Nutrients, 13(9), 2995. https://doi.org/10.3390/nu13092995